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A fixed-point-free element is a permutation with no fixed points
(sometimes called derangement).
So, (1, 2, 6, 10, 4)(3, 5)(7, 9, 8) is a fpf-element in Sym(10).

Theorem (Jordan)

Every transitive permutation group of degree > 1 contains a

fixed-point-free element.

The proof is an application of the Orbit-counting lemma: the average
number of fixed points is 1, but the identity fixes more than one element.

1

|G |

∑

g∈G

|fix(g)| = 1.

(for representation theorists: by the Frobenius reciprocity, the multiplicity
of the trivial character in the permutation character is one)
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The Erdős-Ko-Rado theorem

Let Ω = {x1, . . . , xn} be a finite set of size n and F a family of k-subsets
of X , for 2k < n. Suppose further that any two elements of F intersect in
at least one element. Then

(i) |F| ≤
(

n−1
k−1

)

;

(ii) if |F| =
(

n−1
k−1

)

, then all the k-sets in F contain a point x of
X .

This result had great impact in combinatorics. There are many
generalizations and analogues: partitions, uniform partitions, finite
dimensional vector spaces, etc.
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Some applications: rephrasing

The Kneser graph K (n, k) is the graph whose vertices are the k-subsets of
a set of size n and two vertices A,B are joined if A ∩ B = ∅. The Petersen
graph is an example of a Kneser graph, namely K (5, 2).

The Erdős-Ko-Rado theorem yields that an independent set of maximal
size in K (n, k), for 2k < n, has size

(

n−1
k−1

)

. Also, the independent sets of
maximal size are fully understood.
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Erdős-Ko-Rado theorem for permutation groups

Given two permutations g , h in Sym(n), we say that g , h are intersecting if
fix(g−1h) 6= ∅.

What is the maximal size of an intersecting set of permutations in
Sym(n)?

Maybe...(n − 1)!...

What are the sets attaining this bound?

Maybe...the cosets of the stabilizer of a point...
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Graph-theoretic terminology

Let D be the set of derangements of Sym(n) (i.e. fixed-point-free
elements). The derangement graph ΓSym(n) of Sym(n) is the graph whose
vertices are the elements of Sym(n) and whose edges are the pairs {g , h}
such that g−1h is a derangement.

Note that the right regular representation of Sym(n) is a subgroup of
Aut(ΓSym(n)). So, ΓSym(n) is a Cayley graph, i.e. Γ = Cay(Sym(n),D).

An independent set for Γ is simply an intersecting set for Sym(n).
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Lemma
Let Γ be vertex-transitive graph, C a clique of Γ and S an independent set

of Γ. Then |C ||S | ≤ |Γ|. Equality is met if and only if |C g ∩ S | = 1, for
every g ∈ Aut(Γ).

In the derangement graph ΓSym(n), any regular subgroup C of Sym(n) is a
clique of size n. Thence, if S is an independent set, we get

|S | ≤
n!

n
= (n − 1)!.

Hard to understand whether the independent sets of maximal size are
cosets of the stabilizer of a point.
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Cameron-Ku and Larose-Malvenuto proved that every independent set of
maximal size of ΓSym(n) is the coset of the stabilizer of a point.

More recently, Godsil-Meagher proved the same result using the character
theory of Sym(n).
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Erdős-Ko-Rado type of theorems have been proved for many classes of
permutation groups. This is a typical example.

Theorem
Any independent set of maximal size of the derangement graph of

PGL(n + 1, q) acting on the projective space P
n
q is either the stabilizer of

a point or the stabilizer of a hyperplane.

Incidentally, using Gauss sums one can prove stability results for large
independent sets.
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Density

In general only rarely Gω is an intersecting set of maximal size in G and
hence no analogue of the Erdős-Ko-Rado theorem holds for arbitrary
permutation groups. For instance, if we let the alternating group Alt(5)
acting on the ten 2-subsets of {1, 2, 3, 4, 5}, we see that Alt(4) is an
intersecting set of size 12, whereas the point stabilizer in this action has
only cardinality 6.

Even when |Gω| is the maximal cardinality of an intersecting set for G , it is
far from being true that all intersecting sets attaining the bound |Gω| are
cosets of the stabilizer of a point.
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Let ω ∈ Ω with Gω having maximum cardinality among point stabilizers.
The intersection density of the intersecting family F of G is defined by

ρ(F) =
|F|

|Gω|

The intersection density of G is

ρ(G ) = max{ρ(F) | F ⊆ G ,F is intersecting}.

This invariant was introduced by Li, Song and Pantagi in to measure how
“close” G is from satisfying the Erdős-Ko-Rado theorem.
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Jordan’s theorem revised

The clique-coclique bound

α(ΓG )ω(ΓG ) ≤ |V ΓG | = |G |

can be used to extract useful information on the intersection density of G .
Indeed, from the definition of intersection density, we obtain

ρ(G ) ≤
|Ω|

ω(ΓG )
.

When G is transitive and |Ω| ≥ 2, Jordan’s theorem ensures that G has a
derangement g and hence {1, g} is a clique of ΓG of cardinality 2.
Therefore, we have

ρ(G ) ≤
|Ω|

2
.
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Meagher, Razafimahatratra and Spiga have shown that, when G is
transitive and |Ω| ≥ 3, the derangement graph ΓG has a clique of
cardinality 3, that is a triangle. Hence ω(ΓG ) ≥ 3 and

ρ(G ) ≤
|Ω|

3
.

Despite the fact that Jordan’s theorem is elementary, the proof of this
theorem is quite involved and ultimately relies on the Classification of the
Finite Simple Groups. A key ingredient is a theorem of Saxl.

Theorem
Let T be a non-abelian simple group, let G be an almost simple group

having socle T and let H be a subgroup of T . If

T =
⋃

g∈G

Hg ,

then H = T.
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In the light of these two results, Meagher, Razafimahatratra and Spiga ask
for the existence of a function f : N → N such that, if G is transitive of
degree n and ΓG has no k-clique, then n ≤ f (k).

Indeed, when k = 2, we have n ≤ 1 by Jordan’s theorem and, when k = 3,
we have n ≤ 2 by the existence of triangles in derangement graphs of
transitive groups of degree at least 3.
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This is a first step towards a positive answer to the question above.

Theorem (Fusari, Previtali, Spiga)

There exists a function f1 : N → N such that, if G is innately transitive of

degree n and the derangement graph of G has no clique of size k, then

n ≤ f1(k).

In particular, we have an affirmative answer for innately transitive groups.
By keeping track of the function f1, we have this refined statement when
k = 3.

Theorem
If G is innately transitive of degree n and the derangement graph of G has

no clique of size 4, then n ≤ 3.

Theorem (Gogniat, Spiga)

If G is transitive of degree n and the derangement graph of G has no

clique of size 4, then n ≤ 30.

Pablo Spiga University of Milano-Bicocca

Derangements and Kronecker classes 15 / 24



There are some remarkable connections between normal coverings and
algebraic number fields.
Given an algebraic number field k and a finite extension field K of k the
Kronecker set of K over k is the set of all prime ideals of the ring of
integers of k having a prime divisor of relative degree one in K . Then, two
finite extensions of k are said to be Kronecker equivalent if their Kronecker
sets have finite symmetric difference, that is, the Kronecker sets differ only
in at most a finite number of primes. This defines an equivalence relation
and such extensions are said to belong to the same Kronecker class.

Let K and K ′ be finite extensions of a given fixed algebraic number field k

and let M be a Galois extension of k containing K and K ′. Let
G = Gal(M/k), U = Gal(M/K ) and U ′ = Gal(M/K ′). It is shown by
Jehne that K and K ′ are Kronecker equivalent if and only if

⋃

g∈G

Ug =
⋃

g∈G

U ′g .
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Conjecture (Neumann, Praeger)

There is an integer function f such that, if G is a finite group with

subgroups U,U ′ such that |G : U ′| = n and

⋃

g∈G

Ug =
⋃

g∈G

U ′g ,

then |G : U| ≤ f (n).

This conjecture phrased in terms of Kronecker classes is as follows.

Conjecture

There is an integer function f such that, if K/k is an extension of degree

n of algebraic number fields and L/k is Kronecker equivalent to K/k, then
|L : k | ≤ f (n).
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The Neumann-Praeger Conjecture can be phrased in terms of
permutations groups. Let G , U, U ′ be as in the statement of the
conjecture and let Ω be the set of right cosets of U in G . Now,

⋃

g∈G

Ug

is the set of elements of G fixing some element of Ω. If this union equals
⋃

g∈G U ′g and |G : U ′| = n, then a clique in the derangement graph of G
in its action on Ω has cardinality at most n. In fact, let C be a clique of
size greater than n. Then by the pigeonhole principle, C intersects a coset
of U ′ in at least two elements. Then the ratio xy−1 lies in U ′ and hence
xy−1 is conjugate to an element of U. Therefore, xy−1 fixes some point,
contradicting the fact that C is a clique. Therefore the Neumann-Praeger
Conjecture can be seen as a particular case of the question of Meagher,
Razafimahatratra and Spiga on cliques in derangement graphs.
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Theorem (Fusari, Harper, Spiga)

There exists a function g : N× N → N such that the following holds. Let

G be a finite group, let U ≤ G and let Inn(G ) ≤ A ≤ Aut(G ) with
|A : Inn(G )| = n. Write c for the number of A-chief factors of G/UA. If

G =
⋃

a∈A Ua, then |G : U| ≤ g(n, c).

In particular, this gives a partial answer to the conjecture of Neumann and
Praeger, if we allow to also use the number of chief factors of the group.
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Jordan’s observations can be phrased entirely in a group-theoretical
terminology. The elements of G fixing some point of Ω are the elements
contained in some point stabilizer Gω and hence the elements in

⋃

ω∈Ω

Gω =
⋃

g∈G

G g
ω0
.

Therefore Jordan’s theorem says that
⋃

g∈G G
g
ω0 is a proper subset of G .

In other words,

A finite group cannot be the union of the conjugates of a proper subgroup.
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Infinite groups can be the union of the conjugates of a proper subgroup:
the HNN-extension allows to construct easily a group where any two
non-identity elements are conjugate.

In the realm of finite groups, we might be interested in investigating finite
groups G admitting two proper subgroups H and K with

G =
⋃

g∈G

Hg ∪
⋃

g∈G

K g .

For instance, G := Sym(3) is the union of the conjugates of Alt(3) and
〈(1, 2)〉.
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Definition
Let k be a positive integer and let G be a finite non-cyclic group. A

normal k-covering of G is a set µ = {H1, . . . ,Hk} of k proper

subgroups of G with the property that every element of G belongs to

the conjugate H
g
i , for some i ∈ {1, . . . , k} and for some g ∈ G , that is,

G =

k
⋃

i=1

⋃

g∈G

H
g
i .

We refer to H1, . . . ,Hk as the components of µ. If H1, . . . ,Hk are

maximal subgroups of G , we refer to them as maximal components.

The normal covering number of the group G , denoted by γ(G ), is
the smallest integer k such that G admits a normal k-covering. Note

that in a normal k-covering {H1, . . . ,Hk} with k = γ(G ), the proper

subgroups H1, . . . ,Hk are in distinct G -conjugacy classes.
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Garonzi and Lucchini (and independently Cheryl Praeger) have a paper
concerning coverings and normal coverings of finite groups where they give
a broad recipe for determining the normal covering number of a finite
group, using its composition factors. This recipe is most efficient for finite
groups having covering number 2. In the light of this reduction, but also
for intrinsic interest, we aim (Daniela Bubboloni, myself and Thomas
Weigel) to give a classification of the almost simple groups having normal

covering number 2.
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