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Abstract
Let ⇤3(C) (= C27

) be the space of structure vectors of 3-dimensional algebras over C
considered as a G-module via the action of G = GL(3, C) on ⇤3(C) “by change
of basis”. We determine the complete degeneration picture inside the algebraic
subset As

3
of ⇤3(C) consisting of associative algebra structures via the corresponding

information on the algebraic subsets L3 and J3 of ⇤3(C) of Lie and Jordan algebra
structures respectively. This is achieved with the help of certain G-module endo-
morphisms �1, �2 of ⇤3(C) which map As

3
onto algebraic subsets of L3 and J3

respectively.
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1 Introduction

The notion of degeneration or contraction arises in various physi-
cal investigations. It was first introduced by Segal [22] and Inönü
and Wigner [10, 11] in the case of Lie groups and Lie algebras in
order to link certain properties of the classical mechanics, the rel-
ativistic mechanics and the quantum mechanics. The main idea in-
volved was to try to obtain certain properties of one of the physical
theories using the corresponding properties of another theory via a
kind of limiting process. It turned out that the classical mechanics
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can be studied as a limit case of quantum mechanics as the Planck
constant tends to zero. The symmetry group of relativistic mechanics
(the Poincaré group) can be viewed as a contraction of the symme-
try group of classical mechanics (the Galilean group) if we assume
that the light velocity c ! 1. The notion of degeneration also has
applications in other branches of mathematics.

The present paper is concerned with the investigation of degenera-
tions within certain classes of algebras. The first classification of com-
plex low-dimensional associative algebras has been made by B. Peirce
in 1870, see also [21]. Although this classification contains only the
so called “pure algebras”, the approach used by Peirce can be gener-
alized to more general classes of algebras. Complex associative 3-di-
mensional algebras with a unit were classified by P. Gabriel in [5].
Moreover, in [5] Gabriel also constructs all degenerations within the
class of 2-dimensional complex associative algebras and all degener-
ations within the classes of 3- and 4-dimensional complex associative
algebras with a unit. Modern classification of all complex 3-dimen-
sional associative algebras can be found in [4, 16].

Jordan algebras of dimension three over an algebraically closed
field of characteristic not equal to 2 or 3 are classified in [15], where
the authors also determine the irreducible components of the variety
of 3-dimensional Jordan algebras (see also [7] for a description of the
degenerations within the variety of complex 3-dimensional Jordan
algebras). The degenerations within the variety of complex 3-dimen-
sional Lie algebras have been constructed in [1, 18].

It will be convenient at this point to introduce some notation.
Let ⇤3(C) (= C27

) be the space of structure vectors of complex 3-di-
mensional algebras. We can consider ⇤3(C) as a CG-module via the
natural (linear) action of G = GL(3, C) on ⇤3(C) “by change of basis”.
We say that there is a degeneration from � to µ (with �,µ 2 ⇤3(C))
if µ belongs to the Zariski-closure of the G-orbit of �.

The aim of the present paper is to determine the complete degener-
ation picture inside the algebraic subset As

3
of ⇤3(C) consisting of the

associative algebra structures, via the corresponding information on
the algebraic subsets L3 and J3 of ⇤3(C) of Lie and Jordan algebras
respectively. In order to achieve this, we define certain CG-module
endomorphisms �1, �2 of ⇤3(C) which map As

3
onto algebraic sub-

sets of L3 and J3 respectively. A key role in our approach is played by
the explicit computation of the B-orbit (where B is a Borel subgroup
of G) of appropriate elements of ⇤3(C) and the consideration of the
intersection of the closure of these B-orbits with certain algebraic
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subsets of ⇤3(C) which played some part in [12] and [20]. Locating
various polynomials in the vanishing ideal of such orbits is one of
the important ingredients in some of our arguments. This approach
not only allowed us to rule out the possibility of degeneration in
certain cases where this was not easy to achieve via the various nec-
essary conditions for degeneration commonly used in literature, but
also provided a very practical means of constructing degenerations
in certain cases where a degeneration actually exists. The idea of ex-
plicitly computing an orbit and locating polynomials in the vanishing
ideal was already used in [13] and this led, as a by-product, to the
determination of various degenerations between 3-dimensional Lie
algebras over an arbitrary field.

We are indebted to the anonymous referee for bringing to our at-
tention the close connection (even though different terminology is
being used) of the degeneration process in the paper with PI-theory
and quiver theory, see [2, 3].

The paper is organized as follows: In Section 2 we include some
preliminary lemmas and discuss some of their applications via which
we give the flavour of the general techniques that will be used later
on in the paper. In Sections 3 and 4 we recall some necessary condi-
tions for degeneration and also the defining conditions for certain
algebraic sets which will play a key role in the paper. Moreover,
in Section 4 we discuss some basic properties of the maps �1 and �2.
In Section 5 we recall certain results regarding the varieties As

3
, L3

and J3 in the framework that has been built in the earlier sections.
Finally, in Section 6 which contains the main results of the paper, the
degeneration picture inside the variety As

3
is completely determined.

We remark that in [17], the authors aim to determine the irre-
ducible components of the variety As

3
. Their approach is based en-

tirely on the computation of various algebra invariants, which they
use together with certain necessary conditions for degeneration, in
order to rule out the possibility of degeneration between various alge-
bras. For the purposes of their work they do not include any construc-
tions of degenerations or comment further in the cases where the
possibility of degeneration is open. There are, however, some inaccu-
racies in their computations of certain algebra invariants, sometimes
leading to inaccuracies regarding the possibility of degeneration.
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2 Preliminaries

Throughout this paper, F denotes an arbitrary infinite field and n
a positive integer. We also let G = GL(n, F). We fix V to be a finite
dimensional F-vector space with dimF V = n. We call g an algebra
structure on V if g is an F-algebra having V as its underlying vector
space, so g is a not necessarily associative algebra which has multi-
plication defined via a suitable F-bilinear map

[ , ]g : V ⇥ V ! V : (u, v) 7! [u, v]g,

for u, v 2 V . We denote by A the set of all algebra structures on V .

If (u1, . . . ,un) is an ordered F-basis of V , the multiplication
in g = (V , [ , ]) 2 A is completely determined by the structure con-
stants ↵ijk 2 F (1 6 i, j, k 6 n) given by [ui,uj] =

P
n

k=1
↵ijkuk. We

will regard this set of structure constants ↵ijk as an ordered n3-tuple
by imposing an ordering on the ordered triples (i, j, k), for exam-
ple we could choose the lexicographic ordering. We call the orde-
red n3-tuple ↵ = (↵ijk) 2 Fn

3 the structure vector of g 2 A relative
to the F-basis (u1, . . . ,un) of V . Also denote by ⇤ (= Fn

3

) the set
of all � = (�ijk) 2 Fn

3 such that � occurs as the structure vector of
some g 2 A relative to some ordered basis o V . Clearly, the structure
vector � 2 ⇤ occurs as the structure vector of both g1, g2 2 A (rela-
tive to suitable F-bases of V) if, and only if, the algebra structures g1

and g2 are F-isomorphic (that is, there exists a bijective F-linear
map  : V ! V such that  ([x,y]g1) = [ (x), (y)]g2 , for all x,y 2 V).
In what follows, we will write g1 ' g2 to denote that two alge-
bras g1, g2 2 A are F-isomorphic.

The set ⇤ (= Fn
3

) forms an F-vector space via the usual (com-
ponentwise) addition and scalar multiplication. We will use sym-
bol abc to denote the member � (= (�ijk)) of ⇤ having �abc = 1
and all other �ijk equal to 0. We will refer to the F-basis of ⇤ con-
sisting of the n3 structure vectors of this form as the standard basis
of ⇤.

We can also regard A as an F-vector space: For g1, g2 2 A,
with g1 = (V , [ , ]1), g2 = (V , [ , ]2), and for ↵ 2 F, define

g1 + g2 = (V , [ , ]) 2 A
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where

[u, v] = [u, v]1 + [u, v]2 and ↵g1 = (V , [ , ]↵)

where [u, v]↵ = ↵[u, v]1, for all u, v 2 V .

For the rest of the paper it will also be convenient to fix an or-
dered F-basis (e1, . . . , en) of V which we will call the standard basis
of V .

We can then obtain an isomorphism of F-vector spaces ⇥ : A ! ⇤
where, for g 2 A we define ⇥(g) (2 ⇤) to be the structure vector of g
relative to the standard basis (e1, . . . , en) of V . Clearly,
for abc 2 ⇤ as above, we have that ⇥-1

(abc) is the member g of A
having [ea, eb]g = ec as its only non-zero commutation relation.

With the help of the isomorphism ⇥ : A ! ⇤ we define the map

⌦ : ⇤⇥G ! ⇤ : (�, g) 7! �g (� 2 ⇤, g = (gij) 2 G)

where �g 2 ⇤ is the structure vector of ⇥-1

(�) 2 A relative to
the F-basis (v1, . . . , vn) of V given by vj =

P
n

i=1
gijei, for 1 6 j 6 n

(in particular, g 2 G is the transition matrix from the basis (ei)
n

i=1
to

the basis (vi)
n

i=1
of V).

It is easy to observe that the map ⌦ defines a linear right action
of G on ⇤ and that the resulting orbits of this action correspond pre-
cisely to the isomorphism classes of n-dimensional F-algebras. Also
note that the map ⌦ gives ⇤ the structure of a right FG-module. The
orbit of � 2 ⇤ with respect to the above G-action will be denoted
by O(�), (so O(�) = �G).

Next, we recall briefly some basic facts on algebraic sets.
Let F[X] be the ring F[Xijk : 1 6 i, j, k 6 n] of polynomials in the in-

determinates Xijk (1 6 i, j, k 6 n) over F. For each � = (�ijk) 2 ⇤ we
can define the evaluation map ev� : F[X] ! F to be the unique ring
homomorphism F[X] ! F such that Xijk 7! �ijk, for 1 6 i, j, k 6 n,
and which is the identity on F. A subset W of ⇤ is algebraic (and thus
closed in the Zariski topology on ⇤) if there exists a subset S ✓ F[X]
such that

W = {� = (�ijk) 2 ⇤ : ev�(f) = 0, for all f 2 S}.

The Zariski closure of a subset Y of ⇤ will be denoted by Y. By a
closed subset of ⇤ we will always mean a Zariski-closed subset of ⇤.
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Finally, for U ✓ ⇤, the vanishing ideal I(U) of U is defined by

I(U) = {f 2 F[X] : ev�(f) = 0, for all � 2 U}.

Definition 1 Let g, h 2 A. We say that g degenerates to h

if ⇥(h) 2 O(⇥(g)). Moreover, we say that g properly degenerates to h

if ⇥(h) 2 O(⇥(g)) -O(⇥(g)). Observe that, for �,µ 2 ⇤, we have
that O(µ) ✓ O(�) whenever µ 2 O(�), see [12]. We write � ! µ
(and ⇥-1

(�) ! ⇥-1
(µ)) if for �,µ 2 ⇤ we have that µ 2 O(�). Simi-

larly, we write � 6! µ (and ⇥-1
(�) 6! ⇥-1

(µ)) if µ 62 O(�).

A well-known result is that g degenerates to the Abelian algebra
(the zero algebra), for all g 2 A. In this paper, we will consider (and
also compare) degenerations within certain classes of algebras.

For the rest of this section, we prove some preliminary lemmas
and discuss certain of their applications which involve techniques
that will be used in Section 6 where the main results of the paper are
proved.

Lemma 2 Let f : F ! ⇤ be a continuous function in the Zariski topology.
Also let U be a finite subset of F and let S = F -U. Then f(u) 2 f(S), for
all u 2 U.

Proof — The hypothesis that the function f is continuous ensures
that f(S) ✓ f(S). Hence, it suffices to show that S = F. Suppose, on
the contrary, that S $ F. Then S = F -U 0 where ? $ U 0 ✓ U which,
in turn, gives F = S [ U 0. This is a contradiction as S and U 0 are
both closed subsets of F with ? $ S $ F and ? $ U 0 $ F, and F
is irreducible (see, for example, [6, Example 1.1.13]). We conclude
that S = F. ut

Example 3 (an application of Lemma 2) Let n = 3 and suppose
that char F 6= 2. Let � = 221+ 331+ 2(321) 2 ⇤ and, for all t 2 F - {0},
let

g(t) =

0

@
-t 0 0
0 0 -1
0 t 1

1

A 2 GL(3, F).

Then �g(t) = 231 - 321 - t(221) with t 6= 0. Moreover, the map

f : F ! ⇤ (= F27
) : t 7! 231 - 321 - t(221),
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is continuous in the Zariski topology. Set S = F - {0}, it is clear
that f(S) ✓ �G. Invoking Lemma 2 we get that

231 - 321 (= f(0)) 2 f(S) ✓ �G.

Lemma 4 (compare with [8], Proposition 1.7) Let P be a parabolic
subgroup of G with F algebraically closed. Also let � 2 ⇤. Then

(�P)G = �G (= O(�)).

Proof — Assume the hypothesis. Clearly,

�P ✓ �G ✓ �G

so �P ✓ �G. It follows that (�P)G ✓ �G since �G is a union
of G-orbits by [6, Proposition 2.5.2 (a)]. Next, we let C = �P. Then C
is closed and it is also P-invariant, since C is a union of P-orbits
again by [6, Proposition 2.5.2 (a)]. Clearly, �G ✓ (�P)G = CG. More-
over, from [6, Corollary 3.2.12 (a)], CG (✓ ⇤) is a closed set. Conse-
quently, �G ✓ CG = (�P)G. We conclude that (�P)G = �G. ut

Remark 5 Let F be algebraically closed. Also let B be a Borel sub-
group of G. Then, let us note that:

(i) The conclusion of Lemma 4 still holds with B in the place of P
since every Borel subgroup of G is parabolic by Borel’s theorem,
see for example, [6, Theorem 3.4.3];

(ii) suppose U is a subset of ⇤ which is also a union of G-orbits.
If � 2 ⇤, we obtain U \ O(�) = ? whenever U \ �B = ?.
To prove this, suppose that U \O(�) 6= ? and ⌫ 2 U \O(�).
Since ⌫ 2 O(�), Lemma 4 ensures that ⌫ 2 O(µ), with µ 2 �B.
Hence µ 2 O(⌫). Since U is a union of G-orbits and ⌫ 2 U, we
have O(⌫) ✓ U and hence µ 2 U. This leads to U \ �B 6= ?,
since µ 2 U\ �B.

Example 6 (An application of Lemma 4) Let n = 3 and let F = C.
Also let � 2 F - {-1} and set � = 231 + �(321) 2 ⇤. We aim to show
that O(�)\K3 = {0}, where K3 (✓ ⇤) is given by

⇥-1
(K3) = {g = (V , [, ]) 2 A : [u,u] = 0V for all u 2 V}.

In order to establish this we will use Lemma 4.
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Let b 2 B where B is the Borel subgroup of all upper triangular
matrices in G = GL(n, F), so b = (bij) where bij = 0 whenever i > j,
and b11b22b33 6= 0. Then

�b =

⇣b22b33
b11

⌘
231 +�

⇣b22b33
b11

⌘
321 + (1+�)

⇣b23b33
b11

⌘
331.

Our first goal is to show that �B\K3 = {0}.
It follows easily from the expression for �b obtained above that

the following polynomials all belong to I(�B), the vanishing ideal of
the B-orbit �B :

X321 -�X231,X232,X233,X322,X323

and

X11i,X12i,X13i,X21i,X22i,X31i for 1 6 i 6 3.

Now let µ = (µijk) 2 (�B) \ K3. Since µ 2 K3, we must
have µiik = 0, for 1 6 i, k 6 3. Moreover, in view of the fact that
in ⇥-1

(µ) we have [e2 + e3, e2 + e3] = 0V , we also obtain
that µ321 + µ231 = 0. Since µ 2 �B and X321 - �X231 2 I(�B) we
must also have that µ321 - �µ231 = 0. This gives (1 + �)µ321 = 0
with � 6= -1, so µ321 = 0 = µ231. Finally, invoking the fact
that evµ(f) = 0 for each of the remaining polynomials f in I(�B)
listed above we conclude that µ = 0. Hence �B \ K3 = {0}.
Remark 5 (ii) with U = K3 - {0} now ensures that U \ O(�) = ?
and hence O(�) \K3 = {0} as required. This observation will turn
out to be useful in Section 6.

Remark 7 (i) An argument involving the B-orbit may not only be
used in order to rule out the possibility of degeneration as in Exam-
ple 6, but it may also be used in order to construct degenerations:
Keeping the hypothesis and notation of Example 6, define b(t) 2 B
for each t 2 F - {0} by setting

b23 = 1 and b22 = b33 = b11 = t

(arbitrary values can be assigned to b12 and b13). We then have
that �b(t) = t 231 + (�t) 321 + (1+�) 331, t 2 F - {0}. Let

f : F ! ⇤ : t 7! t 231 + (�t) 321 + (1+�) 331
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Also let S = F - {0}. Then f is a continuous map in the Zariski topol-
ogy satisfying f(S) ✓ O(�). Invoking Lemma 2 we get that

(1+�)331 (= f(0)) 2 f(S) ✓ O(�).

Our hypothesis that 1+� 6= 0 now ensures that 331 2 O(�).

(ii) The arguments in Example 3 and in item (i) of this remark also
provide a method of constructing 1-parameter contractions, if one is
working in the metric topology with F = C or R, by letting t ! 0.

Lemma 8 Let 1 6 r < n and let � (= (�ijk)) 2 ⇤ satisfy �ijk = 0
whenever 1 6 i, j 6 r and r+ 1 6 k 6 n. Define µ (= (µijk)) 2 ⇤ by

µijk =

8
>>>><

>>>>:

�ijk if (1 6 i, j 6 r and 1 6 k 6 n)
or (1 6 i 6 r and r+ 1 6 j, k 6 n) ,
or (1 6 j 6 r and r+ 1 6 i, k 6 n)

0 otherwise.

Then µ 2 O(�).

Proof — Assume the hypothesis. For each t 2 F - {0}, let g(t) 2 G
be the diagonal matrix having coefficient 1 in the first r entries and
coefficient t in the last n- r entries. Also let ⌫(t) (= (⌫ijk(t))) 2 ⇤ be
defined, for each t 2 F, by

⌫ijk(t) =

8
>>>>>>>><

>>>>>>>>:

�ijk if (1 6 i, j 6 r and 1 6 k 6 n)
or (1 6 i 6 r and r+ 1 6 j, k 6 n) ,
or (1 6 j 6 r and r+ 1 6 i, k 6 n)

t2 �ijk if r+ 1 6 i, j 6 n and 1 6 k 6 r,

t �ijk otherwise.

Then ⌫(t) = �g(t) for each t 2 F - {0}. We now define

f : F ! ⇤ : t 7! ⌫(t).

Then f is a continuous function in the Zariski topology. Moreover, by
setting S = F - {0}, we see that f(S) ✓ O(�). Finally, invoking Lem-
ma 2 we get that µ (= f(0)) 2 f(S) ✓ O(�). ut



50 N.M. Ivanova – C.A. Pallikaros

Remark 9 Keeping the notation and hypothesis of Lemma 8, we see
that b = F-span(e1, . . . , er) is in fact a subalgebra of ⇥-1

(�). More-
over, ⇥-1

(µ) is a “semi-direct” sum of the algebra b with an Abelian
ideal of dimension n- r.

Example 10 (An application of Lemma 8) Let n = 3 and let

� = 121 + 211 + 222 + 323 2 ⇤.

We aim to show that 213 2 O(�). It will be convenient to consider the
structure vector ⌫ = �g where

g =

0

@
1 0 0
0 1 0
1 0 -1

1

A 2 GL(3, F) .

We have ⌫ = 121 + 211 + 213 + 222 + 323 2 ⇤. Invoking Lemma 8
with r = 1 we get that 213 2 O(⌫) = O(�) (since O(⌫) = O(�)).

Finally, for this section, we include the following preparatory lem-
ma which we will need in Section 6.

Lemma 11 Let  2 C - {-2, 2} and let � = 221 + 331 + (321) 2 ⇤.
Also let ↵ 2 C be a root of the polynomial x2 + x+ 1 2 C[x]. Then, the
following are satisfied:

(i) ↵2 6= 1,

(ii) + 2↵ 6= 0,

(iii)
↵(↵+ 2)

+ 2↵
= -↵2,

(iv) 231 + -↵2(321) 2 O(�).

Proof — Assume the hypothesis.

(i) Since ↵ is a root of x2 + x+ 1, we get

x2 + x+ 1 = (x-↵)(x-�)

for some � 2 C with ↵� = 1. In particular � is also a root
of x2 + x+ 1 and ↵ 6= 0, � 6= 0. Moreover, ↵ 6= � since the roots
of the polynomial x2 + x+ 1 over C are given by

1

2
(-±

p
2 - 4)
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and 2 6= 4 by assumption. If ↵2 = 1, we would get

↵ = ↵(↵�) = ↵2� = �

which is a contradiction. We conclude that ↵2 6= 1.

(ii) From ↵2 + ↵ + 1 = 0 we obtain  = ↵-1
(-1 - ↵2) (recall

that ↵ 6= 0). Hence

+ 2↵ = ↵-1
(-1-↵2 + 2↵2) = ↵-1

(-1+↵2) 6= 0,

since ↵2 6= 1 from item (i) of this lemma.

(iii) From item (ii) we get, ↵(↵+ 2) = ↵(-1- ↵2 + 2) = ↵(1- ↵2).
Hence,

↵(↵+ 2)

+ 2↵
=

↵(1-↵2)

↵-1(-1+↵2)
= -↵2.

(iv) Let

g =

0

@
+ 2↵ 0 0

0 ↵ 1
0 1 ↵

1

A 2 M3(C).

Clearly g 2 GL(3, C) since det(g) = (+ 2↵)(↵2 - 1) 6= 0. Then

�g = 231 +
↵(↵+ 2)

+ 2↵
(321) = 231 + -↵2(321).

Hence, 231 + -↵2(321) 2 O(�) as required.

The proof is complete. ut

3 Necessary conditions for degeneration

Necessary conditions in the study of degenerations have been used
extensively by many authors. In this section we recall certain neces-
sary conditions for degeneration which we will need later on.

Definition 12 Let g = (V , [ , ]) 2 A. We define the following F-vec-
tor spaces:
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(i) annR g = {c 2 V : [a, c] = 0V for all a 2 V}, (the right annihilator
of g),

(ii) annL g = {c 2 V : [c,a] = 0V for all a 2 V}, (the left annihilator
of g),

(iii) Der(↵,�,�) g = {� 2 EndF V : ↵�[u, v] = �[�(u), v] + �[u,�(v)]
for all u, v 2 V}, for each ordered triple (↵,�,�) 2 F3, and

(iv) Der g = Der(1,1,1) g (the Lie algebra of derivations of g).

In the following proposition we collect some well-known facts re-
garding degenerations. We supply the proofs for completeness.

Proposition 13 Let g, h 2 A and suppose g degenerates to h. Then, the
following are satisfied:

(i) dimF annR g 6 dimF annR h.

(ii) dimF annL g 6 dimF annL h.

(iii) dimF Der(↵,�,�) g 6 dimF Der(↵,�,�) h.

(iv) If F = C and g properly degenerates to h, then

dimF Der g < dimF Der h.

Proof — For each � = (�ijk) 2 ⇤, let ec(�) 2 Fn⇥n
2 be

the (n⇥ n2
)-matrix over F whose columns are precisely all the vec-

tors of the form (�i1j, �i2j, . . . , �inj)
tr, for 1 6 i, j 6 n (in some fixed

order).

(i) Define
 (�) : F1⇥n ! Fn⇥n

2

: b↵ 7! b↵ec(�),

b↵ 2 F1⇥n (the space of (1⇥ n)-matrices over F). Then  (�) is
an F-linear map and it is easy to see that
for ↵1, . . . ,↵n 2 F we have ↵1e1 + . . .+ ↵nen 2 annR⇥

-1
(�)

if, and only if, (↵1, . . . ,↵n) 2 ker (�). Hence,

dimF(annR⇥
-1

(�)) = dimF ker (�)
= n- dimF im (�)
= n- rankec(�).
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It follows that rankec(�) = rankec(µ) whenever µ 2 O(�) since
the algebras ⇥-1

(�) and ⇥-1
(µ) are isomorphic (and

so dimF annR⇥
-1

(�) = dimF annR⇥
-1

(µ)). We thus have that
for each non-negative integer t the set {⌫ 2 ⇤ : rankec(⌫) 6 t}
is a Zariski-closed set in ⇤ which is also a union of orbits
(compare, for example, with [12, Remark 3.15]). We conclude
that rankec(⌫) 6 rankec(�) whenever ⌫ 2 O(�). This leads to
dimF annR⇥

-1
(⌫) > dimF annR⇥

-1
(�) whenever ⌫ 2 O(�) as

required.

(ii) We can use same argument as in item (i) of this proposition,
but in the place of the matrix ec(�) we now consider the ma-
trix ea(�) 2 Fn⇥n

2 where the columns of ea(�) are precisely the
vectors of the form (�1ij, �2ij, . . . , �nij)

tr, for 1 6 i, j 6 n (see
also the proof of [12, Lemma 3.16]).

(iii) Let � (= (�ijk)) 2 ⇤ and let � 2 EndFV . Also let ↵, � and �
be (not necessarily distinct) elements of F. For 1 6 r, s 6 n,
we denote by �(r,s) (2 F) the coefficient of er when we ex-
press �(es) as a F-linear combination of the elements of the
standard basis (e1, . . . , en) of V . Suppose further that the al-
gebra ⇥-1

(�) has multiplication given by [ , ]. Recall that in
Section 2 we have imposed an ordering on the n3 ordered
triples (i, j, k), 1 6 i, j, k 6 n. For the discussion that follows
it will also be convenient to impose an ordering on the n2 or-
dered pairs (r, s) 1 6 r, s 6 n. Via this ordering we can consider
the row-matrix b� 2 F1⇥n

2 whose coefficients are the �(r,s),
for 1 6 r, s 6 n. The map � 7! b� from EndFV to F1⇥n

2 is then
an isomorphism of F-spaces.

By expanding (for 1 6 i, j 6 n) the expression

↵�([ei, ej])-�[�(ei), ej]- �[ei,�(ej)] (2 V)

as a linear combination of the elements of the standard ba-
sis (e1, . . . , en) of V , we can see that the coefficient
of ek (1 6 k 6 n) in this expression is given by

nX

r,s=1

�(r,s)�
(i,j,k)
(r,s) (2 F)
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for some coefficients �(i,j,k)
(r,s) 2 F which depend on i, j, k, r and s.

The coefficients �
(i,j,k)
(r,s) are indeed expressions of the

form
P
⇠abc�abc with the only allowed values of the

elements ⇠abc of F coming from the list 0, ↵, �, � (for ex-
ample, when n = 3, we obtain that �(1,2,1)

(1,1) = ↵�121 - ��121

and �(1,2,1)
(1,2) = ↵�122 - ��111).

For each � 2 ⇤ we can now define matrix ed(�) 2 Fn
2⇥n

3 as
the matrix having the n5 elements �(i,j,k)

(r,s) as its coefficients: the

column-index (respectively, row-index) of the coefficient �(i,j,k)
(r,s)

in the matrix ed(�) is given by the ordering we have fixed on
the triples (i, j, k) (respectively, the pairs (r, s)). In particular,
the coefficients in the (i, j, k)-column of ed(�) are the �(i,j,k)

(r,s) ,
for 1 6 r, s 6 n.

It is then easy to observe that � 2 Der(↵,�,�)⇥
-1

(�) if, and
only if, b� ed(�) = 0

1⇥n3 , the (1 ⇥ n3
) zero matrix. It follows

that dim Der(↵,�,�)⇥
-1

(�) = n2
- rank ed(�) (since this equals

to the dimension of the kernel of the linear map bu 7! bu ed(�)
from F1⇥n

2 to F1⇥n
3). Comparing, for example, with [12, Re-

sult 3.13 and Remark 3.15] we see that the set

{µ 2 ⇤ : rank ed(µ) 6 rank ed(�)}

is Zariski-closed. Now, note that rank ed(�) = rank ed(� 0
) when-

ever � 0 2 O(�), since ⇥-1
(�) ' ⇥-1

(� 0
). Hence,

O(�) ✓ {µ 2 ⇤ : rank ed(µ) 6 rank ed(�)}.

It follows that

dim Der(↵,�,�)⇥
-1

(µ) > dim Der(↵,�,�)⇥
-1

(�)

whenever µ 2 O(�).

(iv) The statement follows, for example, by combining [6, Propo-
sitions 1.5.2 and 2.5.3] and [9, Proposition at p.60 and Corol-
lary at p.88] (see also [19, Example 2, p. 23]).
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The proof is complete. ut
Clearly, if for some � 2 ⇤ we have O(�) ✓ S, with S an algebraic

subset of ⇤, then µ 2 S, for all µ 2 O(�). In the next section, we
recall from [12] and [20] some particular algebraic subsets of ⇤ which
played a key role in those papers and which will also play some part
in the present paper.

4 Certain algebraic subsets of ⇤ and
the maps �1, �2

Following the notation in [20], we define the subsets K, C, M⇤

and M⇤⇤ of ⇤ by

⇥-1
(K) = {g = (V , [ , ]) 2 A : [u,u] = 0V for all u 2 V},

⇥-1
(C) = {g = (V , [ , ]) 2 A : [u, v] = [v,u] for all u, v 2 V},

⇥-1
(M⇤

) = {g = (V , [ , ]) 2 A : [u, v] 2 F-span(u, v) for all u, v 2 V},

⇥-1
(M⇤⇤

) = {g = (V , [ , ]) 2 A : [u,u] 2 F-span(u) for all u 2 V}.

Then (see [20, Sections 3.1, 5.1 (Eq. (7)) and 6.1 (Eq. (12))]) we have

K = {(�ijk) 2 ⇤ : �iii = �iij = �ijk + �jik = �iji + �jii = 0},
C = {(�ijk) 2 ⇤ : �ijj = �jij and �ijk = �jik},

M⇤
=

�
(�ijk) 2 ⇤ :

�iij = �ijk = 0, �ijj = �ikk, �jij = �kik
and �iii = �ijj + �jij

�
,

M⇤⇤
= {(�ijk) 2 ⇤ : �ijk + �jik = �iij = 0 and �iii = �ijj + �jij},

where the following convention is in force for the description of the
last four sets: Different letters in the subscripts for the components of
a structure vector represent different numerical values, but all such
choices of subscripts are allowed. In particular, K, C, M⇤ and M⇤⇤

are Zariski-closed subsets of ⇤. Moreover, these sets are all unions of
orbits with respect to the action of G on ⇤ we are considering.

We also define the subsets B and T of ⇤ by

⇥-1
(B) = {g = (V , [ , ]) 2 A : [[u, v],w] = 0V for all u, v,w 2 V},

⇥-1
(T) = {g = (V , [ , ]) 2 A : trace adu = 0 for all u 2 V},
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where adu : V ! V : v 7! [u, v], (v 2 V) is the adjoint map. Then, (see
for example [12, Remark 2.7 and Remark 4.12]), we have that

B = {� = (�ijk) 2 ⇤ :

nX

l=1

�ijl�lkm = 0 for 1 6 i, j, k,m 6 n}

and

T = {� = (�ijk) 2 ⇤ :

nX

j=1

�ijj = 0 for 1 6 i 6 n}.

In particular, both B and T are algebraic subsets of ⇤ which are also
unions of orbits.

Finally, we introduce the subsets As, L and J of ⇤ by

⇥-1
(As

) = {g 2 A : [[u, v],w] = [u, [v,w]] for all u, v,w 2 V},

⇥-1
(L) =

�
g 2 ⇥-1

(K) :

[[u, v],w] + [[v,w],u] + [w,u], v] = 0V

for all u, v,w 2 V

�
,

⇥-1
(J) = {g 2 ⇥-1

(C) : [[[u,u], v],u] = [[u,u], [v,u]] for all u, v 2 V},

which correspond respectively to the sets of Associative, Lie and Jor-
dan algebra structures in A.

The sets As, L and J of A are also algebraic and consist of unions
of orbits. For defining conditions of these sets via polynomial equa-
tions see for example [14, Proposition 1 at p.4] for the sets As and L,
and [15, Section 2] for J.

These last three sets will be of central importance in this paper
as our goal is to determine the degeneration picture in As for the
special case n = 3 and F = C via the degeneration pictures in L
and J. In order to achieve this we will need first to introduce certain
maps �1, �2 satisfying �1(A

s
) ✓ L and �2(A

s
) ✓ J. For this we

need char F 6= 2 and we therefore make this assumption for the rest
of this section.

For an algebra g = (V , [ , ]) 2 A, the opposite algebra eg has prod-
uct f[ , ] defined by ][u, v] = [v,u], for all u, v 2 V . If ⇥(g) = �

with � = (�ijk), we will write ⇥(eg) = e� with e� = (e�ijk). Obvi-

ously (
ee�) = � and e�ijk = �jik, for all i, j, k. In [20, Lemma 3.2] it
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is shown that (e�)g = (f�g), for all � 2 ⇤ and for all g 2 G.
We now define the maps �, �1 and �2 : ⇤ ! ⇤, respectively, by

� 7! e�, � 7! 1

2
(�- e�), and � 7! 1

2
(�+ e�)

Clearly the maps �, �1 and �2 are regular and hence continuous in
the Zariski topology. Moreover, we have

�(As
) = As, �(L) = L, �(J) = J,�1(A

s
) ✓ L, and �2(A

s
) ✓ J.

We collect some further observations regarding the maps �, �1

and �2 in the following remark.

Remark 14 Let  be any of the maps �, �1 or �2. Also let � 2 ⇤.

(i) It follows from the fact that (e�)g = (f�g), for any g 2 G, and the
linearity of the G-action we are considering, that  is
an FG-module endomorphism of ⇤ (see [20, Lemma 3.2]). In
particular,

 (O(�)) = { (�g) : g 2 G} = { (�)g : g 2 G} = O( (�)).

(ii) If S is subset of ⇤ which is a union of G-orbits, then the sub-
set  -1

(S) of ⇤ is also a union of G-orbits since, for g 2 G
and ⌫ 2  -1

(S), we have  (⌫g) =  (⌫)g 2 S.

(iii) From the continuity of  we get

 (O(�)) ✓ O( (�)) (=  (O(�))).

(iv) Since � is invertible with �-1
= �, we must have

� (O(�)) = O(�(�)) (= O(e�)).

(v) If F is algebraically closed and e� 62 O(�), then e� 62 O(�)

(and � 62 O(e�)). To see this, note that if e� 2 O(�)-O(�), then

� (= �(e�)) 2 �(O(�)) = O(e�),

which is impossible as orbits are open in their closure (see, for
example, [6, Proposition 2.5.2 (a)]).
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5 3-Dimensional complex associative, Lie and
Jordan algebras

We fix F = C and n = 3 for the rest of the paper. We also denote by K
the subset of C given by

�
x+ yi : x,y 2 R with x > 0 or (x = 0 and y > 0)

�
.

a Non-zero commutation relations relative
to the standard basis of V

�1 �2

a0 — a0 a0

l1 e2e3 = -e3e2 = e1 l1 a0

c1 e3e3 = e1 a0 c1

c2 e1e1 = e1, e1e2 = e2e1 = e2, e1e3 = e3e1 = e3 a0 c2

c3 e2e2 = e1, e3e3 = e1 a0 c3

c4 e1e1 = e1 a0 c4

c5 e1e1 = e2, e1e2 = e2e1 = e3 a0 c5

c6 e1e1 = e1, e1e2 = e2e1 = e2, e1e3 = e3e1 = e3, e2e2 = e3 a0 c6

c7 e1e1 = e1, e1e2 = e2e1 = e2 a0 c7

c8 e1e1 = e1, e2e2 = e3 a0 c8

c9 e1e1 = e1, e2e2 = e2, e1e3 = e3e1 = e3 a0 c9

c10 e1e1 = e1, e2e2 = e2 a0 c10

c11 e1e1 = e1, e2e2 = e2, e3e3 = e3 a0 c11

a1 e1e1 = e1, e1e2 = e2e1 = e2, e1e3 = e3e1 = e3,
e2e3 = -e3e2 = e2, e2

3
= e1

m4 J2

a2 e2e3 = e1 l1 c3

a3() e2e2 = e1, e3e2 = e1, e3e3 = e1, where  2 K

(different values of  2 K correspond to non-isomorphic algebras)

l1 c3

a4 e3e1 = e1, e3e2 = e2, e3e3 = e3 m2 J5
a5 e1e3 = e1, e2e3 = e2, e3e3 = e3 m2 J5
a6 e2e1 = e1, e2e2 = e2, e3e2 = e3 m3 J5
a7 e1e2 = e2e1 = e1, e2e2 = e2, e3e2 = e3 m4 J4
a8 e1e2 = e2e1 = e1, e2e2 = e2, e2e3 = e3 m4 J4
a9 e3e2 = e2, e3e3 = e3 m4 J8
a10 e2e3 = e2, e3e3 = e3 m4 J8
a11 e1e1 = e1, e3e2 = e2, e3e3 = e3 m4 J3
a12 e1e1 = e1, e2e3 = e2, e3e3 = e3 m4 J3

Table 1. Non-isomorphic 3-dimensional complex associative algebras.
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Comments on Table 1

(i) In the first column of Table 1 we list a complete set of non-iso-
morphic 3-dimensional complex associative algebras based on
the classification obtained in [16].

(ii) Entry g (with g 2 A) in the column headed �1 (respectively, �2)
and in the row corresponding to algebra a 2 ⇥-1

(As
) means

that �1(⇥(a)) 2 O(⇥(g)) (respectively, �2(⇥(a)) 2 O(⇥(g))).

(iii) A complete list of non-isomorphic algebras g 2 A with ⇥(g)
lying in the set �1(A

s
) consists of the two associative Lie alge-

bras (the Abelian algebra a0 and the Heisenberg algebra l1) and
the following three non-associative Lie algebras (only non-zero
commutation relations are listed):

m2 : e1e3 = -e3e1 = e1, e2e3 = -e3e2 = e2,
m3 : e1e3 = -e3e1 = e1, e2e3 = -e3e2 = -e2,
m4 : e1e2 = -e2e1 = e1.

In Picture 1 below we include all possible degenerations in-
side the set �1(A

s
) (✓ L) as these were determined in [1, 18]. In

particular, the results in [1, 18] show that the set �1(A
s
) is an

algebraic subset of ⇤. We remark here that although the argu-
ments in [1, 18] are made with respect to the metric topology (as
the authors are interested in contractions of Lie algebras), they
carry out easily to arguments in the Zariski topology (compare
with Example 3 and Remark 7 (ii) of the present paper). In fact,
it was shown in [8] that the closures in the Zariski topology
and in the standard topology of the orbit of a point of an affine
variety over C under the action of an algebraic group coincide.

m3 m4

m2 l1

a0

Picture 1

(iv) A complete list of all non-isomorphic algebras g 2 A
with ⇥(g) 2 �2(A

s
) consists of the associative commutative
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algebras a0 and ci (1 6 i 6 11) together with the following non-
associative Jordan algebras (only non-zero commutation rela-
tions are listed):

J2 : e1e1 = e1, e2e2 = e2, e1e3 = e3e1 =
1

2
e3, e2e3 = e3e2 =

1

2
e3,

J3 : e1e1 = e1, e2e2 = e2, e1e3 = e3e1 =
1

2
e3,

J4 : e1e1 = e1, e1e2 = e2e1 =
1

2
e2, e1e3 = e3e1 = e3,

J5 : e1e1 = e1, e1e2 = e2e1 =
1

2
e2, e1e3 = e3e1 =

1

2
e3,

J8 : e1e1 = e1, e1e3 = e3e1 =
1

2
e3.

c11

c9 c10

J2 c6 c7 J3 c8

J8 J4 c5

c2 c3 c4

c1 J5

a0
Picture 2

In Picture 2 we include all possible degenerations inside the
set �2(A

s
) (✓ J) as these were determined in [15, 7]. In particu-

lar, the results of those papers show that �2(A
s
) is an algebraic

subset of J.

(v) In Table 2 below we collect information on certain algebra in-
variants, computed for some of the algebras listed in Table 1.
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a a0 a2 a3() l1 c1 c3 a7 a8 a9 a10 a11

dim annLa 3 2 1 1 2 1 0 1 2 1 1
dim annRa 3 2 1 1 2 1 1 0 1 2 0

dim Der 9 4 4 6 5 4 3 3 3 3 2
dim Der(1,0,1) 9 5 3 3 5 3 2 5 5 3 5

Table 2 (with  2 K).

Notation At this point it will be convenient to introduce some more
notation.

(i) We will say that two algebras g1, g2 2 A form a {g,eg}-pair
if ⇥(fg2) 2 O(⇥(g1)) but ⇥(g2) 62 O(⇥(g1)). In such a case we
also have that ⇥(fg1) 2 O(⇥(g2)) and ⇥(g1) 62 O(⇥(g2)). Note
that, for �,µ 2 ⇤, we have that �(µ) 2 O(�) if, and only
if, � 2 O(�(µ)) (= �(O(µ))), and this last statement holds if,
and only if, �(�) 2 O(µ) since �2

= id⇤.

(ii) For the sake of simplicity, in various occasions in the rest of the
paper we will use, for g 2 A, symbol go to mean O(⇥(g)), in
particular, g

o ✓ ⇤. In this notation we have a
o

0
= a

o

0
= {0} ✓ ⇤.

In the following remark we collect some observations regarding
the algebras in Table 1.

Remark 15 (i) The following is a complete (up to isomorphism)
list of pairs of algebras from Table 1 that form {g,eg}-pairs:

{a4, a5}, {a7, a8}, {a9, a10}, {a11, a12}.

(ii) We have the following intersections of As with some of our
familiar algebraic sets:

As \K = {0}[ l
o

1
,

As \M⇤⇤
= {0}[ a

o

4
[ a

o

5
[ a

o

6
[ l

o

1
,

As \M⇤
= {0}[ a

o

4
[ a

o

5
,

As \ C = {0}[
⇣ [

16i611

c
o

i

⌘
,
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As \ T = {0}[ l
o

1
[ c

o

1
[ c

o

3
[ c

o

5
[ a

o

2
[
⇣ [

2K

a3()
o

⌘
,

As \ (C\ T) = {0}[ c
o

1
[ c

o

3
[ c

o

5
,

As \B = {0}[ l
o

1
[ c

o

1
[ c

o

3
[ a

o

2
[
⇣ [

2K

a3()
o

⌘
.

By setting

eT = �(T)
⇣
= {� = (�ijk) 2 ⇤ :

nX

j=1

�jij = 0 for all 1 6 i 6 n}
⌘

,

we see that As \ T = As \ eT and that As \B ✓ As \ (T \ eT).

(iii) (a) Note that ⇥(l1) 2 O(⌘) and ⇥(c1) 2 O(�) with

⌘ = 123 - 213 and � = 112

Also recall from [12] that

O(⌘) = {0}[O(⌘) and O(�) = {0}[O(�).

(b) If � 2 M⇤⇤
-M⇤, then ⌘ 2 O(�) (see [12, Lemma 4.4]).

(c) If � 2 ⇤-M⇤⇤, then � 2 O(�) (see [12, Lemma 5.4]).

(iv) Clearly C \ As
= {� 2 As

: � = e�}, so for µ 2 C \ As we
have that µ = �2(µ) 2 J. Invoking the fact that J ✓ C, we
get C \ As

= J \ As. It follows that the degeneration picture
inside the algebraic subset C \As of As coincides with the de-
generation picture inside the algebraic subset J\As of J.

6 Degenerations of 3-dimensional complex
associative algebras

We continue with our hypothesis that F = C and n = 3. Also recall
that K =

�
x+ yi : x,y 2 R with x > 0 or (x = 0 and y > 0)

 
✓ C.
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Our aim in this section is to determine the complete degeneration
picture inside As. Our general plan in order to achieve this is to make
use of the observations in Remark 15 together with sets of the form

T = �-1

1
(T1)\�-1

2
(T2)\As,

where the sets T1, T2 (T1 ✓ L, T2 ✓ J) are algebraic sets which are
also unions of G-orbits under the action of G on ⇤ we are consider-
ing. Since the maps �1 and �2 are continuous in the Zariski topol-
ogy, we can see that such sets T are also algebraic and, moreover, Re-
mark 14 (ii) ensures that they consist of a union of G-orbits (note
that the intersection of subsets of ⇤ which are unions of G-orbits, if
it is non-empty, is also a union of G-orbits). In order to obtain the
complete degeneration picture inside As, we will need to employ ad-
ditional arguments, depending for example on necessary conditions
for degeneration or arguments using the ideas involved in the pre-
liminary lemmas in Section 2 of this paper.

The process will be completed through a sequence of steps. The
corresponding sets T1 and T2 at each step of the process are chosen by
“filtering out” closed sets as we go from bottom to top in Pictures 1
and 2 respectively.

Step 1 We consider the set

S1 = �-1

1
({0}[m

o

2
)\�-1

2
({0}[ Jo

5
)\As

= {0}[ a
o

4
[ a

o

5
= As \M⇤,

a closed set which is also a union of orbits from the above discus-
sion. From Remark 14 (v) and Remark 15 (i),(ii) we get that both the
sets {0} [ a

o

4
and {0} [ a

o

5
are closed (alternatively, we could use the

results in [12]).

Step 2 We consider the set

S2 = �-1

1
({0}[ l

o

1
[m

o

3
)\�-1

2
({0}[ Jo

5
)\As

= {0}[ l
o

1
[ a

o

6
✓ As \M⇤⇤.

From Remark 15 (ii),(iii) we get that ⇥(l1) 2 a
o

6
since

⇥(a6) 2 M⇤⇤
-M⇤.
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Note that

As \M⇤⇤
= ({0}[ a

o

4
[ a

o

5
)[ ({0}[ l

o

1
[ a

o

6
),

a union of two closed sets. Moreover, the set {0} [ l
o

1
is closed, again

by Remark 15 (iii).

Step 3 We consider the set

S3 = �-1

1

�
{0}[ l

o

1

�
\�-1

2

�
{0}[ c

o

1
[ c

o

3

�
\As

= {0}[ l
o

1
[ c

o

1
[ c

o

3
[ a

o

2
[
⇣ [

2K

a3()
o

⌘

= As \B ✓ As \ T.

The sets {0} [ l
o

1
(= As \K) and {0} [ c

o

1
[ c

o

3
(= As \ B \ C \ T) are

both closed, see Remark 15 (ii). Hence {0} [ l
o

1
[ c

o

1
[ c

o

3
is a closed

subset of As. Moreover, from Remark 15 (ii),(iii) we get that c3, a2
and a3(), for all  2 K, all degenerate to c1 since ⇥(c1) 2 O(�).

From the information about dim annL in Table 2, we also get
that ⇥(a) 62 a

o

2
, for all a 2 {l1, c3}[ {a3() :  2 K}. In particular,

a
o

2
= {0}[ c

o

1
[ a

o

2
.

Also from Table 2, looking now at dim Der of the corresponding
algebras, we see that a3() 6! a2 and a3() 6! c3, for all  2 K, and,
moreover, there is no degeneration between any two members of the
infinite family a3() with  2 K.

Next, we investigate whether there is a degeneration from a3()
to l1, at least for some  2 K, and for this it will be convenient to
consider the cases  = 2 and  2 K - {2} separately.
(a) We assume  = 2: Let

� = 221 + 331 + 2(321) 2 ⇤.

Then � = ⇥(a3()), so in Example 3 we established, in fact,
that a3() ! l1 in the case  = 2.
(b) We assume  2 K - {2}: Let

⌫ = ⇥(a3()) = 221 + 331 + (321) 2 ⇤.
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Also let ↵ 2 C be a root of the polynomial x2 + x+ 1 2 C[x]. Com-
paring with Lemma 11, we see that our hypothesis on  ensures
that ↵2 6= 1 and that � = 231 +-↵2(321) 2 O(⌫). Invoking now Ex-
ample 6 with � = -↵2 (6= -1) we get that O(⌫)\K = O(�)\K = {0}.
We conclude that a3() 6! l1 whenever  2 K - {2} (to see this it
might be useful to recall that O(⌫) ✓ As since ⌫ 2 As, and also
that K\As

= {0}[ l
o

1
).

This completes the degeneration picture inside the closed set S3:

a6 a3( = 2) a3( 6= 2) c3 a2

a4 l1 c1 a5

a0

Picture 3 (with  2 K)

Step 4 We consider the set

S4 = �-1

1

�
{0}[ l

o

1
[m

o

4

�
\�-1

2

�
{Jo
8
[ c

o

3
[ c

o

1
[ {0}}

�
\As

= a
o

9
[ a

o

10
[ a

o

2
[ c

o

3
[ c

o

1
[ l

o

1
[ {0}[

⇣ [

2K

a3()
o

⌘
.

We can make the following observations.

(i) We know from Remark 15(i) that {a9, a10} is a {g, eg}-pair,
so a9 6! a10 and a10 6! a9 in view of Remark 14 (v). This
can also be seen by either considering dim annL and dim annR

or dim Der of these algebras (see Table 2).

(ii) From Step 3, the subset

S3 = a
o

2
[ c

o

3
[ c

o

1
[ l

o

1
[ {0}[

⇣ [

2K

a3()
o

⌘

of S4 is closed and we know everything about the degenera-
tions between the members of S3. Hence, in order to determine
all possible degenerations between the members of the closed
set S4 it suffices to determine all possible degenerations from a9

(or a10) to each of the members of S3.
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(iii) Let �,µ 2 ⇤ with

� = 322 + 333 and µ = 232 + 333 (= e�)

Then � = ⇥(a9) and µ = ⇥(a10) (see Table 1).
For t 2 C - {0}, define matrices b1(t),b2(t) 2 GL(3, C) as fol-
lows

b1(t) =

0

@
t 0 -1
0 0 1
0 t 0

1

A and b2(t) =

0

@
t -1 0
0 1 0
0 0 t

1

A .

Then �b1(t) = 231 + t(233) + t(222). Invoking Lemma 2 (see
also argument in Example 3), we get that a9 ! a2 = ⇥-1

(231).
Similarly, by computing µb2(t), we also observe that a10 ! a2.
These are examples of construction of degeneration via Lem-
ma 8. Observe that the subspace C-span(-e1 + e2) is a subal-
gebra of both a9 and a10. Note that, the observation that the
pair of algebras {a9, a10} is a {g, eg}-pair together with the fact
that ⇥(fa2) 2 a

o

2
ensure that a9 ! a2 if, and only if, a10 ! a2.

(iv) From the transitivity of degenerations we also get (the facts
already known from [12], see Remark 15 (iii)) that

g ! c1, g ! a0,

for g 2 {a9, a10}, since g ! a2 and a2 ! c1, a2 ! a0.

(v) Finally, we use the information from Table 2 on dim annL

and dim annR: dim annL gives:

a9 6! l1, a9 6! c3, a9 6! a3(),

for all  2 K, while dim annR gives:

a10 6! l1, a10 6! c3, a10 6! a3(),

for all  2 K. Alternatively, we could use an obvious modifi-
cation of the remark immediately above in order to obtain the
corresponding information for a10 given the information on a9.

The observations (i)–(v) above supply sufficient information in or-
der to complete the degeneration picture inside set S4.
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Step 5 We consider the set

S5 = �-1

1

�
{0}[ l

o

1
[m

o

4

�
\�-1

2

�
Jo
4
[ c

o

3
[ c

o

1
[ {0}

�
\As

= a
o

7
[ a

o

8
[ a

o

2
[ l

o

1
[ c

o

3
[ c

o

1
[ {0}[

⇣ [

2K

a3()
o

⌘

= a
o

7
[ a

o

8
[ S3.

Now {a7, a8} is a {g,eg}-pair and the set S3 is closed. Comparing
with the discussion in Step 4, we get that a7 6! a8, a8 6! a7 and,
moreover, in order to complete the degeneration picture inside the
closed set S5 it suffices to determine whether any of the members
of the set S3 = As \ B belong to go, for g 2 {a7, a8}. We aim to
use Lemma 4.

Let � 0
= 121 + 211 + 222 + 323 2 ⇤, so � 0

= ⇥(a7) from Table 1.
Also let B be the Borel subgroup of all upper triangular matrices
in GL(3, C). It will be convenient to consider the basis (e 0

1
, e 0

2
, e 0

3
) of

the underlying vector space V , where e 0
1
= e1, e 0

2
= e3, e 0

3
= e2. Note

that the subspace C-span(e 0
1

, e 0
2
) is a subalgebra of a7 isomorphic to

the 2-dimensional Abelian algebra so the commutation relations re-
main very simple (many of the coefficients remain zero) when we
act by the subgroup B. The structure vector of a7 relative to the ba-
sis (e 0

1
, e 0

2
, e 0

3
) is � = 131 + 311 + 333 + 232. For b = (bij) 2 B, in

particular bij = 0 if i > j and b11b22b33 6= 0, we then have

�b = b33131 + b33311 + b33232 +

⇣b12b33
b11

⌘
321

+

⇣b13b33
b11

⌘
331 + b33333 2 � 0G.

Clearly, from the above expression for �b, the following polynomi-
als all belong to I(�B), the vanishing ideal of �B:

X11i, X12i, X21i, X22i, (1 6 i 6 3)

X231, X233, X322, X323, X332,

X132, X133, X312, X313,

X232 -X333, X131 -X333, X311 -X333.
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Now let µ = (µijk) 2 �B. Then evµ(f) = 0, for all f 2 I(�B), hence

µ11i = µ12i = 0, µ21i = µ22i = 0, (1 6 i 6 3)

µ231 = µ233 = µ322 = µ323 = µ332 = 0

µ132 = µ133 = µ312 = µ313 = 0,

µ232 = µ333 = µ131 = µ311.

It follows that the only coefficients µijk which can possibly be non-
zero are: µ131, µ232, µ311, µ321, µ331 and µ333, with the additional
restriction that µ232 = µ333 = µ131 = µ311.

At this point we make the further assumption that µ 2 B, so we
have that µ = (µijk) 2 �B \ B. From the defining conditions of B
(see Section 4), we must have that

µ331µ133 + µ332µ233 + µ333µ333 = 0.

But µ133 = 0 = µ233 from our previous considerations, so µ2

333
= 0

and hence µ333 = 0. We conclude that all coefficients µijk are equal
to zero except possibly µ321 and µ331. Next, we impose the further
restriction that µ 6= 0. Hence it suffices to consider the following
cases: (i) µ321 = 0, µ331 6= 0 and (ii) µ321 6= 0. Note that there is no
guarantee that any of cases (i), (ii) described above actually occur, as
some other polynomials in I(�B) or some other defining conditions
for B not already listed above could possibly impose even further re-
strictions on the coefficients µijk. However, our goal at the moment
is, by making use of Lemma 4, to exclude the possibility of degener-
ation from a7 to various members of the set ⇥-1

(As \B) = ⇥-1
(S3).

Case (i): µ231 = 0, µ331 6= 0. Clearly, ⇥(c1) 2 O(µ), so ⇥-1
(µ) ' c1.

Case (ii): µ321 6= 0. Then ⇥-1
(µ) ' g where ⇥(g) = 321 + �(331),

for some � 2 C. We will consider subcases (iia) and (iib) given below:

Subcase (iia): � = 0: Then clearly ⇥-1
(µ) ' a2.

Subcase (iib): � 6= 0: We consider (321 + �331)g, with

g =

0

@
1 0 0
0 1 1
0 0 -�-1

1

A 2 GL(3, C) .
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It is easy to compute that

(321 + �331)g = -
1

�
(321),

so again ⇥-1
(µ) ' a2.

Summing up, we have shown up to this point that

�B\B ✓ {0}[ c
o

1
[ a

o

2
.

Let
U = l

o

1
[ c

o

3
[
⇣ [

2K

a3()
o

⌘
.

Then U ✓ B from Remark 15 (ii), hence

B\U = U and �B\U = (�B\B)\U = ?.

It follows from Remark 5 (iv) that O(�)\U = ?. We conclude that

a7 6! l1, a7 6! c3 and a7 6! a3(),

for all  2 K.
Recalling the expression for �b obtained above and invoking Lem-

ma 2 with t 2 C - {0} (and an argument as in Example 3) we also
get:

(i) a7 ! a2, by setting b33 = t, b12 = t, b11 = t2 and b13 = t2,
and

(ii) a7 ! c1, by setting b33 = t, b12 = t, b11 = t and b13 = 1.

Alternatively, we can also observe that in Example 10 a degenera-
tion a7 ! a2 was in fact constructed since

⇥(a7) = 121 + 211 + 222 + 323

and 213 2 a
o

2
. We can then invoke the transitivity of degenerations to

establish that a7 ! c1 and a7 ! a0. Note that, these last two facts are
already known since ⇥(a7) 2 ⇤-M⇤⇤ (see Remark 15(ii),(iii)). This
completes the degeneration picture inside the closed set S5 since our
results on degenerations still hold if we replace a7 by a8 in view of
the fact that � 2 O(e�), for all � 2 S3.
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a9 a7 a8 a10

a6 a3( = 2) a3( 6= 2) c3 a2

a4 l1 c1 a5

a0

Picture 4 (with  2 K)

Step 6 We consider the set

S6 = �-1

1

�
{0}[ l

o

1
[m

o

4

�
\�-1

2

�
Jo
3
[ Jo

4
[ Jo

8
[ c

o

4
[ c

o

3
[ c

o

1
[ {0}

�
\As

= a
o

11
[ a

o

12
[ a

o

9
[ a

o

10
[ a

o

7
[ a

o

8
[ c

o

4
[ a

o

2
[ c

o

3
[ c

o

1
[ l

o

1
[ {0}

[
⇣ [

2K

a3()
o

⌘

= a
o

11
[ a

o

12
[ c

o

4
[ S4 [ S5.

The set S4 [S5 is closed as it is the union of two closed sets and we
know everything about the degeneration picture in this set from the
previous steps of this process. We also know from the information
given in Picture 2 that co

4
= {0}[ c

o

1
[ c

o

4
.

Next, the algebras a11 and a12 form a {g, eg}-pair so there cannot
be any degeneration between them. Moreover, invoking the facts
that the pairs of algebras {a7, a8} and {a9, a10} also form {g,eg}-pairs
while ⇥(ea) 2 a

o, for all a 2 A with

⇥(a) 2 S6 - (a
o

7
[ a

o

8
[ a

o

9
[ a

o

10
[ a

o

11
[ a

o

12
),

the set of algebras to which a12 degenerates can easily be obtained
once we know the set of algebras to which a11 degenerates (compare
with Remark 14 (iv)).

By considering now dim Der(1,0,1) (see Table 2), we can exclude
the possibility of degeneration from a11 to each of the members of
the set

{a7, a10, c3, l1}[ {a3() :  2 K}.

Moreover, the following holds:
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Claim Algebra a11 degenerates to each one of the members of the
set {a8, a9, c4, a2, c1, a0}.
Proof of claim — From the transitivity of degenerations it suffices to
prove that a11 ! c4, a11 ! a9 and a11 ! a8 (compare with Pic-
ture 4).

We let � = ⇥(a11) = 111 + 322 + 333, (see Table 1). We also define,
for t 2 C - {0}, matrices g1(t), g2(t) and g3(t) 2 GL(3, C) as follows:

g1(t) =

0

@
1 0 0
0 t 0
0 0 t

1

A , g2(t) =

0

@
t 0 0
0 1 0
0 0 1

1

A and g3(t) =

0

@
t 1 0
0 0 1
0 1 0

1

A .

Then,

(i) �g1(t) = 111 + t(322) + t(333),

(ii) �g2(t) = t(111) + 322 + 333,

(iii) �g3(t) = t(111) + 121 + 211 + 222 + 233.

Invoking Lemma 2 (and an argument as in Example 3) and compar-
ing with the information given in Table 1, we get from the observa-
tions (i), (ii) and (iii) immediately above the existence, respectively,
of degenerations a11 ! c4, a11 ! a9 and a11 ! a8. This completes
the degeneration picture inside the closed set S6.

Step 7 Finally we consider the set

S7 = �-1

1

�
{0}[ l

o

1
[m

o

4

�
\�-1

2

�
Jo
2
[ Jo

8
[ c

o

3
[ c

o

2
[ c

o

1
[ {0}

�
\As

= a
o

1
[ a

o

2
[ a

o

9
[ a

o

10
[ c

o

3
[ c

o

2
[ c

o

1
[ l

o

1
[ {0}[

⇣ [

2K

a3()
o

⌘
.

Let

⌫ = ⇥(a1) = 111 + 122 + 212 + 133 + 313 + 232 - 322 + 331 2 ⇤,

so ⌫ is the structure vector of algebra a1 relative to the standard
basis (e1, e2, e3) of the underlying C-vector space V . Consider now
the basis (f1, f2, f3) of V defined by

f1 =
1

2
(e1 - e3), f2 =

1

2
e2, f3 =

1

2
(e1 + e3)
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and observe that the subspaces C-span(f2), C-span(f1, f2)
and C-span(f2, f3) are all ideals of a1. Let ⌫ 0 be the structure vec-
tor of a1 relative to the basis (f1, f2, f3). Then

⌫ 0
= 111 + 122 + 232 + 333 (2 O(⌫)).

Now define, for t 2 C - {0}, matrices g1(t), g2(t) 2 GL(3, C) by

g1(t) =

0

@
t 0 0
0 1 0
0 0 1

1

A , g2(t) =

0

@
1 0 0
0 1 0
0 0 t

1

A .

It follows that

⌫ 0g1(t) = t(111) + t(122) + 232 + 333 2 O(⌫)

and that

⌫ 0g2(t) = 111 + 122 + t(232) + t(333) 2 O(⌫),

for t 2 C - {0}. Invoking Lemma 2 (and an argument as in Exam-
ple 3) together with the information on the commutation relations
given in Table 1, we can see that the expression for ⌫ 0g1(t) (respec-
tively, ⌫ 0g2(t)) obtained above, leads to a degeneration a1 ! a10

(respectively, a1 ! a9). Observe that, by setting b = C-span(f2, f3)
(respectively, b = C-span(f1, f2)), the existence of the above degener-
ations can also be established using Lemma 8, (compare also with Re-
mark 9). From the transitivity of degenerations we also get a1 ! a2,
(and a1 ! c1, a1 ! a0), see Picture 4.

Next, we consider the structure vector

⌫g2(t) = 111 + 122 + 212 + 133

+ 313 + t(232)- t(322) + t2(331) 2 O(⌫).

Applying Lemma 2 (compare also with Example 3) we get a1 ! c2.

Now let S = c
o

3
[ l

o

1
[
⇣ S
2K

a3()
o

⌘
. In order to complete the degen-

eration picture inside the set S7 it remains to examine whether there
is a degeneration from a1 to any one of the members of the set S. It
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is useful to observe that

S ✓ B\As ✓ (T \ eT)\As

(see Remark 15 (ii)). In addition, dim annLa = 1 = dim annRa, for
all a 2 ⇥-1

(S) (see Table 2).

For this investigation it will be convenient to consider � 2 O(⌫),
where � = ⌫ 0g with

g =

0

@
1 0 0
0 0 1
0 1 0

1

A 2 GL(3, C),

and then examine the structure vector �b where b = (bij) 2 GL(3, C)

is upper triangular (so bij = 0 if i > j and b11b22b33 6= 0).

Now

� = 111 + 133 + 323 + 222 2 O(⌫)

and

�b = b11(111) + b12(121) +
b12b23
b22

(131) +
-b11b23

b22
(132)

+ b11(133) + b12(211) +
b12(b12 - b22)

b11
(221)

+ b22(222) +
b12b23(b12 - b22)

b11b22
(231) +

-b23(b12 - b22)

b22
(232)

+ b12(233) + b13(311) +
b13(b12 - b22)

b11
(321) + b22(323)

+
b13b23(b12 - b22)

b11b22
(331) +

-b13b23
b22

(332) + (b13 + b23)(333).

As a consequence, the following is a list of polynomials in I(�B),
where B is the subgroup of all upper triangular matrices in GL(3, C):

X112, X113, X122, X123, X212, X213, X223, X312, X313, X322,
X121 -X211, X111 -X133, X222 -X323, X121 -X233,
X131X311 +X332X211, X331X221 -X231X321,
X331X211 -X231X311, X311X221 -X211X321.
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Observe tha �B ✓ As since �B ✓ As and As is closed. Hence,
from B \ As ✓ (T \ eT) \ As, we get (�B) \ B ✓ T \ eT. Now
let µ = (µijk) 2 (�B) \ B. Then µ 2 T \ eT so, for 1 6 i 6 3,
we have

P
3

j=1
µijj = 0 and

P
3

j=1
µjij = 0 (see Section 4 and Re-

mark 15 (ii)). Moreover, evµ(f) = 0, for all polynomials f 2 I(�B).
This forces

µ112 = µ113 = µ122 = µ123 = µ212 = µ213 = µ223

= µ312 = µ313 = µ322 = 0

and

µ233 = µ121 = µ211,µ111 = µ133,µ222 = µ323.

Invoking the conditions forced by µ = (µijk) 2 T, we also get

µ111 = µ133 = 0,

since µ122 = 0 and µ111 = µ133,

2µ211 + µ222 = 0,

since µ211 = µ233, and

µ311 + µ333 = 0,

since µ322 = 0. So the defining conditions for µ = (µijk) to belong
to eT now give

2µ222 + µ211 = 0,

since µ222 = µ323 and µ121 = µ211, and

µ131 + µ232 + µ333 = 0.

Also observe that the conditions

2µ211 + µ222 = 0, 2µ222 + µ211 = 0,
µ222 = µ323 and µ211 = µ121 = µ233

force µ211 = µ222 = µ121 = µ233 = µ323 = 0.

Next, we invoke the fact that µ 2 B, so for 1 6 i, j, k,m 6 n we
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have
P

n

l=1
µijlµlkm = 0 (see Section 4). From

µ331µ133 + µ332µ233 + µ333µ333 = 0

we obtain µ333 = 0 (since µ133 = 0 = µ233), and hence µ311 = 0
since µ311 + µ333 = 0.

Moreover, from µ131+µ232+µ333 = 0 we now get µ131+µ232 = 0.
Also the fact that X331X221 -X231X321 2 I(�B) ensures that

µ331µ221 - µ231µ321 = 0.

Going back once more to the defining conditions for the algebraic
set B and combining with various restrictions already obtained above
we get the following further constraints on the coefficients µijk:

µ221µ131 = 0, µ221µ132 = 0, µ2

131
+ µ132µ231 = 0,

µ321µ131 = 0, µ321µ132 = 0, µ332µ221 = 0,

µ331µ131 + µ332µ231 = 0,µ331µ132 + µ332µ232 = 0.

(6.1)

Summing up, the assumption µ = (µijk) 2 (�B) \B gives the con-
straints that the only coefficients µijk which can possibly be non-zero
are

µ131, µ132, µ221, µ231, µ232, µ321, µ331 and µ332

and these satisfy the conditions (6.1) together with the conditions

µ131 + µ232 = 0 and µ331µ221 - µ231µ321 = 0.

We will consider the cases (i) µ131 6= 0 and (ii) µ131 = 0 separately.
Case (i): µ131 6= 0. Then µ232 = -µ131 (6= 0) and µ221 = µ321 = 0.

Hence, all coefficients µijk are zero except possibly

µ131, µ132, µ231, µ232, µ331 and µ332.

This gives C-span(e1, e2) ✓ annR⇥
-1

(µ). In particular, µ 62 S.
Case (ii): µ131 = 0 (hence µ232 = 0 as well).
In this case, all coefficients µijk are zero except possibly

µ132, µ221, µ231, µ321, µ331, and µ332
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and we have the constraints:

µ221µ132 = 0, µ132µ231 = 0, µ321µ132 = 0

µ332µ221 = 0, µ332µ231 = 0, µ331µ132 = 0,

µ331µ221 - µ231µ321 = 0.

We will consider the subcases (iia) µ132 6= 0 and (iib) µ132 = 0
separately:

Subcase (iia): µ132 6= 0: Then, µ221 = µ231 = µ321 = µ331 = 0. Again
we get that C-span(e1, e2) ✓ annR⇥

-1
(µ) so µ 62 S in this subcase.

Subcase (iib): µ132 = 0. In this subcase only

µ221, µ231, µ321, µ331 and µ332

can possibly be non-zero and we have the constraints:

µ332µ221 = 0, µ332µ231 = 0, and µ331µ221 - µ231µ321 = 0.

If µ332 6= 0, then µ221 = 0 = µ231. Hence

C-span(e1, e2) ✓ annL⇥
-1

(µ)

leading to µ 62 S. So we assume that µ332 = 0 as well, leaving us
with µ221, µ231, µ321, µ331 as the only coefficients which can possi-
bly be non-zero and also satisfying the constraint

µ331µ221 - µ231µ321 = 0.

Now the matrix
✓
µ221 µ321

µ231 µ331

◆
2 M2(C)

has determinant 0 (and hence has rank < 2) so there exists a ma-
trix (� �) 2 C1⇥2

- {(0 0)} satisfying

(� �)

✓
µ221 µ321

µ231 µ331

◆
= (0 0).
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Inside ⇥-1
(µ) we get:

[e2,�e2 + �e3] = �µ221e1 + �µ231e1 = 0

and
[e3,�e2 + �e3] = �µ321e1 + �µ331e1 = 0.

Hence, C-span(e1,�e2 + �e3) ✓ annR⇥
-1

(µ) giving µ 62 S in this
final subcase also.

We conclude that (�B)\ S (= (�B)\B\ S) = ?. From Remark 5 (ii)
with U = S we finally get that there is no degeneration from a1 to
any one of the members of the set {c3, l1} [ {a3() :  2 K} (informa-
tion which cannot so easily be obtained by just considering various
algebra invariants). This completes the degeneration picture inside
the closed set S7.

In view of Remark 15 (iv), in order to obtain the complete degener-
ation picture inside the algebraic set As it is enough to combine the
information given in Picture 2 together with information obtained
in Steps 1 to 7 of the above process (see Picture 5).

c11

c9 c10

c7 c6 c8 a11 a12 a1

c5 a9 a7 a8 a10

a6 a3( = 2) a3( 6= 2) c3 c2 c4 a2

a4 l1 c1 a5

a0

Picture 5. Degenerations of 3-dimensional complex associative algebras (with  2 K).
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16 (2019), 84–99.

[14] N. Jacobson: “Lie Algebras”, Interscience, New York (1962).



Degenerations of complex associative algebras of dimension three 79

[15] I. Kashuba – I. Shestakov: “Jordan algebras of dimension three:
geometric classification and representation type”, Proceedings
of the XVIth Latin American Algebra Colloquium, Bibl. Rev.
Mat. Iberoamericana, Madrid (2007), 295–315.

[16] Y. Kobayashi – K. Shirayanagi – M. Tsukada: “A complete clas-
sification of three-dimensional algebras over R and C — (visit-
ing old, learn new)” Asian-Eur. J. Math. 14 (2021), 2150131, 25pp.

[17] N.F. Mohammed – I.S. Rakhimov – Sh.K. Said Husain: “On con-
tractions of three-dimensional complex associative algebras”,
J. Gen. Lie Theory Appl. 11 (2017), 1000282, 6pp.

[18] M. Nesterenko – R. Popovych: “Contractions of low-dimension-
al Lie algebras”, J. Math. Phys. 47 (2006), 123515, 45 pp.

[19] A.L. Onishchik – E.B. Vinberg: “Lie Groups and Algebraic
Groups”, Springer, Berlin (1990).

[20] C.A. Pallikaros – H.N. Ward: “Linear degenerations of alge-
bras and certain representations of the general linear group”,
Comm. Algebra, 50 (2022), 4122–4144.

[21] B. Peirce: “Linear associative algebras”, Amer. J. Math. 4 (1881),
97–229.

[22] I.E. Segal: “A class of operator algebras determined by groups”,
Duke Math. J. 18 (1951), 221–265.

Nataliya M. Ivanova
Institute of Mathematics of NAS of Ukraine
3 Tereshchenkivska Str.
01601 Kyiv (Ukraine)
e-mail: ivanova.nataliya@gmail.com

Christakis A. Pallikaros (corresponding author)
Department of Mathematics and Statistics
University of Cyprus
PO Box 20537, 1678 Nicosia (Cyprus)
e-mail: pallikaros.christos@ucy.ac.cy


	M. Trombetti: Editorial
	E. Di Domenico — S. Gül — A. Thillaisundaram: Beauville structures for quotients of generalised GGS-groups
	N.M. Ivanova — C.A. Pallikaros: Degenerations of complex associative algebras of dimension three via Lie and Jordan algebras
	F. Szechtman: The automorphism tower of the Mennicke group M(-1,-1,-1)
	M.H. Algreagri — A.M. Alghamdi: Some remarks on anchor of irreducible characters
	I.N. Safonova: On the -closedness of n-multiply -local formations
	M. Ferrara: Join-distributive elements in the lattice of closed subgroups of a profinite group

