Polynomial p-groups and their connections with fusion systems and finite simple groups

Chris Parker

University of Birmingham

AGTA Workshop - Reinhold Baer Prize 2024 October 8th

KORK ERKER ADAM ADA

Theorem 1

The finite non-abelian simple groups are members of the following list.

- **1** The alternating groups.
- **2** The groups of Lie type (automorphism groups of buildings).

KORK EXTERNE PROVIDE

3 The sporadic simple groups.

From here on p denotes a prime number. Brian, Francesco.

It is very rare that a p -subgroup can be the Sylow p -subgroup of a finite simple group. There's something special about such p-groups.

Example 2

There are 10494213 groups of order $2⁹$ and only about 10 of them are Sylow 2-subgroups of a simple groups.

Hence such 2-groups are very rare and interesting groups. The same observation applies to p -groups in general.

Question 3

Is there a way we could know that being a Sylow p-subgroup of a simple group is unusual?

K ロ ▶ K 個 ▶ K 할 ▶ K 할 ▶ 이 할 → 이익 @

It's very frustrating because many groups have isomorphic Sylow 2-subgroups.

Example 4

Suppose that $q=p^{\scriptscriptstyle a}$ and $r=s^{\scriptscriptstyle b}$ are powers of the primes p and s respectively. If $(q - 1)_2 = (r - 1)_2$, then the simple groups $PSL_2(q)$ and $PSL₂(r)$ have isomorphic Sylow 2-subgroups.

Example 5

 $E_6(2)$, ${}^2E_6(7)$, $F_4(2)$, HN and $PSL_4(3)$ all have isomorphic Sylow 3-subgroups (order $3⁶$).

KORKARYKERKER POLO

Its is very well known among finite groups theorists that $SL₅(2)$, and the sporadic simple groups $Mat(24)$ and He have isomorphic Sylow 2-subgroups.

Less well known is

Example 6

- \bullet The sporadic simple groups Suz and Ly have isomorphic Sylow 3-subgroups [9310 groups of order 3^7].
- **2** The sporadic groups Ly, HN, BM have Sylow 5-subgroups isomorphic to that of $\mathrm{G}_2(5)$ [684 groups of order 5 6].

KORKARYKERKER POLO

 \bullet The monster group M and $\mathrm{G}_2(7)$ has isomorphic Sylow 7-subgroups. [860 groups of order 7^6 .]

Broadly there are two type of p-groups in finite simple groups

We have two types of p -groups which occur:

- The Sylow *p*-subgroups of Lie type groups defined in characteristic p; and
- The Sylow *r*-subgroups of Lie type groups defined in characteristic p where $r \neq p$ is a prime.

K ロ ▶ K 個 ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q Q →

Polynomial p-groups

Let $\mathbb K$ be a field of characteristic p with group of units $\mathbb K^*$. Set

$$
A=\mathbb{K}[x,y].
$$

Define $D = D(\mathbb{K}) = \mathbb{K}^* \times GL_2(\mathbb{K})$ and

$$
f(x,y)\cdot(\lambda, \left(\begin{smallmatrix} a & b \\ c & d \end{smallmatrix}\right)) = \lambda f(ax + by, cx + dy).
$$

This makes A into a KD -module. This action preserves the submodules $V_n(\mathbb{K})$ of homogeneous polynomials of degree $n \geq 0$. Notice that dim_K $V_n(\mathbb{K}) = n + 1$. Set

$$
\mathit{U}(\mathbb{K}) = \{(1, \left(\begin{smallmatrix} 1 & 0 \\ c & 1 \end{smallmatrix}\right)) \in \mathit{D}\}
$$

Define

$$
P_n(\mathbb{K})=V_n(\mathbb{K})\rtimes D
$$

and

$$
B_n(\mathbb{K}) = V_n(\mathbb{K}) \rtimes \{(\lambda, \begin{pmatrix} a & 0 \\ c & d \end{pmatrix}) \in D \mid \lambda, a, c, d \in \mathbb{K}\}
$$

$$
S_n(\mathbb{K}) = V_n(\mathbb{K}) \rtimes U(\mathbb{K}).
$$

 2990 D.

Now assume that $|\mathbb{K}| = q = p^{\mathsf{a}}$, then $\mathcal{S}_n(\mathbb{K}) = \mathcal{S}_n(q)$ has order q^{n+2} . We are only interested in the case when $n \leq p$. In this case $V_n(q)$ is an irreducible KD -module. The focuss of our attention are the p-groups $S_n(q)$ and we call these groups polynomial p -groups.

Lemma 7

 \bullet $S_1(q)$ is isomorphic to a Sylow p-subgroup of $SL_3(q)$. ${\bf 3}$ $S_2(q)$ is isomorphic to a Sylow p-subgroup of ${\rm Sp}_4(q).$ For typical $q > p$, and $n > 3$, $S_n(q)$ is not a Sylow p-subgroup of a finite simple group.

Let $\gamma_i(S_n(q))$, and $Z_i(S_n(q))$ denote the terms of the upper and lower central series of $S_n(q)$.

Lemma 8

1 the terms of the upper and lower central series coincide.

- $2 \left| \gamma_i(S_n(q))/\gamma_{i+1}(S_n(q)) \right| = q$ for all $1 \leq i \leq n-1$ and $S_n(q)/\gamma_1(S_n(q)) = q^2$.
- \bullet Z_i(S_n(q))U(q) \cong S_{i-1}(q) for all $1 \lt i \lt n$.

$$
\bullet S_n(q)/Z_i(S_n(q))\cong S_{n-i}(q).
$$

• The automorphism groups of $S_0(q)$ and $S_1(q)$ contain a subgroup isomorphic to $SL₂(q)$ and for $j > 2$, the automorphism groups are soluble.

KORKAR KERKER ST VOOR

Suppose that p is a prime, X is a group and S is a p -subgroup of X. For $P, Q \leq S$, define

$$
\operatorname{Hom}_{X}(P,Q)=\{c_{g}\mid g\in X, P^g\leq Q\}
$$

where c_{ϵ} is the conjugation map induced by g :

$$
c_g: x \mapsto g^{-1}xg.
$$

If $P = Q$, then we write

$$
Aut_X(P) = Hom_X(P, P) \cong N_X(P)/C_X(P).
$$

Since we know S, the information about $N_G(P)$ which is lost when we make a fusion system is $C_x(P)$.

KORKAR KERKER ST VOOR

A fusion system determined by X and S is the category $\mathcal{F} = \mathcal{F}_S(X)$ with objects all the subgroups of S and, for objects P and Q of F, morphisms from P to Q

$$
Mor_{\mathcal{F}}(P,Q)=Hom_{\mathcal{F}}(P,Q)=Hom_{X}(P,Q).
$$

For Q a subgroup of S, set

$$
\mathrm{Aut}_{\mathcal{F}}(Q) = \mathrm{Hom}_X(Q,Q) \cong N_X(Q)/C_X(Q).
$$

If S is a Sylow p-subgroup of X , then the fusion system is saturated.

Abstractly saturated fusion systems on a p -group S capture the properties of the fusion systems just defined with S a Sylow p-subgroup of G.

Theorem 9 (Alperin-Goldschmidt Theorem for Fusion Systems)

Suppose that F is a saturated fusion system on S. Then

 $\mathcal{F} = \langle \text{Aut}_{\mathcal{F}}(\mathcal{S}), \text{Aut}_{\mathcal{F}}(\mathcal{E}) \mid \mathcal{E} \text{ is } \mathcal{F}\text{-essential } \rangle.$

This means that to describe a saturated fusion system we should list the $\mathcal F$ -automorphism group of S, as well as $Aut_{\mathcal{F}}(E)$ for a representative of each F-class of essential subgroups.

Essential subgroup:

- Fully-normalized (Normalizer in S as big as possible).
- S-centric (all F-conjugates satisfy $C_S(E\phi) = Z(E\phi)$).
- \bullet Aut_F(E)/Inn(E) has a strongly p-embedded subgroup.

If we have an abstract saturated fusion system $\mathcal F$ defined on $\mathcal{S},$ we can ask if there is a finite group G and $\mathcal{S}\in {\rm Syl}_p(G)$ such that $\mathcal{F} = \mathcal{F}_{\mathsf{S}}(G)$? If there is such a group then we say that F is realized by G. If

KORKARYKERKER POLO

there's no such group, then $\mathcal F$ is exotic.

An Example

Define $R_0(q) = N_{P_n(q)}(S_0(q))$ and $R_1(q) = N_{P_n(q)}(S_1(q))$. Then these groups have Sylow p-subgroups $S_0(q)U \cong S_1(q)$ and $S_1(q)U \cong S_2(q)$.

Then we have $R_0(q)/Z(R_0(q))$ is isomorphic to a Borel subgroup of $GL_3(q)$ and $R_1(q)/Z(R_1(q))$ is isomorphic to a Borel subgroup of $GSp_{4}(q)$.

Choose parabolic subgroups $L_1(q) \leq SL_3(q)$ (fixing a point) and $L_2(q)$ is ${\rm Sp}_4(q)$ (fixing a point) then neglecting quotients we can form the free amalgamated products

$$
X(n,q) = P_n(q) *_{R_0(q)} L_1(q)
$$

$$
Y(n,q) = P_n(q) *_{R_1(q)} L_2(q).
$$

These are infinite groups. Still we may form the fusion systems as we do for finite groups.

Theorem 10 (Clelland-CWP, 2010)

 $\mathcal{F}_{S_n(q)}(X(n,q))$ and $\mathcal{F}_{S_n(q)}(Y(n,q))$ are saturated and exotic. Furthermore, they have no normal p-subgroups.

K ロ ▶ K 個 ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q Q →

Draw a picture.Mention weak BN-pairs.

Pruning

The essential subgroups of $\mathcal{F}_{S_n(q)}(X(n, q))$ of are $V_n(q)$ and $S_0(q)$. So they are both elementary abelian. For $\mathcal{F}_{S_n(q)}(Y(n,q)), V_n(q)$ is abelian and $S_1(q)$ is a generalization of an extraspecial group.

Lemma 11 (CWP-Semeraro, 2021)

Suppose that F is a saturated fusion system on S and P is an F -essential subgroup of S. Let C be a set of F -conjugacy class representatives of F-essential subgroups with $P \in \mathcal{C}$. Assume P has the minimality property:

if $Q < P$, then Q is not S-centric.

If $H_{\mathcal{F}}(P) < K < \text{Aut}_{\mathcal{F}}(P)$, then

$$
\mathcal{G} = \langle \mathrm{Aut}_{\mathcal{F}}(\mathcal{S}), \mathcal{K}, \mathrm{Aut}_{\mathcal{F}}(\mathcal{E}) \mid \mathcal{E} \in \mathcal{C} \setminus \{\mathcal{P}\}\rangle
$$

is saturated. Furthermore, P is G -essential if and only if $K > H_{\mathcal{F}}(P)$ and in this case ${\rm Aut}_{G}(P) = K$.

Theorem 12 (Grazian, CWP, Semeraro, van Beek, 2025)

Suppose that F is a saturated fusion system on $S_n(q)$, then F comes from the above construction or n and q are very small.

Discuss proof.

Step 1: what are the essential subgroups. Step 2: what are their automorphism groups.

Show that they fit together in a unique way and that their F-automorphism groups $\text{Aut}_{\mathcal{F}}(E)$ are uniquely determined.

KORKARYKERKER POLO

Research directions centred on fusion systems:

Determining fusion systems on a particular family of groups: Max. class (CWP-Grazian), sectional rank 3, Grazian.

Research directions centred on fusion systems:

- Determining fusion systems on a particular family of groups: Max. class (CWP-Grazian), sectional rank 3, Grazian.
- Proving some fusion systems are exotic without using CFSG.

K ロ ▶ K 個 ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q Q →

Research directions centred on fusion systems:

- Determining fusion systems on a particular family of groups: Max. class (CWP-Grazian), sectional rank 3, Grazian.
- Proving some fusion systems are exotic without using CFSG.
- \bullet If a fusion system on S is exotic, then it can be realized in a finite group but not with the Sylow subgroup property (Park). How far from is S from being a Sylow p-subgroup T of G (minimize $log_p(T/S)$?

Research directions centred on fusion systems:

- Determining fusion systems on a particular family of groups: Max. class (CWP-Grazian), sectional rank 3, Grazian.
- Proving some fusion systems are exotic without using CFSG.
- \bullet If a fusion system on S is exotic, then it can be realized in a finite group but not with the Sylow subgroup property (Park). How far from is S from being a Sylow p-subgroup T of G (minimize $log_p(T/S)$?
- Search for exotic fusions systems (filling in the picture).

Research directions centred on fusion systems:

- Determining fusion systems on a particular family of groups: Max. class (CWP-Grazian), sectional rank 3, Grazian.
- Proving some fusion systems are exotic without using CFSG.
- \bullet If a fusion system on S is exotic, then it can be realized in a finite group but not with the Sylow subgroup property (Park). How far from is S from being a Sylow p-subgroup T of G (minimize $log_p(T/S)$?
- Search for exotic fusions systems (filling in the picture).
- Use fusion systems to classify the finite simple groups (Aschbacher, van Beek).

Research directions centred on fusion systems:

- Determining fusion systems on a particular family of groups: Max. class (CWP-Grazian), sectional rank 3, Grazian.
- Proving some fusion systems are exotic without using CFSG.
- \bullet If a fusion system on S is exotic, then it can be realized in a finite group but not with the Sylow subgroup property (Park). How far from is S from being a Sylow p -subgroup T of G (minimize $log_p(T/S)$?
- Search for exotic fusions systems (filling in the picture).
- Use fusion systems to classify the finite simple groups (Aschbacher, van Beek).
- \bullet Determine all the fusion systems on important p-groups (van Beek, Oliver, Raul Moragues Moncho, CWP-Semeraro, Baccanelli-Franchi-M[ain](#page-22-0)[ar](#page-24-0)[d](#page-17-0)[i](#page-18-0)[s](#page-23-0)[\).](#page-24-0)

Theorem 13 (CWP, Semeraro 2021)

Suppose that F is a saturated fusion system on a 3-group of order 3 6 with $O_3(\mathcal{F})=1$ and $\mathcal{F} = O^3(\mathcal{F}).$ Then there are a total of 70 fusion systems up to isomorphism.

Thanks!

K ロ K K d K K B K K B K X B K Y Q Q Q