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@ Non-isomorphic groups may have the same power graph

@ The directed power graph should encode more information
than the power graph. Surprisingly, this is not the case.
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Reconstructing directed power graphs

Theorem (Bubboloni, Pinzauti 2023)

Given a power graph I', by arithmetical and graph theoretical
considerations, it is possible to do one of the following

1. Show that there exists a unique group G such that
I = P(G) and exhibit such G

2. Exhibit a digraph ' = B(G), which is the same for any
choice of the group G such that I = P(G)

@ Based on a paper by Cameron (2010) and correcting a
mistake there

@ An answer to Question 2 in Cameron (2022) about the
reconstruction of directed power graphs from power graphs

@ The tools developed can be fruitfully applied to other kinds
of research!
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Neighbours
r=(V,E)graph,xe V,XCV
@ Nx]={yeV:{x,y}eE}u{x}

@ x is a star vertex if N[x] = V.

S:={xe€V:xisastar}
@ the common closed neighbour

Nyex N[x] if X # @
N[X] =
4 ifX=0o

@ The neighbourhood closure X := N[N[X]]
This gives an original example of Moore closure for graphs
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Equivalence relations on power graphs

Definition
r="P(G). Forx,y e G
@ xNy if N[x] = Nly]
@ xoyif (x) =(y)
define two equivalence relations in G.
N is called the closed twin relation.
@ [1]y = S is the trivial N-class
@ S D {1} <= Gis cyclic or generalized quaternion

@ ¢ refines N = a N-class is union of ¢-classes
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An N-class [x]y in a power graph is called
@ plain if [x]y consists of a single ¢-class:

[XIn = [Xlo

@ compound if [x]y is union of at least two <-classes

@ In an abelian group G every N-class different from S is
plain (a rephrase of a result by Cameron and Gosh, 2011)

@ Sisplain <= & = {1}
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Proposition (Cameron, 2010 )
Let C # S be a N-class of G. The following facts are equivalent

(i) Cis compound

(if) If y € C has maximum order, then we have
e o(y) = p" for some prime p and some integer r > 2
@ There exists 0 < s < r — 2 such that

C={ze(y)|p <o(z)<p}.
(p, r, s) are called the parameters of C and y a root of C.
e If Cis compound with parameters (p, r, s) and y is a root,
then C = (y). Thus
ICl=p" —p° and [C|=p (1)

@ However we discovered that there exist plain classes C
that satisfy condition (1). Cameron thought they did not
exist.



In D3g, C := [y]x, with o(y) = 15. Then
@ Cis plain because y is not a prime power



In D3g, C := [y]x, with o(y) = 15. Then
@ Cis plain because y is not a prime power

o [Cl = ¢(o(y)) =8 =32 - 3°



In D3g, C := [y]x, with o(y) = 15. Then
@ Cis plain because y is not a prime power

° [C| =¢(o(y)) =8=3*-3°
e C=Cu{1}=1C| =32



In D3g, C := [y]x, With o(y) = 15. Then
@ Cis plain because y is not a prime power
® |C| = ¢(o(y)) =8 =82 -3
e C=Cu{1}=1C| =32

@ If a plain class C satisfies
ICl=p"—p° and |C|=0p,
we always have:
s=0, C=Cu{l}

Moreover, C = [z], for some z € G with o(z) > 1 nota
prime power, and

ICl = ¢(o(2)) = p" —1
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Critical classes

In a power graph,
critical class:= a N-class C such that

C=Ccu{l}
and there exist a prime p and an integer r > 2 with
Cl=p'

@ A critical class is an N-class which cannot be recognized
as plain or compound by arithmetical considerations on its
size and on the size of its neighbourhood closure

@ Critical classes are crucial for the reconstruction of the
directed power graph from the power graph, and they make
the work harder
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All four cases plain/compound combined with critical/not critical
may appear

@ In P(Dsp) the N-class of an element of order 15 is plain
critical. The other classes are plain not critical

@ In P(S,) the N-class of a 4-cycle is compound critical

@ In P(QD;s6) the N-class of an element of order 8 is
compound not critical. Recall

QDig = (x,y|x® =y? =1,x = x%)
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Example P(Dsp): plain and critical plain classes

@ not critical

not critical

¢ ' 8=232—1
critical

Q Ks@)  not critical

P(D3p) with N-classes highlighted
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Critical elements

What do critical classes tell about structure and properties of
the group?

x € Gis called
@ critical if [x]y is a critical class in P(G)
@ plain [compound] if [x]y is a plain [compound] class in
P(G)

@ The class [1]y = S is never critical = 1 is never critical
@ If there exists x € G critical, then S = {1} and G # 1
@ x € G critical is compound iff o(x) > 1 is a prime power
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Critical groups

G # 1 agroup is called
1. critical if every x € G\ {1} is critical

2. plain [compound] if every x € G\ {1} is plain [compound]

@ Critical groups represent an extreme situation.

It is required that every non-trivial N-class is critical
@ We do not know immediately if critical groups exist
@ If they exist, in principle, there are three possibilities:

@ every non-trivial class is compound
e every non-trivial class is plain
e there exist both plain and compound non-trivial classes
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Partitions and existence of critical groups

Definition

A partition of G # 1 is a set 2 of non-trivial subgroups of G,
such that every element x € G\ {1} belongs to a unique
subgroup in £.

If | 22| =1, the partition is called trivial.

@ The groups admitting a non-trivial partition are known
(Kegel, Baer, Suzuki).
Among them, we find the Frobenius groups. For instance,
Do, for n odd
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Proposition 1 (B. P. 2024)

A group admitting a non-trivial partition into cyclic subgroups of
order a prime power with exponent at least 2 is critical

Proof.

@ P a partition of G by cyclic subgroups of order a prime
power with exponent at least 2.

@ x € G\ {1} = there exists a unique U € P such that
x € U. We show that N[x] = U. It follows that

[Xlw = U\ {1}

and -
[Xlw = U =[xl U {1}.

@ By |U| =p', pprime, r > 2, we deduce x critical. O
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integers. Then
(/) the group Cpa x Cyp defined by x¥ = x”, with 2 < r < p?
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Frobenius groups

Let Cpa = (x) and Cgp = (y) with p # g primes and a,b > 2
integers. Then
(/) the group Cpa x Cyp defined by x¥ = x”, with 2 < r < p?
such that p 1 r, is a Frobenius group with kernel Cpa iff
qb = |I’| mod p
(i) the Frobenius groups in (/) exist iff g° | p — 1.

@ Notethatg®? |p—1,b>2=p¢ {2,3}

@ Since 4 = |7| mod 5, Cos x Cy4 defined by x¥ = x” is
Frobenius and thus, considering its partition by kernel and
complements and using Proposition 1, we deduce that it is
critical

@ — critical groups do exist. Try to find all of them!



An easy fact

Using the fact that a plain critical element cannot have prime
order, we deduce immediately

Remark
There exists no plain critical group

However, it remains the possibility to have both plain and
compound classes in a critical group...
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The characterization of critical groups

A surprising result

Main Theorem (B. P. 2024)

A group G is critical iff there exist p, g distinct primes, with p
odd, and a, b > 2 integers such that
G is a Frobenius group with kernel F = Cpa and complement
H=Cp

q

Since we know how to get all such Frobenius groups, we know
all the possible critical groups

@ The proof is elaborate and involves the theory of partitions

@ For instance, a result on the Hughes-Thompson subgroup
of the Sylow subgroups of a critical group
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@ Hy(P)=P
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Sketch of the proof of the Main Theorem

@ A critical group G is necessarily compound and thus an
EPPO non-cyclic group

@ The neighbourhood closures of the non-trivial N-classes
give a partition P of G into maximal cyclic subgroups which
turn out to be the Sylow subgroups of G

@ The theorem by Hdlder, Burnside, Zassenhaus
characterizing the finite groups with cyclic Sylow
subgroups in the EPPO case, implies that 7(G) = {p, g}
with the p-Sylow subgroup normal

@ The g-Sylow subgroup is selfnormalizing. By the presence

of P, this implies G to be a Frobenius group with the
required structure
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