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Words

F the free group freely generated by x1, x2, x3, . . .

w = w(x1, . . . , xn) ∈ F a word in the variables x1, . . . , xn

w ∈ [F ,F ] a commutator word

w /∈ [F ,F ] a non-commutator word

[x1, [x2, x3], [x4, [x5, x6]] a multilinear commutator word

γ1 = x1, γn = [γn−1, xn] = [x1, . . . , xn−1, xn]
the lower central words

δ0 = x1, δn = [δn−1(x1, . . . , x2n−1), δn−1(x2n−1+1, . . . , x2n)]
the derived words

[x , ny ] = [x , y , . . . , y︸ ︷︷ ︸
n

] the n-th Engel word
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The verbal subgroup

w = w(x1, . . . , xn) a word, G a group, g1, . . . , gn ∈ G

w(g1, . . . , gn) a w -value in G

Gw = {w(g1, . . . , gn) | gi ∈ G} the set of all w -values in G

w(G ) = ⟨Gw ⟩ the verbal subgroup of G corresponding to w

▶ Gw is a normal set

▶ if Gw is finite then w(G ) is centre-by-finite

▶ if Gw is finite and w(G ) is periodic then w(G ) is finite
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Concise words

A word w is concise if w(G ) is finite, for any group G such that Gw is
finite.

(S.V. Ivanov, 1989)
Let d > 1010 be an odd integer and p > 5000 a prime. There exists a
2-generator torsion-free group I such that Z (I ) is cyclic and I/Z (I ) is an
infinite group of exponent p2d . Set

v(x , y) = [[xpd , ypd ]d , ypd ]d .

Then Iv = {1, ϵ} and Z (I ) = ⟨ϵ⟩ = v(I ) is infinite. Hence, v is not
concise.
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Concise words include:

▶ non-commutator words

(P.Hall, 1964)

▶ the lower central word γn

(P. Hall, 1964)

▶ the derived word δn

(R.F. Turner-Smith, 1966)

▶ multilinear commutator words

(J.R.C.Wilson, 1974)

▶ the n-th Engel word, for n ≤ 4

(G.A. Fernández-Alcober, M.Morigi, G. Traustason, 2012)
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More concise words are those of the form:

▶ [x r , y s ], for all integers r and s

(CD, P. Shumyatsky, A. Tortora, M.Tota, 2019)

▶ [u1, u2], where u1 and u2 are non-commutator words in disjoint sets
of variables

(CD, P. Shumyatsky, A. Tortora, M.Tota, 2019)

▶ [u1, u2, u3], where u1, u2 and u3 are non-commutator words in
disjoint sets of variables

(J. Azevedo, P. Shumyatsky, 2022)

▶ w = w(u1, . . . , ur ), where w = w(x1, . . . , xr ) is a multilinear
commutator word and u1, . . . , ur are non-commutator words in
disjoint sets of variables

(G.A. Fernández-Alcober, M. Pintonello, 2024)
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Generalizing conciseness

Let w be any word, and G be a group such that Gw is finite. Then:

[w(G ),w(G )] is always finite

w(G ) is finite when w is concise

[w(G ),G ] need not be finite for an arbitrary w
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Semiconcise words

A word w is semiconcise if [w(G ),G ] is finite, for any group G such that
Gw is finite.

(G.A. Fernández-Alcober, M.Morigi, G. Traustason, 2012)
The n-th Engel word [x , ny ] is semiconcise for all n.

(CD, P. Shumyatsky, A. Tortora, 2020)
If x , y , z1, . . . , zm are pairwise different variables, the word

v = [x , ny , z1, . . . , zm]

is semiconcise for all positive integers n and m.

Open question
Is there any semiconcise word which is not concise?

(CD, P. Shumyatsky, A. Tortora, 2020)
There exist words that are not semiconcise.
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Generalizing conciseness: next step

Let w be any word, and G be a group such that Gw is finite. Then:

[w(G ),G , . . . ,G︸ ︷︷ ︸
m

]

w(G ) is finite when w is concise

[w(G ),G ] is finite when w is semiconcise

is finite when w is 1
m+1 -concise
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1
m-concise words

Let m be any positive integer. A word w is 1
m -concise if

[w(G ),G , . . . ,G︸ ︷︷ ︸
m−1

]

is finite, for any group G such that Gw is finite.

▶ w is 1-concise iff it is concise

▶ w is 1
2 -concise iff it is semiconcise

▶ if w is 1
m -concise then it is 1

t -concise for all t ≥ m
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A useful tool

(CD, M.Gaeta, C.Monetta, 2024)
Let w = w(x1, . . . , xn) be a word, and set

v = [w , xn+1],

with xn+1 /∈ {x1, . . . , xn}. If w is 1
m -concise for some positive integer m,

then v is 1
m -concise.



A hierarchy for words

A word w is 0-concise if for any group G such that Gw is finite there
exists a positive integer m, depending on G , such that

[w(G ),G , . . . ,G︸ ︷︷ ︸
m−1

]

is finite.

Let Wm denote che set of all 1
m -concise words, and W∞ the set of all

0-concise words. Then

W1 ⊆ W2 ⊆ W3 ⊆ · · · ⊆ Wm ⊆ · · · ⊆
⋃
t∈N

Wt ⊆ W∞ ̸= {all words}.
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Existence of words which are not 0-concise

Let d > 1010 be an odd integer and p > 5000 a prime. There exists a
2-generator torsion-free group I such that Z (I ) is cyclic and I/Z (I ) is an
infinite group of exponent p2d . Set

v(x , y) = [[xpd , ypd ]d , ypd ]d .

(S. Brazil, A. Krasilnikov, P. Shumyatsky, 2006)
Let B = I wr C where C has order 2. Set

w(x , y) = v(x2, y2).

Then |Bw | = 4.

(CD, M.Gaeta, C.Monetta, 2024)
For all positive integers m

[w(B),B, . . . ,B︸ ︷︷ ︸
m−1

]

is infinite. So the word w(x , y) is not 0-concise.
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FC -embedded subgroups

A group G is an FC -group if the set of conjugates aG = {ag | g ∈ G} is
finite for all a ∈ G .

(R. Baer)
If G is any FC -group then G/Z (G ) is locally finite. Hence [G ,G ] is
locally finite.

A subgroup H of a group G is FC -embedded in G if the set of conjugates
aH = {ah | h ∈ H} is finite for all a ∈ G .
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A verbal generalization of FC -groups

Let w be a word. A group G is an FC (w)-group if the set of conjugates
aGw = {ag | g ∈ Gw} is finite for all a ∈ G .

(CD, P. Shumyatsky, A. Tortora, 2017)
Let w be a word. Then a group G is an FC (w)-group if and only if it is
an FC (w−1)-group.

(CD, M.Gaeta, C.Monetta, 2024)
Let w = w(x1, . . . , xn) be a word, and set

v = [w , xn+1, . . . , xn+m],

where xn+1, . . . , xn+m /∈ {x1, . . . , xn}. If G is an FC (w)-group then it is
also an FC (v)-group.
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Let w = w(x1, . . . , xn) be a word, and set

v = [w , xn+1, . . . , xn+m],

where xn+1, . . . , xn+m /∈ {x1, . . . , xn}. If G is an FC (w)-group then it is
also an FC (v)-group.
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Let w be any word, and let G be an FC (w)-group. Then [w(G ),w(G )]
is FC -embedded in G .
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Let w be a concise word, and let G be an FC (w)-group. Then w(G ) is
FC -embedded in G .
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Existence of bounds

Let w be any word. Then there exists a function f : N → N such that
|[w(G ),w(G )]| ≤ f (r), for any group G with |Gw | ≤ r .

(G.A. Fernández-Alcober, M.Morigi, 2010)
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BFC -embedded subgroups

A group G is a BFC -group if there exists a positive integer r such that
|aG | ≤ r for all a ∈ G .

(B.H.Neumann)
G is a BFC -group if and only if [G ,G ] is finite.

A subgroup H of a group G is BFC -embedded in G if there exists a
positive integer r such that |aH | ≤ r for all a ∈ G .
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