Critical groups and partitions of finite groups

Daniela Bubboloni *University of Florence (Italy)*

Reinhold Baer Prize 2024

Napoli, 7-8 October 2024

A joint research with Nicolas Pinzauti

G denotes a finite group

 (x, y) arc if $y = x^m$, for some $m \in \mathbb{N}$ Power graph $\mathcal{P}(G)$:= The underlying undirected graph of $\overline{\mathcal{P}}(G)$ Power graphs := $\{P(G): G$ is a finite group}

- Non-isomorphic groups may have the same power graph
-

• *G* denotes a finite group

Definitions

Directed power graph \vec{P} (G)

Vertex set *G*

• for
$$
x \neq y \in G
$$
,
(x, y) arc if $y = x^m$, for some $m \in \mathbb{N}$

• Non-isomorphic groups may have the same power graph

G denotes a finite group

Definitions

- Directed power graph \vec{P} (G)
	- Vertex set *G*

• for
$$
x \neq y \in G
$$
,

 (x, y) arc if $y = x^m$, for some $m \in \mathbb{N}$

Power graph $P(G)$:= The underlying undirected graph of $\vec{P}(G)$

- Non-isomorphic groups may have the same power graph
- The directed power graph should encode more information

G denotes a finite group

Definitions

- Directed power graph \vec{P} (G)
	- Vertex set *G*

• for
$$
x \neq y \in G
$$
,

 (x, y) arc if $y = x^m$, for some $m \in \mathbb{N}$

Power graph $P(G)$: The underlying undirected graph of $\overline{P}(G)$ Power graphs $= \{P(G) : G$ is a finite group

• Non-isomorphic groups may have the same power graph

The directed power graph should encode more information

G denotes a finite group

Definitions

Directed power graph \vec{P} (G)

Vertex set *G*

• for
$$
x \neq y \in G
$$
,

 (x, y) arc if $y = x^m$, for some $m \in \mathbb{N}$

Power graph $P(G)$:= The underlying undirected graph of $\vec{P}(G)$ Power graphs $= \{P(G) : G$ is a finite group

- Non-isomorphic groups may have the same power graph
- The directed power graph should encode more information than the power graph. Surprisingly, this is not the case.

Reconstructing directed power graphs

Theorem (Bubboloni, Pinzauti 2023)

-
- -
	-
	-

Reconstructing directed power graphs

Theorem (Bubboloni, Pinzauti 2023)

- 1. Show that there exists a unique group *G* such that Γ = P(*G*) and exhibit such *G*
-
- Based on a paper by Cameron (2010) and correcting a
-
-

- 1. Show that there exists a unique group *G* such that Γ = P(*G*) and exhibit such *G*
- 2. Exhibit a digraph $\vec{\Gamma} \cong \vec{\mathcal{P}}(G)$, which is the same for any choice of the group *G* such that $\Gamma = \mathcal{P}(G)$
	- Based on a paper by Cameron (2010) and correcting a
	- An answer to Question 2 in Cameron (2022) about the
	-

- 1. Show that there exists a unique group *G* such that Γ = P(*G*) and exhibit such *G*
- 2. Exhibit a digraph $\vec{\Gamma} \cong \vec{\mathcal{P}}(G)$, which is the same for any choice of the group *G* such that $\Gamma = \mathcal{P}(G)$
	- Based on a paper by Cameron (2010) and correcting a mistake there
	- An answer to Question 2 in Cameron (2022) about the
	- The tools developed can be fruitfully applied to other kinds

- 1. Show that there exists a unique group *G* such that Γ = P(*G*) and exhibit such *G*
- 2. Exhibit a digraph $\vec{\Gamma} \cong \vec{\mathcal{P}}(G)$, which is the same for any choice of the group *G* such that $\Gamma = \mathcal{P}(G)$
	- Based on a paper by Cameron (2010) and correcting a mistake there
	- An answer to Question 2 in Cameron (2022) about the reconstruction of directed power graphs from power graphs
	- The tools developed can be fruitfully applied to other kinds

- 1. Show that there exists a unique group *G* such that Γ = P(*G*) and exhibit such *G*
- 2. Exhibit a digraph $\vec{\Gamma} \cong \vec{\mathcal{P}}(G)$, which is the same for any choice of the group *G* such that $\Gamma = \mathcal{P}(G)$
	- Based on a paper by Cameron (2010) and correcting a mistake there
	- An answer to Question 2 in Cameron (2022) about the reconstruction of directed power graphs from power graphs
	- The tools developed can be fruitfully applied to other kinds of research!

Definition

 $\Gamma = (V, E)$ graph, $x \in V, X \subseteq V$

•
$$
N[x] := \{y \in V : \{x, y\} \in E\} \cup \{x\}
$$

• *x* is a star vertex if $N[x] = V$.

 $S := \{x \in V : x \text{ is a star}\}\$

$$
N[X] := \begin{cases} \bigcap_{x \in X} N[x] & \text{if } X \neq \emptyset \\ V & \text{if } X = \emptyset \end{cases}
$$

Definition

$$
\Gamma=(V,E) \text{ graph}, x \in V, X \subseteq V
$$

•
$$
N[x] := \{y \in V : \{x, y\} \in E\} \cup \{x\}
$$

• *x* is a star vertex if $N[x] = V$.

$$
\mathcal{S} := \{x \in V : x \text{ is a star}\}
$$

$$
N[X] := \begin{cases} \bigcap_{x \in X} N[x] & \text{if } X \neq \emptyset \\ V & \text{if } X = \emptyset \end{cases}
$$

Definition

$$
\Gamma=(V,E) \text{ graph}, x \in V, X \subseteq V
$$

•
$$
N[x] := \{y \in V : \{x, y\} \in E\} \cup \{x\}
$$

• *x* is a star vertex if $N[x] = V$.

$$
\mathcal{S} := \{x \in V : x \text{ is a star}\}
$$

• the common closed neighbour

$$
N[X] := \begin{cases} \bigcap_{x \in X} N[x] & \text{if } X \neq \varnothing \\ V & \text{if } X = \varnothing \end{cases}
$$

Definition

$$
\Gamma=(V,E) \text{ graph}, x \in V, X \subseteq V
$$

•
$$
N[x] := \{y \in V : \{x, y\} \in E\} \cup \{x\}
$$

• *x* is a star vertex if $N[x] = V$.

$$
\mathcal{S} := \{x \in V : x \text{ is a star}\}
$$

• the common closed neighbour

$$
N[X] := \begin{cases} \bigcap_{x \in X} N[x] & \text{if } X \neq \varnothing \\ V & \text{if } X = \varnothing \end{cases}
$$

• The neighbourhood closure $\hat{X} := N[N|X]$

Definition

$$
\Gamma=(V,E) \text{ graph}, x \in V, X \subseteq V
$$

•
$$
N[x] := \{y \in V : \{x, y\} \in E\} \cup \{x\}
$$

• *x* is a star vertex if $N[x] = V$.

$$
\mathcal{S} := \{x \in V : x \text{ is a star}\}
$$

• the common closed neighbour

$$
N[X] := \begin{cases} \bigcap_{x \in X} N[x] & \text{if } X \neq \varnothing \\ V & \text{if } X = \varnothing \end{cases}
$$

• The neighbourhood closure $\hat{X} := N[N|X|]$ This gives an original example of Moore closure for graphs

- - *x*_N*y* if $N[x] = N[y]$
	- $x \diamond y$ if $\langle x \rangle = \langle y \rangle$

-
-
-

- $Γ = P(G)$. For *x*, $γ \in G$
	- \bullet *x*_N*y* if *N*[*x*] = *N*[*y*]
	-

-
-
-

- $Γ = P(G)$. For *x*, $γ \in G$
	- \bullet *x*_N*y* if *N*[*x*] = *N*[*y*]
	- $x \diamond y$ if $\langle x \rangle = \langle y \rangle$

define two equivalence relations in *G*.

- $[1]_N = S$ is the trivial N-class
-
-

- Γ = P(*G*). For *x*, *y* ∈ *G*
	- \bullet *x*_N*y* if *N*[*x*] = *N*[*y*]
	- $x \diamond y$ if $\langle x \rangle = \langle y \rangle$

define two equivalence relations in *G*.

- $[1]_N = S$ is the trivial N-class
- \bullet $S \supseteq \{1\} \Longleftrightarrow G$ is cyclic or generalized quaternion
-

- Γ = P(*G*). For *x*, *y* ∈ *G*
	- \bullet *x*_N*y* if *N*[*x*] = *N*[*y*]
	- $x \diamond y$ if $\langle x \rangle = \langle y \rangle$

define two equivalence relations in *G*.

- $[1]_N = S$ is the trivial N-class
- \bullet $S \supseteq \{1\} \Longleftrightarrow G$ is cyclic or generalized quaternion
-

- Γ = P(*G*). For *x*, *y* ∈ *G*
	- \bullet *x*_N*y* if *N*[*x*] = *N*[*y*]
	- $x \diamond y$ if $\langle x \rangle = \langle y \rangle$

define two equivalence relations in *G*.

- $[1]_N = S$ is the trivial N-class
- \bullet $S \supseteq \{1\} \Longleftrightarrow G$ is cyclic or generalized quaternion
-

- Γ = P(*G*). For *x*, *y* ∈ *G*
	- \bullet *x*_N*y* if *N*[*x*] = *N*[*y*]
	- $x \diamond y$ if $\langle x \rangle = \langle y \rangle$

define two equivalence relations in *G*.

- $[1]_N = S$ is the trivial N-class
- \bullet $S \supseteq \{1\} \Longleftrightarrow G$ is cyclic or generalized quaternion
- \bullet \circ refines $N \implies$ a N-class is union of \circ -classes

- Γ = P(*G*). For *x*, *y* ∈ *G*
	- \bullet *x*_N*y* if *N*[*x*] = *N*[*y*]
	- $x \diamond y$ if $\langle x \rangle = \langle y \rangle$

define two equivalence relations in *G*.

- $[1]_N = S$ is the trivial N-class
- \bullet $S \supseteq \{1\} \Longleftrightarrow G$ is cyclic or generalized quaternion
- \circ refines $N \implies a \ N$ -class is union of \circ -classes

An N-class $[x]_N$ in a power graph is called

 \bullet plain if $[x]_N$ consists of a single \circ -class:

$$
[x]_{\mathbb{N}}=[x]_{\diamond}
$$

- In an abelian group *G* every N-class different from S is
-

An N-class $[x]_N$ in a power graph is called

• plain if $[x]_N$ consists of a single \diamond -class:

$$
[x]_{\mathbb{N}}=[x]_{\diamond}
$$

• compound if $[x]_N$ is union of at least two \diamond -classes

• In an abelian group *G* every N-class different from S is

 \bullet S is plain \Longleftrightarrow S = {1}

An N-class $[x]_N$ in a power graph is called

• plain if $[x]_N$ consists of a single \diamond -class:

$$
[x]_{\mathbb{N}}=[x]_{\diamond}
$$

- compound if $[x]_N$ is union of at least two \diamond -classes
- \bullet In an abelian group *G* every N-class different from *S* is plain (a rephrase of a result by Cameron and Gosh, 2011)

 \bullet S is plain \Longleftrightarrow S = {1}

An N-class $[x]_N$ in a power graph is called

 \circ plain if $[x]_N$ consists of a single \circ -class:

$$
[x]_{\mathbb{N}}=[x]_{\diamond}
$$

- compound if $[x]_N$ is union of at least two \diamond -classes
- \bullet In an abelian group *G* every N-class different from *S* is plain (a rephrase of a result by Cameron and Gosh, 2011)

•
$$
S
$$
 is plain $\iff S = \{1\}$

Let $C \neq S$ be a N-class of *G*. The following facts are equivalent

-
-

 \bullet If *C* is compound with parameters (p, r, s) and *y* is a root, then $\hat{C} = \langle y \rangle$. Thus

$$
|C| = p^r - p^s \quad \text{and} \quad |\hat{C}| = p^r \tag{1}
$$

Let $C \neq S$ be a N-class of *G*. The following facts are equivalent

(*i*) *C* is compound

 \bullet If *C* is compound with parameters (p, r, s) and *y* is a root, then $\hat{C} = \langle y \rangle$. Thus

$$
|C| = p^r - p^s \quad \text{and} \quad |\hat{C}| = p^r \tag{1}
$$

Let $C \neq S$ be a N-class of *G*. The following facts are equivalent

(*i*) *C* is compound

- (i) If $y \in C$ has maximum order, then we have
	- $o(y) = p^r$ for some prime p and some integer $r \geq 2$
	- There exists 0 ≤ *s* ≤ *r* − 2 such that

 $C = \{ z \in \langle y \rangle \, | \, \rho^{s+1} \leq o(z) \leq \rho^r \}$.

 \bullet If *C* is compound with parameters (p, r, s) and *y* is a root, then $\hat{C} = \langle y \rangle$. Thus

$$
|C| = p^r - p^s \quad \text{and} \quad |\hat{C}| = p^r \tag{1}
$$

Let $C \neq S$ be a N-class of *G*. The following facts are equivalent

(*i*) *C* is compound

- (*ii*) If $y \in C$ has maximum order, then we have
	- $o(y) = p^r$ for some prime p and some integer $r \geq 2$
	- There exists 0 ≤ *s* ≤ *r* − 2 such that

 $C = \{ z \in \langle y \rangle \, | \, \rho^{s+1} \leq o(z) \leq \rho^r \}$.

(*p*, *r*, *s*) are called the parameters of *C* and *y* a root of *C*.

 \bullet If *C* is compound with parameters (p, r, s) and *y* is a root, then $\hat{C} = \langle y \rangle$. Thus

$$
|C| = p^r - p^s \quad \text{and} \quad |\hat{C}| = p^r \tag{1}
$$

Example

In D_{30} , $C := [y]_N$, with $o(y) = 15$. Then

- *C* is plain because *y* is not a prime power
-
-

$$
|C| = p^r - p^s \quad \text{and} \quad |\hat{C}| = p^r,
$$

$$
s=0, \quad \hat{C}=C\cup\{1\}.
$$

Example

In
$$
D_{30}
$$
, $C := [y]_N$, with $o(y) = 15$. Then

C is plain because *y* is not a prime power

$$
\bullet \ |C| = \phi(o(y)) = 8 = 3^2 - 3^0
$$

If a plain class *C* satisfies

$$
|C| = p^r - p^s \quad \text{and} \quad |\hat{C}| = p^r,
$$

$$
s=0, \quad \hat{C}=C\cup\{1\}.
$$

Moreover, $C = [z]_0$ for some $z \in G$ with $o(z) > 1$ not a

$$
|C|=\phi(o(z))=p^r-1
$$
Example

In
$$
D_{30}
$$
, $C := [y]_N$, with $o(y) = 15$. Then

C is plain because *y* is not a prime power

$$
\bullet \ |C| = \phi(o(y)) = 8 = 3^2 - 3^0
$$

$$
\bullet \ \hat{C}=C\cup\{1\}\Rightarrow |\hat{C}|=3^2
$$

If a plain class *C* satisfies

$$
|C| = p^r - p^s \quad \text{and} \quad |\hat{C}| = p^r,
$$

$$
s=0, \quad \hat{C}=C\cup\{1\}.
$$

Moreover, $C = [z]_0$ for some $z \in G$ with $o(z) > 1$ not a

$$
|C|=\phi(o(z))=p^r-1
$$

Example

In
$$
D_{30}
$$
, $C := [y]_N$, with $o(y) = 15$. Then

C is plain because *y* is not a prime power

$$
\bullet \ |C| = \phi(o(y)) = 8 = 3^2 - 3^0
$$

$$
\bullet \ \hat{C}=C\cup\{1\}\Rightarrow |\hat{C}|=3^2
$$

If a plain class *C* satisfies

$$
|C| = p^r - p^s \quad \text{and} \quad |\hat{C}| = p^r,
$$

we always have:

$$
s=0, \quad \hat{C}=C\cup\{1\}.
$$

Moreover, $C = [z]_0$ for some $z \in G$ with $o(z) > 1$ not a prime power, and

$$
|C| = \phi(o(z)) = p^r - 1
$$

Critical classes

Definition

In a power graph,

critical class:= a N-class *C* such that

 $\hat{C} = C \cup \{1\}$

and there exist a prime p and an integer $r \geq 2$ with

$$
|\hat{C}|=p^r
$$

- A critical class is an N-class which cannot be recognized
-

Critical classes

Definition

In a power graph,

```
critical class:= a N-class C such that
```
 $\hat{C} = C \cup \{1\}$

and there exist a prime p and an integer $r \geq 2$ with

$$
|\hat{C}|=p^r
$$

- A critical class is an N-class which cannot be recognized as plain or compound by arithmetical considerations on its size and on the size of its neighbourhood closure
-

Critical classes

Definition

In a power graph,

```
critical class:= a N-class C such that
```
 $\hat{C} = C \cup \{1\}$

and there exist a prime p and an integer $r \geq 2$ with

$$
|\hat{C}|=p^r
$$

- A critical class is an N-class which cannot be recognized as plain or compound by arithmetical considerations on its size and on the size of its neighbourhood closure
- Critical classes are crucial for the reconstruction of the directed power graph from the power graph, and they make the work harder

- In $P(D_{30})$ the N-class of an element of order 15 is plain
- In $P(S_4)$ the N-class of a 4-cycle is compound critical
-

$$
QD_{16}=\langle x,y|x^8=y^2=1,x^y=x^3\rangle
$$

- In $\mathcal{P}(D_{30})$ the N-class of an element of order 15 is plain critical. The other classes are plain not critical
- In $P(S_4)$ the N-class of a 4-cycle is compound critical
- In $\mathcal{P}(QD_{16})$ the N-class of an element of order 8 is

$$
QD_{16} = \langle x, y | x^8 = y^2 = 1, x^y = x^3 \rangle
$$

- In $\mathcal{P}(D_{30})$ the N-class of an element of order 15 is plain critical. The other classes are plain not critical
- In $P(S_4)$ the N-class of a 4-cycle is compound critical
- In $\mathcal{P}(QD_{16})$ the N-class of an element of order 8 is

$$
QD_{16} = \langle x, y | x^8 = y^2 = 1, x^y = x^3 \rangle
$$

- In $P(D_{30})$ the N-class of an element of order 15 is plain critical. The other classes are plain not critical
- In $P(S_4)$ the N-class of a 4-cycle is compound critical
- In $\mathcal{P}(QD_{16})$ the N-class of an element of order 8 is compound not critical. Recall

$$
QD_{16}=\langle x,y|x^8=y^2=1,x^y=x^3\rangle
$$

Example $\overline{P(D_{30})}$

Example $\mathcal{P}(D_{30})$: plain and critical plain classes

Question

What do critical classes tell about structure and properties of the group?

-
- plain [compound] if $[x]_N$ is a plain [compound] class in $P(G)$
- The class $[1]_N = S$ is never critical \Rightarrow 1 is never critical
- **•** If there exists $x \in G$ critical, then $S = \{1\}$ and $G \neq 1$
- \bullet *x* \in *G* critical is compound iff *o*(*x*) > 1 is a prime power

Question

What do critical classes tell about structure and properties of the group?

- $x \in G$ is called
	- **o** critical if $[x]_N$ is a critical class in $\mathcal{P}(G)$
	-
	- The class $[1]_N = S$ is never critical \Rightarrow 1 is never critical
	- **•** If there exists $x \in G$ critical, then $S = \{1\}$ and $G \neq 1$
	- $x \in G$ critical is compound iff $\rho(x) > 1$ is a prime power

Question

What do critical classes tell about structure and properties of the group?

- $x \in G$ is called
	- **o** critical if $[x]_N$ is a critical class in $\mathcal{P}(G)$
	- **•** plain [compound] if $[x]_N$ is a plain [compound] class in $P(G)$
	- The class $[1]_N = S$ is never critical \Rightarrow 1 is never critical
	- **•** If there exists $x \in G$ critical, then $S = \{1\}$ and $G \neq 1$
	- $x \in G$ critical is compound iff $o(x) > 1$ is a prime power

- $G \neq 1$ a group is called
	- 1. critical if every $x \in G \setminus \{1\}$ is critical
	- 2. plain [compound] if every $x \in G \setminus \{1\}$ is plain [compound]
	- Critical groups represent an extreme situation.
		-
	- We do not know immediately if critical groups exist
	- -
		-
		-

- $G \neq 1$ a group is called
	- 1. critical if every $x \in G \setminus \{1\}$ is critical
	- 2. plain [compound] if every $x \in G \setminus \{1\}$ is plain [compound]
		- Critical groups represent an extreme situation. It is required that every non-trivial N -class is critical
		- We do not know immediately if critical groups exist
		- If they exist, in principle, there are three possibilities:
			- every non-trivial class is compound
			- every non-trivial class is plain
			-

- $G \neq 1$ a group is called
	- 1. critical if every $x \in G \setminus \{1\}$ is critical
	- 2. plain [compound] if every $x \in G \setminus \{1\}$ is plain [compound]
		- Critical groups represent an extreme situation. It is required that every non-trivial N-class is critical
		- We do not know immediately if critical groups exist
		- If they exist, in principle, there are three possibilities:
			- every non-trivial class is compound
			- every non-trivial class is plain
			-

- $G \neq 1$ a group is called
	- 1. critical if every $x \in G \setminus \{1\}$ is critical
	- 2. plain [compound] if every $x \in G \setminus \{1\}$ is plain [compound]
		- Critical groups represent an extreme situation. It is required that every non-trivial N -class is critical
		- We do not know immediately if critical groups exist
		- If they exist, in principle, there are three possibilities:
			- every non-trivial class is compound
			- \bullet every non-trivial class is plain
			- there exist both plain and compound non-trivial classes

A partition of $G \neq 1$ is a set $\mathcal P$ of non-trivial subgroups of G , such that every element $x \in G \setminus \{1\}$ belongs to a unique subgroup in \mathscr{P} .

If $|\mathscr{P}| = 1$, the partition is called trivial.

The groups admitting a non-trivial partition are known

A partition of $G \neq 1$ is a set $\mathcal P$ of non-trivial subgroups of G , such that every element $x \in G \setminus \{1\}$ belongs to a unique subgroup in \mathscr{P} . If $|\mathscr{P}| = 1$, the partition is called trivial.

The groups admitting a non-trivial partition are known

A partition of $G \neq 1$ is a set $\mathcal P$ of non-trivial subgroups of G , such that every element $x \in G \setminus \{1\}$ belongs to a unique subgroup in \mathscr{P} . If $|\mathscr{P}| = 1$, the partition is called trivial.

The groups admitting a non-trivial partition are known (Kegel, Baer, Suzuki).

A partition of $G \neq 1$ is a set $\mathcal P$ of non-trivial subgroups of G , such that every element $x \in G \setminus \{1\}$ belongs to a unique subgroup in \mathscr{P} . If $|\mathscr{P}| = 1$, the partition is called trivial.

The groups admitting a non-trivial partition are known (Kegel, Baer, Suzuki). Among them, we find the Frobenius groups. For instance, *D*2*ⁿ* for *n* odd

A group admitting a non-trivial partition into cyclic subgroups of order a prime power with exponent at least 2 is critical

- P a partition of *G* by cyclic subgroups of order a prime
- $x \in G \setminus \{1\} \Rightarrow$ there exists a unique $U \in \mathcal{P}$ such that *x* ∈ *U*. We show that $N[x] = U$. It follows that

$$
[x]_N = U \setminus \{1\}
$$

$$
\widehat{[x]_N}=U=[x]_N\cup\{1\}.
$$

A group admitting a non-trivial partition into cyclic subgroups of order a prime power with exponent at least 2 is critical

Proof.

- P a partition of G by cyclic subgroups of order a prime power with exponent at least 2.
- $x \in G \setminus \{1\} \Rightarrow$ there exists a unique $U \in \mathcal{P}$ such that *x* ∈ *U*. We show that $N[x] = U$. It follows that

$$
\widehat{[x]_N}=U=[x]_N\cup\{1\}.
$$

A group admitting a non-trivial partition into cyclic subgroups of order a prime power with exponent at least 2 is critical

Proof.

- P a partition of G by cyclic subgroups of order a prime power with exponent at least 2.
- $x \in G \setminus \{1\} \Rightarrow$ there exists a unique $U \in \mathcal{P}$ such that *x* ∈ *U*. We show that $N[x] = U$. It follows that

 $[X]_N = U \setminus \{1\}$

$$
\widehat{[x]_{\mathbb{N}}} = U = [x]_{\mathbb{N}} \cup \{1\}.
$$

A group admitting a non-trivial partition into cyclic subgroups of order a prime power with exponent at least 2 is critical

Proof.

- P a partition of G by cyclic subgroups of order a prime power with exponent at least 2.
- $x \in G \setminus \{1\} \Rightarrow$ there exists a unique $U \in \mathcal{P}$ such that $x \in U$. We show that $N[x] = U$. It follows that

 $[X]_N = U \setminus \{1\}$

$$
\widehat{[x]_{\mathbb{N}}} = U = [x]_{\mathbb{N}} \cup \{1\}.
$$

By $|U| = p^r$, *p* prime, $r \ge 2$, we deduce *x* critical. \square

A group admitting a non-trivial partition into cyclic subgroups of order a prime power with exponent at least 2 is critical

Proof.

- P a partition of G by cyclic subgroups of order a prime power with exponent at least 2.
- $x \in G \setminus \{1\} \Rightarrow$ there exists a unique $U \in \mathcal{P}$ such that $x \in U$. We show that $N[x] = U$. It follows that

$$
[x]_{\mathbb{N}}=U\setminus\{1\}
$$

and

$$
\widehat{[x]_{\mathbb{N}}} = U = [x]_{\mathbb{N}} \cup \{1\}.
$$

By $|U| = p^r$, *p* prime, $r \ge 2$, we deduce *x* critical. \square

A group admitting a non-trivial partition into cyclic subgroups of order a prime power with exponent at least 2 is critical

Proof.

- P a partition of G by cyclic subgroups of order a prime power with exponent at least 2.
- $x \in G \setminus \{1\} \Rightarrow$ there exists a unique $U \in \mathcal{P}$ such that $x \in U$. We show that $N[x] = U$. It follows that

$$
[x]_{\mathbb{N}}=U\setminus\{1\}
$$

and

$$
\widehat{[x]_{\mathbb{N}}} = U = [x]_{\mathbb{N}} \cup \{1\}.
$$

By $|U| = p^r$, p prime, $r \geq 2$, we deduce x critical. \square

Frobenius groups

Proposition

Let $C_{\rho^a} = \langle \textit{x} \rangle$ and $C_{q^b} = \langle \textit{y} \rangle$ with $p \neq q$ primes and $a,b \geq 2$ integers. Then

- (i) the group $C_{p^a} \rtimes C_{q^b}$ defined by $x^y = x^r$, with $2 \le r < p^a$ such that $p\nmid r$, is a Frobenius group with kernel C_{p^a} iff $q^b = |r| \mod p$
- (*ii*) the Frobenius groups in (*i*) exist iff $q^b \mid p-1$.
	- Note that $q^b \mid p-1, b \geq 2 \Rightarrow p \notin \{2,3\}$
	- Since $4 = |7|$ _{mod 5}, $C_{25} \rtimes C_4$ defined by $x^y = x^7$ is complements and using Proposition 1, we deduce that it is
	- $\bullet \Rightarrow$ critical groups do exist. Try to find all of them!

Frobenius groups

Proposition

Let $C_{\rho^a} = \langle \textit{x} \rangle$ and $C_{q^b} = \langle \textit{y} \rangle$ with $p \neq q$ primes and $a,b \geq 2$ integers. Then

- (i) the group $C_{p^a} \rtimes C_{q^b}$ defined by $x^y = x^r$, with $2 \le r < p^a$ such that $p\nmid r$, is a Frobenius group with kernel C_{p^a} iff $q^b = |r| \mod p$
- (*ii*) the Frobenius groups in (*i*) exist iff $q^b \mid p-1$.
	- Note that $q^b \mid p-1, b \geq 2 \Rightarrow p \notin \{2,3\}$
	- Since $4 = |7|$ _{mod 5}, $C_{25} \rtimes C_4$ defined by $x^y = x^7$ is Frobenius and thus, considering its partition by kernel and complements and using Proposition 1, we deduce that it is critical
	- $\bullet \Rightarrow$ critical groups do exist. Try to find all of them!

Frobenius groups

Proposition

Let $C_{\rho^a} = \langle \textit{x} \rangle$ and $C_{q^b} = \langle \textit{y} \rangle$ with $p \neq q$ primes and $a,b \geq 2$ integers. Then

- (i) the group $C_{p^a} \rtimes C_{q^b}$ defined by $x^y = x^r$, with $2 \le r < p^a$ such that $p\nmid r$, is a Frobenius group with kernel C_{p^a} iff $q^b = |r| \mod p$
- (*ii*) the Frobenius groups in (*i*) exist iff $q^b \mid p-1$.
	- Note that $q^b \mid p-1, b \geq 2 \Rightarrow p \notin \{2,3\}$
	- Since $4 = |7|$ _{mod 5}, $C_{25} \rtimes C_4$ defined by $x^y = x^7$ is Frobenius and thus, considering its partition by kernel and complements and using Proposition 1, we deduce that it is critical
	- $\bullet \Rightarrow$ critical groups do exist. Try to find all of them!

Using the fact that a plain critical element cannot have prime order, we deduce immediately

Remark

There exists no plain critical group

However, it remains the possibility to have both plain and compound classes in a critical group...

Lemma 1

Let *G* be a critical group and *p* a prime dividing |*G*|. Then, every element of order p is the power of an element of order p^2 . In particular, $p^2 \mid |G|$.

Lemma 1

Let *G* be a critical group and *p* a prime dividing |*G*|. Then, every element of order p is the power of an element of order p^2 . In particular, $p^2 \mid |G|$.

⇓

Proposition 2 (B. P. 2024)

If *G* is a critical group, then *G* is compound critical

Lemma 1

Let *G* be a critical group and *p* a prime dividing |*G*|. Then, every element of order p is the power of an element of order p^2 . In particular, $p^2 \mid |G|$.

⇓

Proposition 2 (B. P. 2024)

If *G* is a critical group, then *G* is compound critical

A surprising result

-
-
Main Theorem (B. P. 2024)

A group *G* is critical iff there exist *p*, *q* distinct primes, with *p* odd, and *a*, *b* ≥ 2 integers such that *G* is a Frobenius group with kernel $F \cong C_{p^a}$ and complement $H \cong C_{q^b}$

-
-

Main Theorem (B. P. 2024)

A group *G* is critical iff there exist *p*, *q* distinct primes, with *p* odd, and $a, b \ge 2$ integers such that *G* is a Frobenius group with kernel $F \cong C_{p^a}$ and complement $H \cong C_{q^b}$

Since we know how to get all such Frobenius groups, we know all the possible critical groups

- The proof is elaborate and involves the theory of partitions
- For instance, a result on the Hughes-Thompson subgroup

Main Theorem (B. P. 2024)

A group *G* is critical iff there exist *p*, *q* distinct primes, with *p* odd, and $a, b > 2$ integers such that *G* is a Frobenius group with kernel $F \cong C_{p^a}$ and complement $H \cong C_{q^b}$

Since we know how to get all such Frobenius groups, we know all the possible critical groups

- The proof is elaborate and involves the theory of partitions
- For instance, a result on the Hughes-Thompson subgroup

Main Theorem (B. P. 2024)

A group *G* is critical iff there exist *p*, *q* distinct primes, with *p* odd, and $a, b > 2$ integers such that *G* is a Frobenius group with kernel $F \cong C_{p^a}$ and complement $H \cong C_{q^b}$

Since we know how to get all such Frobenius groups, we know all the possible critical groups

- The proof is elaborate and involves the theory of partitions
- **•** For instance, a result on the Hughes-Thompson subgroup of the Sylow subgroups of a critical group

Sylow subgroups of critical groups

The Hughes-Thompson subgroup of a *p*-group *P*

$$
H_p(P):=\langle x\in P: o(x)\neq p\rangle
$$

Theorem (Kegel 1961)

A *p*-group *P* admits a non-trivial partition if and only if $H_p(P) \neq P$

$$
\bullet \ H_p(P) = P
$$

Sylow subgroups of critical groups

The Hughes-Thompson subgroup of a *p*-group *P*

$$
H_p(P):=\langle x\in P: o(x)\neq p\rangle
$$

Theorem (Kegel 1961)

A *p*-group *P* admits a non-trivial partition if and only if $H_p(P) \neq P$

Proposition 3 (B. P. 2024)

Let *G* be a critical group, *p* a prime dividing |*G*| and $P\in {\text{Syl}}_{\rho}(G).$ Then

$$
\bullet\ \mathit{H}_{p}(P)=P
$$

P admits only the trivial partition

Sylow subgroups of critical groups

The Hughes-Thompson subgroup of a *p*-group *P*

$$
H_p(P):=\langle x\in P: o(x)\neq p\rangle
$$

Theorem (Kegel 1961)

A *p*-group *P* admits a non-trivial partition if and only if $H_p(P) \neq P$

Proposition 3 (B. P. 2024)

Let *G* be a critical group, *p* a prime dividing |*G*| and $P\in {\text{Syl}}_{\rho}(G).$ Then

$$
\bullet\ \mathit{H}_{p}(P)=P
$$

P admits only the trivial partition

Sketch of the proof of the Main Theorem

A critical group *G* is necessarily compound and thus an EPPO non-cyclic group

- The neighbourhood closures of the non-trivial N-classes
- **•** The theorem by Hölder, Burnside, Zassenhaus
- The *q*-Sylow subgroup is selfnormalizing. By the presence

Sketch of the proof of the Main Theorem

- A critical group *G* is necessarily compound and thus an EPPO non-cyclic group
- The neighbourhood closures of the non-trivial N-classes give a partition P of G into maximal cyclic subgroups which turn out to be the Sylow subgroups of *G*
- **•** The theorem by Hölder, Burnside, Zassenhaus
- The *q*-Sylow subgroup is selfnormalizing. By the presence

Sketch of the proof of the Main Theorem

- A critical group *G* is necessarily compound and thus an EPPO non-cyclic group
- The neighbourhood closures of the non-trivial N-classes give a partition P of G into maximal cyclic subgroups which turn out to be the Sylow subgroups of *G*
- The theorem by Hölder, Burnside, Zassenhaus characterizing the finite groups with cyclic Sylow subgroups in the EPPO case, implies that $\pi(G) = \{p, q\}$ with the *p*-Sylow subgroup normal
- The *q*-Sylow subgroup is selfnormalizing. By the presence of P, this implies *G* to be a Frobenius group with the required structure

Thanks for your attention!

Thanks for your attention!

- D. Bubboloni, N. Pinzauti, *Critical classes of power graphs and reconstruction of directed power graphs*, arxiv/4620170 (2023)
- P. J. Cameron, *The power graph of a finite group, II*, Journal of Group Theory **13** (2010), 779–783
- P. J. Cameron, S. Ghosh, *The power graph of a finite group*, Discrete Mathematics **311** (2011), 1220–1222
- P. J. Cameron, *Graphs defined on groups*, International Journal of Group Theory, vol.**11** No. 2 (2022), 53–107