On generalized concise words

Costantino Delizia

Department of Mathematics University of Salerno (Italy)

AGTA Workshop Reinhold Baer Prize 2024

> October 7-8, 2024 Napoli (Italy)

Words

F the free group freely generated by x_1, x_2, x_3, \ldots

 $w = w(x_1, ..., x_n) \in F$ a word in the variables $x_1, ..., x_n$

Words

```
F the free group freely generated by x_1, x_2, x_3, ...
w = w(x_1, ..., x_n) \in F \text{ a word in the variables } x_1, ..., x_n
w \in [F, F] \text{ a commutator word}
w \notin [F, F] \text{ a non-commutator word}
[x_1, [x_2, x_3], [x_4, [x_5, x_6]] \text{ a multilinear commutator word}
```

Words

F the free group freely generated by
$$x_1, x_2, x_3, \ldots$$
 $w = w(x_1, \ldots, x_n) \in F$ a word in the variables x_1, \ldots, x_n $w \in [F, F]$ a commutator word $w \notin [F, F]$ a non-commutator word $[x_1, [x_2, x_3], [x_4, [x_5, x_6]]]$ a multilinear commutator word $\gamma_1 = x_1, \quad \gamma_n = [\gamma_{n-1}, x_n] = [x_1, \ldots, x_{n-1}, x_n]$ the lower central words $\delta_0 = x_1, \quad \delta_n = [\delta_{n-1}(x_1, \ldots, x_{2^{n-1}}), \delta_{n-1}(x_{2^{n-1}+1}, \ldots, x_{2^n})]$ the derived words $[x, y] = [x, y, \ldots, y]$ the n -th Engel word

```
w=w(x_1,\ldots,x_n) a word, G a group, g_1,\ldots,g_n\in G w(g_1,\ldots,g_n) a w-value in G G_w=\{w(g_1,\ldots,g_n)\,|\,g_i\in G\} the set of all w-values in G w(G)=\langle G_w\rangle the verbal subgroup of G corresponding to w
```

```
w=w(x_1,\ldots,x_n) a word, G a group, g_1,\ldots,g_n\in G w(g_1,\ldots,g_n) \quad \text{a $w$-value in } G G_w=\{w(g_1,\ldots,g_n)\,|\,g_i\in G\} \quad \text{the set of all $w$-values in } G w(G)=\langle G_w\rangle \quad \text{the verbal subgroup of $G$ corresponding to $w$}
```

 $ightharpoonup G_w$ is a normal set

```
w=w(x_1,\ldots,x_n) a word, G a group, g_1,\ldots,g_n\in G w(g_1,\ldots,g_n) \quad \text{a $w$-value in } G G_w=\{w(g_1,\ldots,g_n)\,|\,g_i\in G\} \quad \text{the set of all $w$-values in } G w(G)=\langle G_w\rangle \quad \text{the verbal subgroup of $G$ corresponding to $w$}
```

- $ightharpoonup G_w$ is a normal set
- if G_w is finite then w(G) is centre-by-finite

```
w=w(x_1,\ldots,x_n) a word, G a group, g_1,\ldots,g_n\in G w(g_1,\ldots,g_n) \quad \text{a $w$-value in } G G_w=\{w(g_1,\ldots,g_n)\,|\,g_i\in G\} \quad \text{the set of all $w$-values in } G w(G)=\langle G_w\rangle \quad \text{the verbal subgroup of $G$ corresponding to $w$}
```

- $ightharpoonup G_w$ is a normal set
- ightharpoonup if G_w is finite then w(G) is centre-by-finite
- ightharpoonup if G_w is finite and w(G) is periodic then w(G) is finite

Concise words

A word w is concise if w(G) is finite, for any group G such that G_w is finite.

Concise words

A word w is concise if w(G) is finite, for any group G such that G_w is finite.

(S.V. Ivanov, 1989)

Let $d>10^{10}$ be an odd integer and p>5000 a prime. There exists a 2-generator torsion-free group I such that Z(I) is cyclic and I/Z(I) is an infinite group of exponent p^2d . Set

$$v(x,y) = [[x^{pd}, y^{pd}]^d, y^{pd}]^d.$$

Then $I_v = \{1, \epsilon\}$ and $Z(I) = \langle \epsilon \rangle = v(I)$ is infinite. Hence, v is not concise.

non-commutator words(P. Hall, 1964)

- non-commutator words(P. Hall, 1964)
- the lower central word γ_n (P. Hall, 1964)

- non-commutator words (P. Hall, 1964)
- ▶ the lower central word γ_n (P. Hall, 1964)
- ► the derived word δ_n (R.F. Turner-Smith, 1966)

- non-commutator words (P. Hall, 1964)
- the lower central word γ_n (P. Hall, 1964)
- ► the derived word δ_n (R.F. Turner-Smith, 1966)
- multilinear commutator words (J.R.C. Wilson, 1974)

- non-commutator words(P. Hall, 1964)
- the lower central word γ_n (P. Hall, 1964)
- ▶ the derived word δ_n (R.F. Turner-Smith, 1966)
- multilinear commutator words (J.R.C. Wilson, 1974)
- the *n*-th Engel word, for n ≤ 4 (G.A. Fernández-Alcober, M. Morigi, G. Traustason, 2012)

► [x^r, y^s], for all integers r and s (CD, P. Shumyatsky, A. Tortora, M. Tota, 2019)

- ► [x^r, y^s], for all integers r and s (CD, P. Shumyatsky, A. Tortora, M. Tota, 2019)
- $lackbox[u_1, u_2]$, where u_1 and u_2 are non-commutator words in disjoint sets of variables

```
(CD, P. Shumyatsky, A. Tortora, M. Tota, 2019)
```

- ► [x^r, y^s], for all integers r and s (CD, P. Shumyatsky, A. Tortora, M. Tota, 2019)
- $lackbox[u_1, u_2]$, where u_1 and u_2 are non-commutator words in disjoint sets of variables

(CD, P. Shumyatsky, A. Tortora, M. Tota, 2019)

 $[u_1, u_2, u_3]$, where u_1 , u_2 and u_3 are non-commutator words in disjoint sets of variables

(J. Azevedo, P. Shumyatsky, 2022)

- ► [x^r, y^s], for all integers r and s (CD, P. Shumyatsky, A. Tortora, M. Tota, 2019)
- $lackbox[u_1, u_2]$, where u_1 and u_2 are non-commutator words in disjoint sets of variables
 - (CD, P. Shumyatsky, A. Tortora, M. Tota, 2019)
- $[u_1, u_2, u_3]$, where u_1 , u_2 and u_3 are non-commutator words in disjoint sets of variables
 - (J. Azevedo, P. Shumyatsky, 2022)
- $w = w(u_1, ..., u_r)$, where $w = w(x_1, ..., x_r)$ is a multilinear commutator word and $u_1, ..., u_r$ are non-commutator words in disjoint sets of variables
 - (G.A. Fernández-Alcober, M. Pintonello, 2024)

$$[w(G), w(G)] \bullet$$
 is always finite

A word w is semiconcise if [w(G), G] is finite, for any group G such that G_w is finite.

A word w is semiconcise if [w(G), G] is finite, for any group G such that G_w is finite.

(G.A. Fernández-Alcober, M. Morigi, G. Traustason, 2012) The n-th Engel word [x, y] is semiconcise for all n.

A word w is semiconcise if [w(G), G] is finite, for any group G such that G_w is finite.

(G.A. Fernández-Alcober, M. Morigi, G. Traustason, 2012) The n-th Engel word [x, ny] is semiconcise for all n.

(CD, P. Shumyatsky, A. Tortora, 2020) If x, y, z_1, \ldots, z_m are pairwise different variables, the word

$$v = [x, {}_ny, z_1, \ldots, z_m]$$

is semiconcise for all positive integers n and m.

A word w is semiconcise if [w(G), G] is finite, for any group G such that G_w is finite.

(G.A. Fernández-Alcober, M. Morigi, G. Traustason, 2012) The n-th Engel word [x, ny] is semiconcise for all n.

(CD, P. Shumyatsky, A. Tortora, 2020) If x, y, z_1, \ldots, z_m are pairwise different variables, the word

$$v = [x, {}_ny, z_1, \ldots, z_m]$$

is semiconcise for all positive integers n and m.

Open question

Is there any semiconcise word which is not concise?

A word w is semiconcise if [w(G), G] is finite, for any group G such that G_w is finite.

(G.A. Fernández-Alcober, M. Morigi, G. Traustason, 2012) The n-th Engel word [x, y] is semiconcise for all n.

(CD, P. Shumyatsky, A. Tortora, 2020) If x, y, z_1, \ldots, z_m are pairwise different variables, the word

$$v = [x, {}_ny, z_1, \ldots, z_m]$$

is semiconcise for all positive integers n and m.

Open question

Is there any semiconcise word which is not concise?

(CD, P. Shumyatsky, A. Tortora, 2020)
There exist words that are not semiconcise.

$$[w(G), \underbrace{G, \ldots, G}_{m}]$$

$\frac{1}{m}$ -concise words

Let m be any positive integer. A word w is $\frac{1}{m}$ -concise if

$$[w(G), \underbrace{G, \ldots, G}_{m-1}]$$

is finite, for any group G such that G_w is finite.

$\frac{1}{m}$ -concise words

Let m be any positive integer. A word w is $\frac{1}{m}$ -concise if

$$[w(G), \underbrace{G, \ldots, G}_{m-1}]$$

is finite, for any group G such that G_w is finite.

w is 1-concise iff it is concise

$\frac{1}{m}$ -concise words

Let m be any positive integer. A word w is $\frac{1}{m}$ -concise if

$$[w(G),\underbrace{G,\ldots,G}_{m-1}]$$

is finite, for any group G such that G_w is finite.

- w is 1-concise iff it is concise
- w is $\frac{1}{2}$ -concise iff it is semiconcise

$\frac{1}{m}$ -concise words

Let m be any positive integer. A word w is $\frac{1}{m}$ -concise if

$$[w(G), \underbrace{G, \ldots, G}_{m-1}]$$

is finite, for any group G such that G_w is finite.

- w is 1-concise iff it is concise
- w is $\frac{1}{2}$ -concise iff it is semiconcise
- ▶ if w is $\frac{1}{m}$ -concise then it is $\frac{1}{t}$ -concise for all $t \ge m$

A useful tool

(CD, M. Gaeta, C. Monetta, 2024)

Let $w = w(x_1, \dots, x_n)$ be a word, and set

$$v = [w, x_{n+1}],$$

with $x_{n+1} \notin \{x_1, \dots, x_n\}$. If w is $\frac{1}{m}$ -concise for some positive integer m, then v is $\frac{1}{m}$ -concise.

A hierarchy for words

A word w is 0-concise if for any group G such that G_w is finite there exists a positive integer m, depending on G, such that

$$[w(G),\underbrace{G,\ldots,G}_{m-1}]$$

is finite.

A hierarchy for words

A word w is 0-concise if for any group G such that G_w is finite there exists a positive integer m, depending on G, such that

$$[w(G),\underbrace{G,\ldots,G}_{m-1}]$$

is finite.

Let W_m denote the set of all $\frac{1}{m}$ -concise words, and W_∞ the set of all 0-concise words. Then

$$W_1 \subseteq W_2 \subseteq W_3 \subseteq \cdots \subseteq W_m \subseteq \cdots \subseteq \bigcup_{t \in \mathbb{N}} W_t \subseteq W_\infty \neq \{all \ words\}.$$

Existence of words which are not 0-concise

Existence of words which are not 0-concise

Let $d>10^{10}$ be an odd integer and p>5000 a prime. There exists a 2-generator torsion-free group I such that Z(I) is cyclic and I/Z(I) is an infinite group of exponent p^2d . Set

$$v(x,y) = [[x^{pd}, y^{pd}]^d, y^{pd}]^d.$$

(S. Brazil, A. Krasilnikov, P. Shumyatsky, 2006) Let B = I wr C where C has order 2. Set

$$w(x,y)=v(x^2,y^2).$$

Then $|B_w| = 4$.

Existence of words which are not 0-concise

Let $d>10^{10}$ be an odd integer and p>5000 a prime. There exists a 2-generator torsion-free group I such that Z(I) is cyclic and I/Z(I) is an infinite group of exponent p^2d . Set

$$v(x,y) = [[x^{pd}, y^{pd}]^d, y^{pd}]^d.$$

(S. Brazil, A. Krasilnikov, P. Shumyatsky, 2006) Let B = I wr C where C has order 2. Set

$$w(x,y)=v(x^2,y^2).$$

Then $|B_w| = 4$.

(CD, M. Gaeta, C. Monetta, 2024) For all positive integers *m*

$$[w(B), \underbrace{B, \dots, B}_{m-1}]$$

is infinite. So the word w(x, y) is not 0-concise.

A group G is an FC-group if the set of conjugates $a^G = \{a^g \mid g \in G\}$ is finite for all $a \in G$.

A group G is an FC-group if the set of conjugates $a^G = \{a^g \mid g \in G\}$ is finite for all $a \in G$.

(R. Baer)

If G is any FC-group then G/Z(G) is locally finite. Hence [G,G] is locally finite.

A group G is an FC-group if the set of conjugates $a^G = \{a^g \mid g \in G\}$ is finite for all $a \in G$.

(R. Baer)

If G is any FC-group then G/Z(G) is locally finite. Hence [G,G] is locally finite.

A subgroup H of a group G is FC-embedded in G if the set of conjugates $a^H = \{a^h \mid h \in H\}$ is finite for all $a \in G$.

A verbal generalization of FC-groups

Let w be a word. A group G is an FC(w)-group if the set of conjugates $a^{G_w} = \{a^g \mid g \in G_w\}$ is finite for all $a \in G$.

A verbal generalization of *FC*-groups

Let w be a word. A group G is an FC(w)-group if the set of conjugates $a^{G_w} = \{a^g \mid g \in G_w\}$ is finite for all $a \in G$.

(CD, P. Shumyatsky, A. Tortora, 2017)

Let w be a word. Then a group G is an FC(w)-group if and only if it is an $FC(w^{-1})$ -group.

A verbal generalization of FC-groups

Let w be a word. A group G is an FC(w)-group if the set of conjugates $a^{G_w} = \{a^g \mid g \in G_w\}$ is finite for all $a \in G$.

(CD, P. Shumyatsky, A. Tortora, 2017)

Let w be a word. Then a group G is an FC(w)-group if and only if it is an $FC(w^{-1})$ -group.

(CD, M. Gaeta, C. Monetta, 2024)

Let $w = w(x_1, \dots, x_n)$ be a word, and set

$$v = [w, x_{n+1}, \ldots, x_{n+m}],$$

where $x_{n+1}, \ldots, x_{n+m} \notin \{x_1, \ldots, x_n\}$. If G is an FC(w)-group then it is also an FC(v)-group.

Subgroups of FC(w)-groups

(CD, P. Shumyatsky, A. Tortora, 2017) Let w be any word, and let G be an FC(w)-group. Then [w(G), w(G)] is FC-embedded in G.

Subgroups of FC(w)-groups

(CD, P. Shumyatsky, A. Tortora, 2017) Let w be any word, and let G be an FC(w)-group. Then [w(G), w(G)] is FC-embedded in G.

(S. Franciosi, F. de Giovanni, P. Shumyatsky, 2002) Let w be a concise word, and let G be an FC(w)-group. Then w(G) is FC-embedded in G.

Subgroups of FC(w)-groups

(CD, P. Shumyatsky, A. Tortora, 2017) Let w be any word, and let G be an FC(w)-group. Then [w(G), w(G)] is FC-embedded in G.

(S. Franciosi, F. de Giovanni, P. Shumyatsky, 2002) Let w be a concise word, and let G be an FC(w)-group. Then w(G) is FC-embedded in G.

(CD, M. Gaeta, C. Monetta, 2024) Let w be a $\frac{1}{m}$ -concise word, and let G be an FC(w)-group. Then $[w(G), \underbrace{G, \ldots, G}]$ is FC-embedded in G.

Existence of bounds

Let w be any word. Then there exists a function $f: \mathbb{N} \to \mathbb{N}$ such that $|[w(G), w(G)]| \le f(r)$, for any group G with $|G_w| \le r$.

Existence of bounds

Let w be any word. Then there exists a function $f: \mathbb{N} \to \mathbb{N}$ such that $|[w(G), w(G)]| \le f(r)$, for any group G with $|G_w| \le r$.

(G.A. Fernández-Alcober, M. Morigi, 2010)

Let w be a concise word. Then there exists a function $f:\mathbb{N} \to \mathbb{N}$ such that

$$|w(G)| \leq f(r),$$

for any group G with $|G_w| \leq r$.

Existence of bounds

Let w be any word. Then there exists a function $f: \mathbb{N} \to \mathbb{N}$ such that $|[w(G), w(G)]| \le f(r)$, for any group G with $|G_w| \le r$.

(G.A. Fernández-Alcober, M. Morigi, 2010)

Let w be a concise word. Then there exists a function $f:\mathbb{N} \to \mathbb{N}$ such that

$$|w(G)| \leq f(r),$$

for any group G with $|G_w| \leq r$.

(CD, M. Gaeta, C. Monetta, 2024)

There exists a function $f: \mathbb{N} \times \mathbb{N} \to \mathbb{N}$ such that

$$|[w(G), \underbrace{G, \ldots, G}]| \leq f(m, r),$$

for any $\frac{1}{m}$ -concise word w and for any group G with $|G_w| \leq r$.

A group G is a BFC-group if there exists a positive integer r such that $|a^G| \le r$ for all $a \in G$.

A group G is a BFC-group if there exists a positive integer r such that $|a^G| \le r$ for all $a \in G$.

(B.H. Neumann)

G is a BFC-group if and only if [G, G] is finite.

A group G is a *BFC*-group if there exists a positive integer r such that $|a^G| \le r$ for all $a \in G$.

(B.H. Neumann)

G is a BFC-group if and only if [G, G] is finite.

A subgroup H of a group G is BFC-embedded in G if there exists a positive integer r such that $|a^H| \le r$ for all $a \in G$.

A verbal generalization of *BFC*-groups

Let w be a word. A group G is a BFC(w)-group if there exists a positive integer r such that $|a^{G_w}| \le r$ for all $a \in G$.

A verbal generalization of *BFC*-groups

Let w be a word. A group G is a BFC(w)-group if there exists a positive integer r such that $|a^{G_w}| \le r$ for all $a \in G$.

(CD, P. Shumyatsky, A. Tortora, 2017)

Let w be a word. Then a group G is a BFC(w)-group if and only if it is an $BFC(w^{-1})$ -group.

A verbal generalization of BFC-groups

Let w be a word. A group G is a BFC(w)-group if there exists a positive integer r such that $|a^{G_w}| \le r$ for all $a \in G$.

(CD, P. Shumyatsky, A. Tortora, 2017)

Let w be a word. Then a group G is a BFC(w)-group if and only if it is an $BFC(w^{-1})$ -group.

(CD, M. Gaeta, C. Monetta, 2024)

Let $w = w(x_1, ..., x_n)$ be a word, and set

$$v = [w, x_{n+1}, \dots, x_{n+m}]$$

where $x_{n+1}, \ldots, x_{n+m} \notin \{x_1, \ldots, x_n\}$. If G is a BFC(w)-group with $|a^{G_w}| \le r$ for all $a \in G$, then G is also a BFC(v)-group and a^{G_v} has $\{n, r, m\}$ -bounded order for all $a \in G$.

Subgroups of BFC(w)-groups

(CD, P. Shumyatsky, A. Tortora, 2017) Let w be any word, and let G be a BFC(w)-group. Then [w(G), w(G)] is BFC-embedded in G.

Subgroups of BFC(w)-groups

(CD, P. Shumyatsky, A. Tortora, 2017) Let w be any word, and let G be a BFC(w)-group. Then [w(G), w(G)] is BFC-embedded in G.

(S. Brazil, A. Krasilnikov, P. Shumyatsky, 2006) Let w be a concise word, and let G be a BFC(w)-group. Then w(G) is BFC-embedded in G.

Subgroups of BFC(w)-groups

(CD, P. Shumyatsky, A. Tortora, 2017) Let w be any word, and let G be a BFC(w)-group. Then [w(G), w(G)] is BFC-embedded in G.

(S. Brazil, A. Krasilnikov, P. Shumyatsky, 2006) Let w be a concise word, and let G be a BFC(w)-group. Then w(G) is BFC-embedded in G.

(CD, M. Gaeta, C. Monetta, 2024) Let w be a $\frac{1}{m}$ -concise word, and let G be a BFC(w)-group. Then $[w(G), \underbrace{G, \ldots, G}]$ is BFC-embedded in G.

References

C. Delizia, P. Shumyatsky and A. Tortora

On groups with finite conjugacy classes in a verbal subgroup

Bull. Aust. Math. Soc. **96** (2017), no. 3, 429–437

C. Delizia, P. Shumyatsky, A. Tortora and M. Tota On conciseness of some commutator words Arch. Math. (Basel) 112 (2019), 27–32

C. Delizia, P. Shumyatsky and A. Tortora *On semiconcise words*J. Group Theory **23** (2020), 629–639

C. Delizia, M. Gaeta and C. Monetta

On generalized semiconcise words

J. Group Theory, DOI 10.1515/jgth-2024-0148 (2024)

