Critical groups and partitions of finite groups

Daniela Bubboloni University of Florence (Italy)

Reinhold Baer Prize 2024

Napoli, 7-8 October 2024

A joint research with Nicolas Pinzauti

• G denotes a finite group

Definitions

Directed power graph $ec{\mathcal{P}}(G)$

• Vertex set G

• for
$$x \neq y \in G$$
,

(x, y) arc if $y = x^m$, for some $m \in \mathbb{N}$

- Non-isomorphic groups may have the same power graph
- The directed power graph should encode more information than the power graph. Surprisingly, this is not the case.

• G denotes a finite group

Definitions

Directed power graph $\vec{\mathcal{P}}(G)$

Vertex set G

• for
$$x \neq y \in G$$
,
(x, y) arc if $y = x^m$, for some $m \in \mathbb{N}$

- Non-isomorphic groups may have the same power graph
- The directed power graph should encode more information than the power graph. Surprisingly, this is not the case.

• G denotes a finite group

Definitions

- Directed power graph $\vec{\mathcal{P}}(G)$
 - Vertex set G

• for
$$x \neq y \in G$$
,

(x, y) arc if $y = x^m$, for some $m \in \mathbb{N}$

- Non-isomorphic groups may have the same power graph
- The directed power graph should encode more information than the power graph. Surprisingly, this is not the case.

• G denotes a finite group

Definitions

- Directed power graph $\vec{\mathcal{P}}(G)$
 - Vertex set G

• for
$$x \neq y \in G$$
,

(x, y) arc if $y = x^m$, for some $m \in \mathbb{N}$

Power graph $\mathcal{P}(G)$:= The underlying undirected graph of $\vec{\mathcal{P}}(G)$ Power graphs := { $\mathcal{P}(G)$: *G* is a finite group}

Non-isomorphic groups may have the same power graph

• The directed power graph should encode more information than the power graph. Surprisingly, this is not the case.

• G denotes a finite group

Definitions

- Directed power graph $\vec{\mathcal{P}}(G)$
 - Vertex set G

• for
$$x \neq y \in G$$
,

(x, y) arc if $y = x^m$, for some $m \in \mathbb{N}$

- Non-isomorphic groups may have the same power graph
- The directed power graph should encode more information than the power graph. Surprisingly, this is not the case.

Reconstructing directed power graphs

Theorem (Bubboloni, Pinzauti 2023)

- 1. Show that there exists a unique group *G* such that $\Gamma = \mathcal{P}(G)$ and exhibit such *G*
- 2. Exhibit a digraph $\vec{\Gamma} \cong \vec{\mathcal{P}}(G)$, which is the same for any choice of the group *G* such that $\Gamma = \mathcal{P}(G)$
- Based on a paper by Cameron (2010) and correcting a mistake there
- An answer to Question 2 in Cameron (2022) about the reconstruction of directed power graphs from power graphs
- The tools developed can be fruitfully applied to other kinds of research!

Reconstructing directed power graphs

Theorem (Bubboloni, Pinzauti 2023)

- 1. Show that there exists a unique group *G* such that $\Gamma = \mathcal{P}(G)$ and exhibit such *G*
- 2. Exhibit a digraph $\vec{\Gamma} \cong \vec{\mathcal{P}}(G)$, which is the same for any choice of the group *G* such that $\Gamma = \mathcal{P}(G)$
- Based on a paper by Cameron (2010) and correcting a mistake there
- An answer to Question 2 in Cameron (2022) about the reconstruction of directed power graphs from power graphs
- The tools developed can be fruitfully applied to other kinds of research!

- 1. Show that there exists a unique group *G* such that $\Gamma = \mathcal{P}(G)$ and exhibit such *G*
- 2. Exhibit a digraph $\vec{\Gamma} \cong \vec{\mathcal{P}}(G)$, which is the same for any choice of the group *G* such that $\Gamma = \mathcal{P}(G)$
 - Based on a paper by Cameron (2010) and correcting a mistake there
 - An answer to Question 2 in Cameron (2022) about the reconstruction of directed power graphs from power graphs
 - The tools developed can be fruitfully applied to other kinds of research!

- 1. Show that there exists a unique group *G* such that $\Gamma = \mathcal{P}(G)$ and exhibit such *G*
- 2. Exhibit a digraph $\vec{\Gamma} \cong \vec{\mathcal{P}}(G)$, which is the same for any choice of the group *G* such that $\Gamma = \mathcal{P}(G)$
 - Based on a paper by Cameron (2010) and correcting a mistake there
 - An answer to Question 2 in Cameron (2022) about the reconstruction of directed power graphs from power graphs
 - The tools developed can be fruitfully applied to other kinds of research!

- 1. Show that there exists a unique group *G* such that $\Gamma = \mathcal{P}(G)$ and exhibit such *G*
- 2. Exhibit a digraph $\vec{\Gamma} \cong \vec{\mathcal{P}}(G)$, which is the same for any choice of the group *G* such that $\Gamma = \mathcal{P}(G)$
 - Based on a paper by Cameron (2010) and correcting a mistake there
 - An answer to Question 2 in Cameron (2022) about the reconstruction of directed power graphs from power graphs
 - The tools developed can be fruitfully applied to other kinds of research!

- 1. Show that there exists a unique group *G* such that $\Gamma = \mathcal{P}(G)$ and exhibit such *G*
- 2. Exhibit a digraph $\vec{\Gamma} \cong \vec{\mathcal{P}}(G)$, which is the same for any choice of the group *G* such that $\Gamma = \mathcal{P}(G)$
 - Based on a paper by Cameron (2010) and correcting a mistake there
 - An answer to Question 2 in Cameron (2022) about the reconstruction of directed power graphs from power graphs
 - The tools developed can be fruitfully applied to other kinds of research!

Definition

 $\Gamma = (V, E)$ graph, $x \in V, X \subseteq V$

•
$$N[x] := \{y \in V : \{x, y\} \in E\} \cup \{x\}$$

• x is a star vertex if N[x] = V.

 $\mathcal{S} := \{ x \in V : x \text{ is a star} \}$

the common closed neighbour

$$N[X] := \begin{cases} \bigcap_{x \in X} N[x] & \text{if } X \neq \emptyset \\ \\ V & \text{if } X = \emptyset \end{cases}$$

The neighbourhood closure X := N[N[X]]
 This gives an original example of Moore closure for graphs

Definition

$$\Gamma = (V, E)$$
 graph, $x \in V, X \subseteq V$

•
$$N[x] := \{y \in V : \{x, y\} \in E\} \cup \{x\}$$

• x is a star vertex if N[x] = V.

$$\mathcal{S} := \{x \in V : x \text{ is a star}\}$$

the common closed neighbour

$$N[X] := \begin{cases} \bigcap_{x \in X} N[x] & \text{if } X \neq \emptyset \\ \\ V & \text{if } X = \emptyset \end{cases}$$

The neighbourhood closure X̂ := N[N[X]]
 This gives an original example of Moore closure for graphs

Definition

$$\Gamma = (V, E)$$
 graph, $x \in V, X \subseteq V$

•
$$N[x] := \{y \in V : \{x, y\} \in E\} \cup \{x\}$$

• x is a star vertex if N[x] = V.

$$\mathcal{S} := \{ x \in V : x \text{ is a star} \}$$

• the common closed neighbour

$$N[X] := \begin{cases} \bigcap_{x \in X} N[x] & \text{if } X \neq \emptyset \\ V & \text{if } X = \emptyset \end{cases}$$

• The neighbourhood closure X := N[N[X]]This gives an original example of Moore closure for graphs

Definition

$$\Gamma = (V, E)$$
 graph, $x \in V, X \subseteq V$

•
$$N[x] := \{y \in V : \{x, y\} \in E\} \cup \{x\}$$

• x is a star vertex if N[x] = V.

$$\mathcal{S} := \{ x \in V : x \text{ is a star} \}$$

the common closed neighbour

$$N[X] := egin{cases} \bigcap_{x \in X} N[x] & ext{if } X \neq arnothing \\ V & ext{if } X = arnothing \end{cases}$$

The neighbourhood closure X̂ := N[N[X]]
 This gives an original example of Moore closure for graphs

Definition

$$\Gamma = (V, E)$$
 graph, $x \in V, X \subseteq V$

•
$$N[x] := \{y \in V : \{x, y\} \in E\} \cup \{x\}$$

• x is a star vertex if N[x] = V.

$$\mathcal{S} := \{ x \in V : x \text{ is a star} \}$$

the common closed neighbour

$$N[X] := \begin{cases} \bigcap_{x \in X} N[x] & \text{if } X \neq \emptyset \\ V & \text{if } X = \emptyset \end{cases}$$

The neighbourhood closure X̂ := N[N[X]]
 This gives an original example of Moore closure for graphs

- $\Gamma = \mathcal{P}(G)$. For $x, y \in G$
 - $x \ge y$ if N[x] = N[y]
 - $x \diamond y$ if $\langle x \rangle = \langle y \rangle$

define two equivalence relations in G.

- $[1]_{\mathbb{N}} = S$ is the trivial N-class
- $S \supseteq \{1\} \iff G$ is cyclic or generalized quaternion
- \diamond refines $\mathbb{N} \Longrightarrow$ a \mathbb{N} -class is union of \diamond -classes

- $\Gamma = \mathcal{P}(G)$. For $x, y \in G$
 - $x \ge y$ if N[x] = N[y]
 - $x \diamond y$ if $\langle x \rangle = \langle y \rangle$

define two equivalence relations in G.

- $[1]_{\mathbb{N}} = S$ is the trivial N-class
- $S \supseteq \{1\} \iff G$ is cyclic or generalized quaternion
- \diamond refines $N \Longrightarrow a N$ -class is union of \diamond -classes

- $\Gamma = \mathcal{P}(G)$. For $x, y \in G$
 - $x \ge y$ if N[x] = N[y]
 - $x \diamond y$ if $\langle x \rangle = \langle y \rangle$

define two equivalence relations in G.

- $[1]_{\mathbb{N}} = S$ is the trivial N-class
- $S \supsetneq \{1\} \iff G$ is cyclic or generalized quaternion
- \diamond refines $\mathbb{N} \Longrightarrow$ a \mathbb{N} -class is union of \diamond -classes

- $\Gamma = \mathcal{P}(G)$. For $x, y \in G$
 - $x \ge y$ if N[x] = N[y]
 - $x \diamond y$ if $\langle x \rangle = \langle y \rangle$

define two equivalence relations in G.

- $[1]_{\mathbb{N}} = S$ is the trivial N-class
- $S \supseteq \{1\} \iff G$ is cyclic or generalized quaternion
- \diamond refines $\mathbb{N} \Longrightarrow$ a \mathbb{N} -class is union of \diamond -classes

- $\Gamma = \mathcal{P}(G)$. For $x, y \in G$
 - $x \mathbb{N} y$ if N[x] = N[y]
 - $x \diamond y$ if $\langle x \rangle = \langle y \rangle$

define two equivalence relations in G.

- $[1]_{\mathbb{N}} = S$ is the trivial N-class
- $S \supseteq \{1\} \iff G$ is cyclic or generalized quaternion
- \diamond refines N \Longrightarrow a N-class is union of \diamond -classes

- $\Gamma = \mathcal{P}(G)$. For $x, y \in G$
 - $x \mathbb{N} y$ if N[x] = N[y]
 - $x \diamond y$ if $\langle x \rangle = \langle y \rangle$

define two equivalence relations in G.

- $[1]_{\mathbb{N}} = \mathcal{S}$ is the trivial N-class
- $S \supseteq \{1\} \iff G$ is cyclic or generalized quaternion
- \diamond refines N \Longrightarrow a N-class is union of \diamond -classes

- $\Gamma = \mathcal{P}(G)$. For $x, y \in G$
 - $x \mathbb{N} y$ if N[x] = N[y]
 - $x \diamond y$ if $\langle x \rangle = \langle y \rangle$

define two equivalence relations in G.

- $[1]_{\mathbb{N}} = S$ is the trivial N-class
- $S \supseteq \{1\} \iff G$ is cyclic or generalized quaternion
- \diamond refines N \implies a N-class is union of \diamond -classes

- $\Gamma = \mathcal{P}(G)$. For $x, y \in G$
 - $x \mathbb{N} y$ if N[x] = N[y]
 - $x \diamond y$ if $\langle x \rangle = \langle y \rangle$

define two equivalence relations in G.

- $[1]_{\mathbb{N}} = S$ is the trivial N-class
- $S \supseteq \{1\} \iff G$ is cyclic or generalized quaternion
- \diamond refines $\mathbb{N} \Longrightarrow$ a \mathbb{N} -class is union of \diamond -classes

An N-class $[x]_N$ in a power graph is called

• plain if [x]_N consists of a single ⇔-class:

 $[x]_{\mathbb{N}} = [x]_{\diamond}$

compound if [x]_N is union of at least two ⇔-classes

- In an abelian group G every N-class different from S is plain (a rephrase of a result by Cameron and Gosh, 2011)
- S is plain $\iff S = \{1\}$

An N-class $[x]_N$ in a power graph is called

• plain if [x]_N consists of a single ⇔-class:

 $[x]_{\mathbb{N}} = [x]_{\diamond}$

compound if [x]_№ is union of at least two <-classes

 In an abelian group G every N-class different from S is plain (a rephrase of a result by Cameron and Gosh, 2011)

• S is plain $\iff S = \{1\}$

An N-class $[x]_N$ in a power graph is called

• plain if [x]_N consists of a single ⇔-class:

 $[x]_{\mathbb{N}} = [x]_{\diamond}$

- compound if [x]_N is union of at least two ⇔-classes
- In an abelian group G every N-class different from S is plain (a rephrase of a result by Cameron and Gosh, 2011)

• S is plain \iff S = $\{1\}$

An N-class $[x]_N$ in a power graph is called

• plain if [x]_N consists of a single ⇔-class:

 $[x]_{\mathbb{N}} = [x]_{\diamond}$

- compound if [x]_N is union of at least two ⇔-classes
- In an abelian group G every N-class different from S is plain (a rephrase of a result by Cameron and Gosh, 2011)

•
$$S$$
 is plain $\iff S = \{1\}$

Let $C \neq S$ be a N-class of G. The following facts are equivalent

(*i*) *C* is compound

(*ii*) If $y \in C$ has maximum order, then we have

- $o(y) = p^r$ for some prime p and some integer $r \ge 2$
- There exists $0 \le s \le r 2$ such that

 $C = \left\{ z \in \langle y \rangle \, | \, p^{s+1} \leq o(z) \leq p^r \right\}.$

(p, r, s) are called the parameters of C and y a root of C.

If *C* is compound with parameters (*p*, *r*, *s*) and *y* is a root, then Ĉ = ⟨*y*⟩. Thus

$$|C| = p^r - p^s$$
 and $|\hat{C}| = p^r$ (1)

Let $C \neq S$ be a N-class of G. The following facts are equivalent

(i) C is compound

(*ii*) If $y \in C$ has maximum order, then we have

- $o(y) = p^r$ for some prime p and some integer $r \ge 2$
- There exists $0 \le s \le r 2$ such that

 $C = \left\{ z \in \langle y \rangle \, | \, p^{s+1} \le o(z) \le p^r \right\}.$

(p, r, s) are called the parameters of C and y a root of C.

If *C* is compound with parameters (*p*, *r*, *s*) and *y* is a root, then *Ĉ* = ⟨*y*⟩. Thus

$$|C| = p^r - p^s$$
 and $|\hat{C}| = p^r$ (1)

Let $C \neq S$ be a N-class of G. The following facts are equivalent

(i) C is compound

- (ii) If $y \in C$ has maximum order, then we have
 - $o(y) = p^r$ for some prime p and some integer $r \ge 2$
 - There exists $0 \le s \le r 2$ such that

 $C = \left\{ z \in \langle y \rangle \, | \, p^{s+1} \leq o(z) \leq p^r
ight\}.$

(p, r, s) are called the parameters of C and y a root of C.

If *C* is compound with parameters (*p*, *r*, *s*) and *y* is a root, then *Ĉ* = ⟨*y*⟩. Thus

$$|C| = p^r - p^s$$
 and $|\hat{C}| = p^r$ (1)

Let $C \neq S$ be a N-class of G. The following facts are equivalent

(i) C is compound

- (ii) If $y \in C$ has maximum order, then we have
 - $o(y) = p^r$ for some prime p and some integer $r \ge 2$
 - There exists $0 \le s \le r 2$ such that

 $C = \left\{ z \in \langle y \rangle \, | \, p^{s+1} \leq o(z) \leq p^r
ight\}.$

(p, r, s) are called the parameters of C and y a root of C.

If C is compound with parameters (p, r, s) and y is a root, then Ĉ = ⟨y⟩. Thus

$$|C| = p^r - p^s$$
 and $|\hat{C}| = p^r$ (1)

Example

In D_{30} , $C := [y]_{\mathbb{N}}$, with o(y) = 15. Then

- C is plain because y is not a prime power
- $|C| = \phi(o(y)) = 8 = 3^2 3^0$
- $\hat{C} = C \cup \{1\} \Rightarrow |\hat{C}| = 3^2$

• If a plain class *C* satisfies

$$|C| = p^r - p^s$$
 and $|\hat{C}| = p^r$,

we always have:

$$s=0, \quad \hat{C}=C\cup\{1\}.$$

Moreover, $C = [z]_{\circ}$ for some $z \in G$ with o(z) > 1 not a prime power, and

 $|C| = \phi(o(z)) = p^r - 1$

Example

In D_{30} , $C := [y]_{\mathbb{N}}$, with o(y) = 15. Then

• C is plain because y is not a prime power

•
$$|C| = \phi(o(y)) = 8 = 3^2 - 3^0$$

• $\hat{C} = C \cup \{1\} \Rightarrow |\hat{C}| = 3^2$

• If a plain class C satisfies

$$|C| = p^r - p^s$$
 and $|\hat{C}| = p^r$,

we always have:

$$s=0, \quad \hat{C}=C\cup\{1\}.$$

Moreover, $C = [z]_{\diamond}$ for some $z \in G$ with o(z) > 1 not a prime power, and

$$|C| = \phi(o(z)) = p^r - 1$$
Example

In D_{30} , $C := [y]_{\mathbb{N}}$, with o(y) = 15. Then

• C is plain because y is not a prime power

•
$$|C| = \phi(o(y)) = 8 = 3^2 - 3^0$$

•
$$\hat{C} = C \cup \{1\} \Rightarrow |\hat{C}| = 3^2$$

If a plain class C satisfies

$$|C| = p^r - p^s$$
 and $|\hat{C}| = p^r$,

we always have:

$$s=0, \quad \hat{C}=C\cup\{1\}.$$

Moreover, $C = [z]_{\diamond}$ for some $z \in G$ with o(z) > 1 not a prime power, and

$$|C| = \phi(o(z)) = p^r - 1$$

Example

In D_{30} , $C := [y]_{\mathbb{N}}$, with o(y) = 15. Then

• C is plain because y is not a prime power

•
$$|C| = \phi(o(y)) = 8 = 3^2 - 3^0$$

•
$$\hat{C} = C \cup \{1\} \Rightarrow |\hat{C}| = 3^2$$

• If a plain class C satisfies

$$|\mathcal{C}| = p^r - p^s$$
 and $|\hat{\mathcal{C}}| = p^r$,

we always have:

$$s=0, \quad \hat{C}=C\cup\{1\}.$$

Moreover, $C = [z]_{\diamond}$ for some $z \in G$ with o(z) > 1 not a prime power, and

$$|C| = \phi(o(z)) = p^r - 1$$

Critical classes

Definition

In a power graph,

critical class:= a N-class C such that

 $\hat{\textit{C}} = \textit{C} \cup \{1\}$

and there exist a prime p and an integer $r \ge 2$ with

$$|\hat{C}| = p^r$$

- A critical class is an N-class which cannot be recognized as plain or compound by arithmetical considerations on its size and on the size of its neighbourhood closure
- Critical classes are crucial for the reconstruction of the directed power graph from the power graph, and they make the work harder

Critical classes

Definition

In a power graph,

```
critical class:= a N-class C such that
```

 $\hat{\textit{C}} = \textit{C} \cup \{1\}$

and there exist a prime p and an integer $r \ge 2$ with

$$|\hat{C}| = p^r$$

- A critical class is an N-class which cannot be recognized as plain or compound by arithmetical considerations on its size and on the size of its neighbourhood closure
- Critical classes are crucial for the reconstruction of the directed power graph from the power graph, and they make the work harder

Critical classes

Definition

In a power graph,

```
critical class:= a N-class C such that
```

 $\hat{\textit{C}} = \textit{C} \cup \{1\}$

and there exist a prime p and an integer $r \ge 2$ with

$$|\hat{C}| = p^r$$

- A critical class is an N-class which cannot be recognized as plain or compound by arithmetical considerations on its size and on the size of its neighbourhood closure
- Critical classes are crucial for the reconstruction of the directed power graph from the power graph, and they make the work harder

- In P(D₃₀) the N-class of an element of order 15 is plain critical. The other classes are plain not critical
- In $\mathcal{P}(S_4)$ the N-class of a 4-cycle is compound critical
- In P(QD₁₆) the N-class of an element of order 8 is compound not critical. Recall

$$QD_{16} = \langle x, y | x^8 = y^2 = 1, x^y = x^3 \rangle$$

- In P(D₃₀) the N-class of an element of order 15 is plain critical. The other classes are plain not critical
- In $\mathcal{P}(S_4)$ the N-class of a 4-cycle is compound critical
- In P(QD₁₆) the N-class of an element of order 8 is compound not critical. Recall

$$QD_{16} = \langle x, y | x^8 = y^2 = 1, x^y = x^3 \rangle$$

- In P(D₃₀) the N-class of an element of order 15 is plain critical. The other classes are plain not critical
- In $\mathcal{P}(S_4)$ the N-class of a 4-cycle is compound critical
- In P(QD₁₆) the N-class of an element of order 8 is compound not critical. Recall

$$QD_{16} = \langle x, y | x^8 = y^2 = 1, x^y = x^3 \rangle$$

- In P(D₃₀) the N-class of an element of order 15 is plain critical. The other classes are plain not critical
- In $\mathcal{P}(S_4)$ the N-class of a 4-cycle is compound critical
- In P(QD₁₆) the N-class of an element of order 8 is compound not critical. Recall

$$QD_{16} = \langle x, y | x^8 = y^2 = 1, x^y = x^3 \rangle$$

Example $\mathcal{P}(D_{30})$

Example $\mathcal{P}(D_{30})$: plain and critical plain classes

Question

What do critical classes tell about structure and properties of the group?

Definition

 $x \in G$ is called

- critical if $[x]_{\mathbb{N}}$ is a critical class in $\mathcal{P}(G)$
- plain [compound] if $[x]_{\mathbb{N}}$ is a plain [compound] class in $\mathcal{P}(G)$
- \bullet The class $[1]_{\mathbb{N}} = \mathcal{S}$ is never critical \Rightarrow 1 is never critical
- If there exists $x \in G$ critical, then $S = \{1\}$ and $G \neq 1$
- $x \in G$ critical is compound iff o(x) > 1 is a prime power

Question

What do critical classes tell about structure and properties of the group?

- $x \in G$ is called
 - critical if $[x]_{\mathbb{N}}$ is a critical class in $\mathcal{P}(G)$
 - plain [compound] if $[x]_{\mathbb{N}}$ is a plain [compound] class in $\mathcal{P}(G)$
 - $\bullet \mbox{ The class } [1]_{\mathbb{N}} = \mathcal{S} \mbox{ is never critical } \Rightarrow 1 \mbox{ is never critical }$
 - If there exists $x \in G$ critical, then $S = \{1\}$ and $G \neq 1$
 - $x \in G$ critical is compound iff o(x) > 1 is a prime power

Question

What do critical classes tell about structure and properties of the group?

- $x \in G$ is called
 - critical if $[x]_{\mathbb{N}}$ is a critical class in $\mathcal{P}(G)$
 - plain [compound] if $[x]_{\mathbb{N}}$ is a plain [compound] class in $\mathcal{P}(G)$
 - The class $[1]_{\mathbb{N}} = \mathcal{S}$ is never critical \Rightarrow 1 is never critical
 - If there exists $x \in G$ critical, then $S = \{1\}$ and $G \neq 1$
 - $x \in G$ critical is compound iff o(x) > 1 is a prime power

- $G \neq 1$ a group is called
 - 1. critical if every $x \in G \setminus \{1\}$ is critical
 - 2. plain [compound] if every $x \in G \setminus \{1\}$ is plain [compound]
 - Critical groups represent an extreme situation.
 It is required that every non-trivial N-class is critical
 - We do not know immediately if critical groups exist
 - If they exist, in principle, there are three possibilities:
 - every non-trivial class is compound
 - every non-trivial class is plain
 - there exist both plain and compound non-trivial classes

- $G \neq 1$ a group is called
 - 1. critical if every $x \in G \setminus \{1\}$ is critical
 - 2. plain [compound] if every $x \in G \setminus \{1\}$ is plain [compound]
 - Critical groups represent an extreme situation.
 It is required that every non-trivial N-class is critical
 - We do not know immediately if critical groups exist
 - If they exist, in principle, there are three possibilities:
 - every non-trivial class is compound
 - every non-trivial class is plain
 - there exist both plain and compound non-trivial classes

- $G \neq 1$ a group is called
 - 1. critical if every $x \in G \setminus \{1\}$ is critical
 - 2. plain [compound] if every $x \in G \setminus \{1\}$ is plain [compound]
 - Critical groups represent an extreme situation.
 It is required that every non-trivial N-class is critical
 - We do not know immediately if critical groups exist
 - If they exist, in principle, there are three possibilities:
 - every non-trivial class is compound
 - every non-trivial class is plain
 - there exist both plain and compound non-trivial classes

- $G \neq 1$ a group is called
 - 1. critical if every $x \in G \setminus \{1\}$ is critical
 - 2. plain [compound] if every $x \in G \setminus \{1\}$ is plain [compound]
 - Critical groups represent an extreme situation.
 It is required that every non-trivial N-class is critical
 - We do not know immediately if critical groups exist
 - If they exist, in principle, there are three possibilities:
 - every non-trivial class is compound
 - every non-trivial class is plain
 - there exist both plain and compound non-trivial classes

A partition of $G \neq 1$ is a set \mathscr{P} of non-trivial subgroups of G, such that every element $x \in G \setminus \{1\}$ belongs to a unique subgroup in \mathscr{P} .

If $|\mathscr{P}| = 1$, the partition is called trivial

 The groups admitting a non-trivial partition are known (Kegel, Baer, Suzuki).
 Among them, we find the Frobenius groups. For instance D_{2n} for n odd

A partition of $G \neq 1$ is a set \mathscr{P} of non-trivial subgroups of G, such that every element $x \in G \setminus \{1\}$ belongs to a unique subgroup in \mathscr{P} .

If $|\mathscr{P}| = 1$, the partition is called trivial.

 The groups admitting a non-trivial partition are known (Kegel, Baer, Suzuki).
 Among them, we find the Frobenius groups. For instance D_{2n} for n odd

A partition of $G \neq 1$ is a set \mathscr{P} of non-trivial subgroups of G, such that every element $x \in G \setminus \{1\}$ belongs to a unique subgroup in \mathscr{P} . If $|\mathscr{P}| = 1$, the partition is called trivial.

• The groups admitting a non-trivial partition are known (Kegel, Baer, Suzuki).

Among them, we find the Frobenius groups. For instance, D_{2n} for *n* odd

A partition of $G \neq 1$ is a set \mathscr{P} of non-trivial subgroups of G, such that every element $x \in G \setminus \{1\}$ belongs to a unique subgroup in \mathscr{P} . If $|\mathscr{P}| = 1$, the partition is called trivial.

 The groups admitting a non-trivial partition are known (Kegel, Baer, Suzuki).
 Among them, we find the Frobenius groups. For instance, D_{2n} for n odd

A group admitting a non-trivial partition into cyclic subgroups of order a prime power with exponent at least 2 is critical

Proof.

- \mathcal{P} a partition of *G* by cyclic subgroups of order a prime power with exponent at least 2.
- $x \in G \setminus \{1\} \Rightarrow$ there exists a unique $U \in \mathcal{P}$ such that $x \in U$. We show that N[x] = U. It follows that

$$[x]_{\mathbb{N}} = U \setminus \{1\}$$

and

$$\widehat{[x]_{\mathbb{N}}} = U = [x]_{\mathbb{N}} \cup \{1\}.$$

A group admitting a non-trivial partition into cyclic subgroups of order a prime power with exponent at least 2 is critical

Proof.

- \mathcal{P} a partition of *G* by cyclic subgroups of order a prime power with exponent at least 2.
- $x \in G \setminus \{1\} \Rightarrow$ there exists a unique $U \in \mathcal{P}$ such that $x \in U$. We show that N[x] = U. It follows that

 $[x]_{\mathbb{N}} = U \setminus \{1\}$

and

$$\widehat{[x]_{\mathbb{N}}} = U = [x]_{\mathbb{N}} \cup \{1\}.$$

A group admitting a non-trivial partition into cyclic subgroups of order a prime power with exponent at least 2 is critical

Proof.

- \mathcal{P} a partition of *G* by cyclic subgroups of order a prime power with exponent at least 2.
- $x \in G \setminus \{1\}$ \Rightarrow there exists a unique $U \in \mathcal{P}$ such that $x \in U$. We show that N[x] = U. It follows that

 $[x]_{\mathbb{N}} = U \setminus \{1\}$

and

$$\widehat{[x]_{\mathbb{N}}} = U = [x]_{\mathbb{N}} \cup \{1\}.$$

A group admitting a non-trivial partition into cyclic subgroups of order a prime power with exponent at least 2 is critical

Proof.

- \mathcal{P} a partition of *G* by cyclic subgroups of order a prime power with exponent at least 2.
- $x \in G \setminus \{1\}$ \Rightarrow there exists a unique $U \in \mathcal{P}$ such that $x \in U$. We show that N[x] = U. It follows that

 $[x]_{\mathbb{N}} = U \setminus \{1\}$

and

$$\widehat{[x]_{\mathbb{N}}} = U = [x]_{\mathbb{N}} \cup \{1\}.$$

A group admitting a non-trivial partition into cyclic subgroups of order a prime power with exponent at least 2 is critical

Proof.

- \mathcal{P} a partition of *G* by cyclic subgroups of order a prime power with exponent at least 2.
- $x \in G \setminus \{1\}$ \Rightarrow there exists a unique $U \in \mathcal{P}$ such that $x \in U$. We show that N[x] = U. It follows that

$$[x]_{\mathbb{N}} = U \setminus \{1\}$$

and

$$\widehat{[x]_{\mathbb{N}}} = U = [x]_{\mathbb{N}} \cup \{1\}.$$

A group admitting a non-trivial partition into cyclic subgroups of order a prime power with exponent at least 2 is critical

Proof.

- \mathcal{P} a partition of *G* by cyclic subgroups of order a prime power with exponent at least 2.
- $x \in G \setminus \{1\}$ \Rightarrow there exists a unique $U \in \mathcal{P}$ such that $x \in U$. We show that N[x] = U. It follows that

$$[x]_{\mathbb{N}} = U \setminus \{1\}$$

and

$$\widehat{[x]_{\mathbb{N}}} = U = [x]_{\mathbb{N}} \cup \{1\}.$$

Frobenius groups

Proposition

Let $C_{p^a}=\langle x
angle$ and $C_{q^b}=\langle y
angle$ with p
eq q primes and $a,b\ge 2$ integers. Then

- (*i*) the group $C_{p^a} \rtimes C_{q^b}$ defined by $x^y = x^r$, with $2 \le r < p^a$ such that $p \nmid r$, is a Frobenius group with kernel C_{p^a} iff $q^b = |r| \mod p$
- (*ii*) the Frobenius groups in (*i*) exist iff $q^b | p 1$.
 - Note that $q^b \mid p 1, b \ge 2 \Rightarrow p \notin \{2, 3\}$
 - Since $4 = |7|_{mod 5}$, $C_{25} \times C_4$ defined by $x^y = x^7$ is Frobenius and thus, considering its partition by kernel and complements and using Proposition 1, we deduce that it is critical
 - \implies critical groups do exist. Try to find all of them!

Frobenius groups

Proposition

Let $C_{p^a}=\langle x
angle$ and $C_{q^b}=\langle y
angle$ with p
eq q primes and $a,b\ge 2$ integers. Then

- (*i*) the group $C_{p^a} \rtimes C_{q^b}$ defined by $x^y = x^r$, with $2 \le r < p^a$ such that $p \nmid r$, is a Frobenius group with kernel C_{p^a} iff $q^b = |r| \mod p$
- (*ii*) the Frobenius groups in (*i*) exist iff $q^b | p 1$.
 - Note that $q^b \mid p 1, b \ge 2 \Rightarrow p \notin \{2, 3\}$
 - Since $4 = |7|_{mod 5}$, $C_{25} \times C_4$ defined by $x^y = x^7$ is Frobenius and thus, considering its partition by kernel and complements and using Proposition 1, we deduce that it is critical
 - \implies critical groups do exist. Try to find all of them!

Frobenius groups

Proposition

Let $C_{p^a}=\langle x
angle$ and $C_{q^b}=\langle y
angle$ with p
eq q primes and $a,b\ge 2$ integers. Then

- (*i*) the group $C_{p^a} \rtimes C_{q^b}$ defined by $x^y = x^r$, with $2 \le r < p^a$ such that $p \nmid r$, is a Frobenius group with kernel C_{p^a} iff $q^b = |r| \mod p$
- (*ii*) the Frobenius groups in (*i*) exist iff $q^b | p 1$.
 - Note that $q^b \mid p 1, b \ge 2 \Rightarrow p \notin \{2, 3\}$
 - Since $4 = |7|_{mod 5}$, $C_{25} \times C_4$ defined by $x^y = x^7$ is Frobenius and thus, considering its partition by kernel and complements and using Proposition 1, we deduce that it is critical
 - \implies critical groups do exist. Try to find all of them!

Using the fact that a plain critical element cannot have prime order, we deduce immediately

Remark

There exists no plain critical group

However, it remains the possibility to have both plain and compound classes in a critical group...

Lemma 1

Let *G* be a critical group and *p* a prime dividing |G|. Then, every element of order *p* is the power of an element of order p^2 . In particular, $p^2 ||G|$.

Proposition 2 (B. P. 2024)

If G is a critical group, then G is compound critical

Lemma 1

Let *G* be a critical group and *p* a prime dividing |G|. Then, every element of order *p* is the power of an element of order p^2 . In particular, $p^2 ||G|$.

∜

Proposition 2 (B. P. 2024)

If G is a critical group, then G is compound critical

Lemma 1

Let *G* be a critical group and *p* a prime dividing |G|. Then, every element of order *p* is the power of an element of order p^2 . In particular, $p^2 ||G|$.

∜

Proposition 2 (B. P. 2024)

If G is a critical group, then G is compound critical

A surprising result

Main Theorem (B. P. 2024)

A group *G* is critical iff there exist *p*, *q* distinct primes, with *p* odd, and *a*, *b* \geq 2 integers such that *G* is a Frobenius group with kernel $F \cong C_{p^a}$ and complement $H \cong C_{q^b}$

Since we know how to get all such Frobenius groups, we know all the possible critical groups

- The proof is elaborate and involves the theory of partitions
- For instance, a result on the Hughes-Thompson subgroup of the Sylow subgroups of a critical group
Main Theorem (B. P. 2024)

A group *G* is critical iff there exist *p*, *q* distinct primes, with *p* odd, and *a*, *b* \geq 2 integers such that *G* is a Frobenius group with kernel $F \cong C_{p^a}$ and complement $H \cong C_{q^b}$

- The proof is elaborate and involves the theory of partitions
- For instance, a result on the Hughes-Thompson subgroup of the Sylow subgroups of a critical group

Main Theorem (B. P. 2024)

A group *G* is critical iff there exist *p*, *q* distinct primes, with *p* odd, and *a*, *b* \geq 2 integers such that *G* is a Frobenius group with kernel $F \cong C_{p^a}$ and complement $H \cong C_{q^b}$

- The proof is elaborate and involves the theory of partitions
- For instance, a result on the Hughes-Thompson subgroup of the Sylow subgroups of a critical group

Main Theorem (B. P. 2024)

A group *G* is critical iff there exist *p*, *q* distinct primes, with *p* odd, and *a*, *b* \geq 2 integers such that *G* is a Frobenius group with kernel $F \cong C_{p^a}$ and complement $H \cong C_{q^b}$

- The proof is elaborate and involves the theory of partitions
- For instance, a result on the Hughes-Thompson subgroup of the Sylow subgroups of a critical group

Main Theorem (B. P. 2024)

A group *G* is critical iff there exist *p*, *q* distinct primes, with *p* odd, and *a*, *b* \geq 2 integers such that *G* is a Frobenius group with kernel $F \cong C_{p^a}$ and complement $H \cong C_{q^b}$

- The proof is elaborate and involves the theory of partitions
- For instance, a result on the Hughes-Thompson subgroup of the Sylow subgroups of a critical group

Sylow subgroups of critical groups

• The Hughes-Thompson subgroup of a *p*-group *P*

$$H_{p}(P) := \langle x \in P : o(x) \neq p \rangle$$

Theorem (Kegel 1961)

A *p*-group *P* admits a non-trivial partition if and only if $H_p(P) \neq P$

Proposition 3 (B. P. 2024)

Let *G* be a critical group, *p* a prime dividing |G| and $P \in Syl_p(G)$. Then

•
$$H_p(P) = P$$

• *P* admits only the trivial partition

Sylow subgroups of critical groups

• The Hughes-Thompson subgroup of a *p*-group *P*

$$H_{
ho}(P) := \langle x \in P : o(x) \neq p \rangle$$

Theorem (Kegel 1961)

A *p*-group *P* admits a non-trivial partition if and only if $H_p(P) \neq P$

Proposition 3 (B. P. 2024)

Let *G* be a critical group, *p* a prime dividing |G| and $P \in Syl_p(G)$. Then

•
$$H_p(P) = P$$

• P admits only the trivial partition

Sylow subgroups of critical groups

• The Hughes-Thompson subgroup of a *p*-group *P*

$$H_{
ho}(P) := \langle x \in P : o(x) \neq p \rangle$$

Theorem (Kegel 1961)

A *p*-group *P* admits a non-trivial partition if and only if $H_p(P) \neq P$

Proposition 3 (B. P. 2024)

Let *G* be a critical group, *p* a prime dividing |G| and $P \in Syl_p(G)$. Then

•
$$H_p(P) = P$$

• P admits only the trivial partition

Sketch of the proof of the Main Theorem

• A critical group *G* is necessarily compound and thus an EPPO non-cyclic group

- The neighbourhood closures of the non-trivial N-classes give a partition \mathcal{P} of G into maximal cyclic subgroups which turn out to be the Sylow subgroups of G
- The theorem by Hölder, Burnside, Zassenhaus characterizing the finite groups with cyclic Sylow subgroups in the EPPO case, implies that π(G) = {p, q} with the *p*-Sylow subgroup normal
- The *q*-Sylow subgroup is selfnormalizing. By the presence of \mathcal{P} , this implies *G* to be a Frobenius group with the required structure

Sketch of the proof of the Main Theorem

- A critical group *G* is necessarily compound and thus an EPPO non-cyclic group
- The neighbourhood closures of the non-trivial N-classes give a partition \mathcal{P} of *G* into maximal cyclic subgroups which turn out to be the Sylow subgroups of *G*
- The theorem by Hölder, Burnside, Zassenhaus characterizing the finite groups with cyclic Sylow subgroups in the EPPO case, implies that π(G) = {p, q} with the *p*-Sylow subgroup normal
- The *q*-Sylow subgroup is selfnormalizing. By the presence of \mathcal{P} , this implies *G* to be a Frobenius group with the required structure

Sketch of the proof of the Main Theorem

- A critical group *G* is necessarily compound and thus an EPPO non-cyclic group
- The neighbourhood closures of the non-trivial N-classes give a partition \mathcal{P} of *G* into maximal cyclic subgroups which turn out to be the Sylow subgroups of *G*
- The theorem by Hölder, Burnside, Zassenhaus characterizing the finite groups with cyclic Sylow subgroups in the EPPO case, implies that π(G) = {p, q} with the *p*-Sylow subgroup normal
- The *q*-Sylow subgroup is selfnormalizing. By the presence of \mathcal{P} , this implies *G* to be a Frobenius group with the required structure

Thanks for your attention!

Thanks for your attention!

- D. Bubboloni, N. Pinzauti, Critical classes of power graphs and reconstruction of directed power graphs, arxiv/4620170 (2023)
- P. J. Cameron, *The power graph of a finite group, II*, Journal of Group Theory **13** (2010), 779–783
- P. J. Cameron, S. Ghosh, *The power graph of a finite group*, Discrete Mathematics **311** (2011), 1220–1222
- P. J. Cameron, *Graphs defined on groups*, International Journal of Group Theory, vol.**11** No. 2 (2022), 53–107