Polynomial *p*-groups and their connections with fusion systems and finite simple groups

Chris Parker

University of Birmingham

AGTA Workshop - Reinhold Baer Prize 2024 October 8th

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Theorem 1

The finite non-abelian simple groups are members of the following list.

- The alternating groups.
- The groups of Lie type (automorphism groups of buildings).

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

The sporadic simple groups.

From here on *p* denotes a prime number. Brian, Francesco. It is very rare that a p-subgroup can be the Sylow p-subgroup of a finite simple group. There's something special about such p-groups.

Example 2

There are 10494213 groups of order 2^9 and only about 10 of them are Sylow 2-subgroups of a simple groups.

Hence such 2-groups are very rare and interesting groups. The same observation applies to p-groups in general.

Question 3

Is there a way we could know that being a Sylow p-subgroup of a simple group is unusual?

It's very frustrating because many groups have isomorphic Sylow 2-subgroups.

Example 4

Suppose that $q = p^a$ and $r = s^b$ are powers of the primes p and s respectively. If $(q-1)_2 = (r-1)_2$, then the simple groups $PSL_2(q)$ and $PSL_2(r)$ have isomorphic Sylow 2-subgroups.

Example 5

 ${\rm E}_6(2),~^2{\rm E}_6(7),~{\rm F}_4(2),~{\rm HN}$ and ${\rm PSL}_4(3)$ all have isomorphic Sylow 3-subgroups (order $3^6).$

Its is very well known among finite groups theorists that ${\rm SL}_5(2),$ and the sporadic simple groups ${\rm Mat}(24)$ and ${\rm He}$ have isomorphic Sylow 2-subgroups.

Less well known is

Example 6

- The sporadic simple groups Suz and Ly have isomorphic Sylow 3-subgroups [9310 groups of order 3⁷].
- ² The sporadic groups Ly, HN, BM have Sylow 5-subgroups isomorphic to that of $G_2(5)$ [684 groups of order 5⁶].
- The monster group \mathbb{M} and $G_2(7)$ has isomorphic Sylow 7-subgroups.[860 groups of order 7⁶.]

We have two types of *p*-groups which occur:

- The Sylow *p*-subgroups of Lie type groups defined in characteristic *p*; and
- The Sylow *r*-subgroups of Lie type groups defined in characteristic *p* where *r* ≠ *p* is a prime.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Polynomial *p*-groups

Let \mathbb{K} be a field of characteristic p with group of units \mathbb{K}^* . Set

$$A=\mathbb{K}[x,y].$$

Define $D = D(\mathbb{K}) = \mathbb{K}^* imes \operatorname{GL}_2(\mathbb{K})$ and

$$f(x,y) \cdot (\lambda, \begin{pmatrix} a & b \\ c & d \end{pmatrix}) = \lambda f(ax + by, cx + dy).$$

This makes A into a $\mathbb{K}D$ -module. This action preserves the submodules $V_n(\mathbb{K})$ of homogeneous polynomials of degree $n \ge 0$. Notice that $\dim_{\mathbb{K}} V_n(\mathbb{K}) = n + 1$. Set

$$U(\mathbb{K}) = \{(1, (\begin{smallmatrix} 1 & 0 \\ c & 1 \end{smallmatrix})) \in D\}$$

Define

$$P_n(\mathbb{K}) = V_n(\mathbb{K}) \rtimes D$$

and

$$B_n(\mathbb{K}) = V_n(\mathbb{K}) \rtimes \{ (\lambda, \begin{pmatrix} a & 0 \\ c & d \end{pmatrix}) \in D \mid \lambda, a, c, d \in \mathbb{K} \}$$
$$S_n(\mathbb{K}) = V_n(\mathbb{K}) \rtimes U(\mathbb{K}).$$

E 990

Now assume that $|\mathbb{K}| = q = p^a$, then $S_n(\mathbb{K}) = S_n(q)$ has order q^{n+2} . We are only interested in the case when $n \leq p$. In this case $V_n(q)$ is an irreducible $\mathbb{K}D$ -module. The focuss of our attention are the *p*-groups $S_n(q)$ and we call these groups polynomial *p*-groups.

Lemma 7

S₁(q) is isomorphic to a Sylow p-subgroup of SL₃(q).
S₂(q) is isomorphic to a Sylow p-subgroup of Sp₄(q).
For typical q > p, and n ≥ 3, S_n(q) is not a Sylow p-subgroup of a finite simple group.

Let $\gamma_i(S_n(q))$, and $Z_i(S_n(q))$ denote the terms of the upper and lower central series of $S_n(q)$.

Lemma 8

the terms of the upper and lower central series coincide.

- ② $|\gamma_i(S_n(q))/\gamma_{i+1}(S_n(q))| = q$ for all $1 \le i \le n-1$ and $S_n(q)/\gamma_1(S_n(q)) = q^2$.
- $S_n(q)/Z_i(S_n(q)) \cong S_{n-i}(q).$
- The automorphism groups of S₀(q) and S₁(q) contain a subgroup isomorphic to SL₂(q) and for j > 2, the automorphism groups are soluble.

Suppose that p is a prime, X is a group and S is a p-subgroup of X. For $P, Q \leq S$, define

$$\operatorname{Hom}_X(P,Q) = \{c_g \mid g \in X, P^g \leq Q\}$$

where c_g is the conjugation map induced by g:

$$c_g: x \mapsto g^{-1}xg.$$

If P = Q, then we write

$$\operatorname{Aut}_X(P) = \operatorname{Hom}_X(P, P) \cong N_X(P)/C_X(P).$$

Since we know S, the information about $N_G(P)$ which is lost when we make a fusion system is $C_X(P)$.

A fusion system determined by X and S is the category $\mathcal{F} = \mathcal{F}_S(X)$ with objects all the subgroups of S and, for objects P and Q of \mathcal{F} , morphisms from P to Q

$$\operatorname{Mor}_{\mathcal{F}}(\mathcal{P}, \mathcal{Q}) = \operatorname{Hom}_{\mathcal{F}}(\mathcal{P}, \mathcal{Q}) = \operatorname{Hom}_{\mathcal{X}}(\mathcal{P}, \mathcal{Q}).$$

For Q a subgroup of S, set

$$\operatorname{Aut}_{\mathcal{F}}(Q) = \operatorname{Hom}_{X}(Q, Q) \cong N_{X}(Q)/C_{X}(Q).$$

If S is a Sylow p-subgroup of X, then the fusion system is saturated.

Abstractly saturated fusion systems on a p-group S capture the properties of the fusion systems just defined with S a Sylow p-subgroup of G.

Theorem 9 (Alperin-Goldschmidt Theorem for Fusion Systems)

Suppose that \mathcal{F} is a saturated fusion system on S. Then

 $\mathcal{F} = \langle \operatorname{Aut}_{\mathcal{F}}(S), \operatorname{Aut}_{\mathcal{F}}(E) \mid E \text{ is } \mathcal{F}\text{-essential } \rangle.$

This means that to describe a saturated fusion system we should list the \mathcal{F} -automorphism group of S, as well as $\operatorname{Aut}_{\mathcal{F}}(E)$ for a representative of each \mathcal{F} -class of essential subgroups.

Essential subgroup:

- Fully-normalized (Normalizer in *S* as big as possible).
- S-centric (all \mathcal{F} -conjugates satisfy $C_S(E\phi) = Z(E\phi)$).
- $\operatorname{Aut}_{\mathcal{F}}(E)/\operatorname{Inn}(E)$ has a strongly *p*-embedded subgroup.

If we have an abstract saturated fusion system \mathcal{F} defined on S, we can ask if there is a finite group G and $S \in \operatorname{Syl}_p(G)$ such that $\mathcal{F} = \mathcal{F}_S(G)$? If there is such a group then we say that \mathcal{F} is realized by G. If there's no such group, then \mathcal{F} is exotic.

An Example

Define $R_0(q) = N_{P_n(q)}(S_0(q))$ and $R_1(q) = N_{P_n(q)}(S_1(q))$. Then these groups have Sylow *p*-subgroups $S_0(q)U \cong S_1(q)$ and $S_1(q)U \cong S_2(q)$.

Then we have $R_0(q)/Z(R_0(q))$ is isomorphic to a Borel subgroup of $GL_3(q)$ and $R_1(q)/Z(R_1(q))$ is isomorphic to a Borel subgroup of $GSp_4(q)$.

Choose parabolic subgroups $L_1(q) \leq SL_3(q)$ (fixing a point) and $L_2(q)$ is $Sp_4(q)$ (fixing a point) then neglecting quotients we can form the free amalgamated products

$$X(n,q) = P_n(q) *_{R_0(q)} L_1(q)$$

$$Y(n,q) = P_n(q) *_{R_1(q)} L_2(q).$$

These are infinite groups. Still we may form the fusion systems as we do for finite groups.

Theorem 10 (Clelland-CWP, 2010)

 $\mathcal{F}_{S_n(q)}(X(n,q))$ and $\mathcal{F}_{S_n(q)}(Y(n,q))$ are saturated and exotic. Furthermore, they have no normal p-subgroups.

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへの

Draw a picture.Mention weak BN-pairs.

Pruning

The essential subgroups of $\mathcal{F}_{S_n(q)}(X(n,q))$ of are $V_n(q)$ and $S_0(q)$. So they are both elementary abelian. For $\mathcal{F}_{S_n(q)}(Y(n,q))$, $V_n(q)$ is abelian and $S_1(q)$ is a generalization of an extraspecial group.

Lemma 11 (CWP-Semeraro, 2021)

Suppose that \mathcal{F} is a saturated fusion system on S and P is an \mathcal{F} -essential subgroup of S. Let C be a set of \mathcal{F} -conjugacy class representatives of \mathcal{F} -essential subgroups with $P \in C$. Assume P has the minimality property:

if Q < P, then Q is not S-centric.

If $H_{\mathcal{F}}(P) \leq K \leq \operatorname{Aut}_{\mathcal{F}}(P)$, then

 $\mathcal{G} = \langle \operatorname{Aut}_{\mathcal{F}}(S), K, \operatorname{Aut}_{\mathcal{F}}(E) \mid E \in \mathcal{C} \setminus \{P\} \rangle$

is saturated. Furthermore, P is \mathcal{G} -essential if and only if $K > H_{\mathcal{F}}(P)$ and in this case $\operatorname{Aut}_{\mathcal{G}}(P) = K$.

Theorem 12 (Grazian, CWP, Semeraro, van Beek, 2025)

Suppose that \mathcal{F} is a saturated fusion system on $S_n(q)$, then \mathcal{F} comes from the above construction or n and q are very small.

Discuss proof.

Step 1: what are the essential subgroups. Step 2: what are their automorphism groups.

Show that they fit together in a unique way and that their \mathcal{F} -automorphism groups $\operatorname{Aut}_{\mathcal{F}}(E)$ are uniquely determined.

Research directions centred on fusion systems:

• Determining fusion systems on a particular family of groups: Max. class (CWP-Grazian), sectional rank 3, Grazian.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Research directions centred on fusion systems:

- Determining fusion systems on a particular family of groups: Max. class (CWP-Grazian), sectional rank 3, Grazian.
- Proving some fusion systems are exotic without using CFSG.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Research directions centred on fusion systems:

- Determining fusion systems on a particular family of groups: Max. class (CWP-Grazian), sectional rank 3, Grazian.
- Proving some fusion systems are exotic without using CFSG.
- If a fusion system on S is exotic, then it can be realized in a finite group but not with the Sylow subgroup property (Park). How far from is S from being a Sylow p-subgroup T of G (minimize log_p(T/S)?

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Research directions centred on fusion systems:

- Determining fusion systems on a particular family of groups: Max. class (CWP-Grazian), sectional rank 3, Grazian.
- Proving some fusion systems are exotic without using CFSG.
- If a fusion system on S is exotic, then it can be realized in a finite group but not with the Sylow subgroup property (Park). How far from is S from being a Sylow p-subgroup T of G (minimize log_p(T/S)?
- Search for exotic fusions systems (filling in the picture).

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Research directions centred on fusion systems:

- Determining fusion systems on a particular family of groups: Max. class (CWP-Grazian), sectional rank 3, Grazian.
- Proving some fusion systems are exotic without using CFSG.
- If a fusion system on S is exotic, then it can be realized in a finite group but not with the Sylow subgroup property (Park). How far from is S from being a Sylow p-subgroup T of G (minimize log_p(T/S)?
- Search for exotic fusions systems (filling in the picture).
- Use fusion systems to classify the finite simple groups (Aschbacher, van Beek).

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Research directions centred on fusion systems:

- Determining fusion systems on a particular family of groups: Max. class (CWP-Grazian), sectional rank 3, Grazian.
- Proving some fusion systems are exotic without using CFSG.
- If a fusion system on S is exotic, then it can be realized in a finite group but not with the Sylow subgroup property (Park). How far from is S from being a Sylow p-subgroup T of G (minimize log_p(T/S)?
- Search for exotic fusions systems (filling in the picture).
- Use fusion systems to classify the finite simple groups (Aschbacher, van Beek).
- Determine all the fusion systems on important *p*-groups (van Beek, Oliver, Raul Moragues Moncho, CWP-Semeraro,Baccanelli-Franchi-Mainardis).

Theorem 13 (CWP, Semeraro 2021)

Suppose that \mathcal{F} is a saturated fusion system on a 3-group of order 3⁶ with $O_3(\mathcal{F}) = 1$ and $\mathcal{F} = O^3(\mathcal{F})$. Then there are a total of 70 fusion systems up to isomorphism.

group #	rank	<i># s.f.s</i>	type
95	2	7	$\mathrm{PSL}_{3}^{\pm}(q), \ \nu_{3}(q \pm 1) = 3$
97	2	2	B(3, 6; 0, 1, 0)
98	2	2	B(3, 6; 0, 2, 0)
99	2	1	B(3, 6; 1, 0, 0)
100	2	3	B(3, 6; 1, 0, 2)
149	4	2	G ₂ (3)
307	4	10	PSL ₄ (3)
321	4	13	PSU ₄ (3)
453	4	21	$\mathrm{PSL}_3(3) imes \mathrm{PSL}_3(3), 3^{1+2}_+ imes 3^{1+2}_+$
469	4	5	$PSL_3(9), (3^2)^{1+2}_+$
479	5	4	Alt(15), $(3 \wr 3) \times 3^2$

Thanks!

▲□▶▲圖▶▲≣▶▲≣▶ ■ のQの