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Abstract
Slattery has generalized Brauer’s theory of p-blocks of finite groups to π-blocks
of π-separable groups where π is a set of primes. In this setting we show that the or-
der of a defect group of a π-block B is bounded in terms of the number of irreducible
characters in B. This is a variant of Brauer’s Problem 21 and generalizes Külsham-
mer’s corresponding theorem for p-blocks of p-solvable groups. At the same time,
our result generalizes Landau’s classical theorem on the number of conjugacy classes
of an arbitrary finite group. The proof relies on the classification of finite simple
groups.

Mathematics Subject Classification (2010): 20C15

Keywords: Brauer’s Problem 21; π-blocks; number of characters

1 Introduction

Many authors, including Richard Brauer himself, have tried to re-
place the prime p in modular representation theory by a set of
primes π. One of the most convincing settings is the theory
of π-blocks of π-separable groups which was developed by Slattery
(see [16] and [17]) building on the work of Isaacs and others (for
precise definitions see next section). In this framework most of the
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classical theorems on p-blocks can be carried over to π-blocks. For
instance, Slattery proved versions of Brauer’s three main theorems
for π-blocks. Also many of the open conjectures on p-blocks make
sense for π-blocks. In particular, “Brauer’s Height Zero Conjecture”
and the “Alperin-McKay Conjecture” for π-blocks of π-separable
groups were verified by Manz-Staszewski (see Theorem 3.3 of [10])
and Wolf (see Theorem 2.2 of [18]) respectively. In a previous pa-
per [15] the present author proved “Brauer’s k(B)-Conjecture”
for π-blocks of π-separable groups. This means that the number k(B)
of irreducible characters in a π-block B is bounded by the order of its
defect groups.

In this paper we work in the opposite direction. Landau’s classical
theorem asserts that the order of a finite group G can be bounded
by a function depending only on the number of conjugacy classes
of G. “Problem 21” on Brauer’s famous list [2] from 1963 asks if
the order of a defect group of a block B of a finite group can be
bounded by a function depending only on k(B). Even today we do
not know if there is such a bound for blocks with just three irre-
ducible characters (it is expected that the defect groups have order
three in this case, see Chapter 15 of [14]). On the other hand, an
affirmative answer to Problem 21 for p-blocks of p-solvable groups
was given by Külshammer [7]. Moreover, Külshammer-Robinson [8]
showed that a positive answer in general would follow from the Al-
perin-McKay Conjecture.

The main theorem of this paper settles Problem 21 for π-blocks
of π-separable groups.
Theorem A The order of a defect group of a π-block B of a π-separable
group can be bounded by a function depending only on k(B).

Since {p}-separable groups are p-solvable and {p}-blocks are
p-blocks, this generalizes Külshammer’s result. If G is an arbitrary
finite group and π is the set of prime divisors of |G|, then G is π-se-
parable and Irr(G) is a π-block with defect group G (see Proposi-
tion 2.2 below). Hence, Theorem A also implies Landau’s Theorem
mentioned above.

Külshammer’s proof relies on the classification of finite simple
groups and so does our proof. Although it is possible to extract from
the proof an explicit bound on the order of a defect group, this bound
is far from being optimal. With some effort we obtain the following
small values.
Theorem B Let B be a π-block of a π-separable group with defect groupD.
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Then

k(B) = 1⇐⇒ D = 1,
k(B) = 2⇐⇒ D = C2,
k(B) = 3⇐⇒ D ∈ {C3, S3}

where Cn denotes the cyclic group of order n and Sn is the symmetric group
of degree n.

2 Notation

Most of our notation is standard and can be found in Navarro’s
book [11]. For the convenience of the reader we collect definitions
and crucial facts about π-blocks. In the following, π is any set of
prime numbers. We denote the π-part of an integer n by nπ. A finite
group G is called π-separable if there exists a normal series

1 = N0 E . . .ENk = G

such that each quotient Ni/Ni−1 is a π-group or a π ′-group. The
largest normal π-subgroup of G is denoted by Oπ(G).

Definition 2.1

• A π-block of G is a minimal non-empty subset B ⊆ Irr(G) such
that B is a union of p-blocks for every p ∈ π (see Definition 1.12

and Theorem 2.15 of [16]). In particular, the {p}-blocks of G are
the p-blocks of G. In accordance with the notation for p-blocks
we set k(B) := |B| for every π-block B.

• A defect group D of a π-block B of a π-separable group G is de-
fined inductively as follows (see Definition 2.2 of [17]).
Let χ ∈ B and let λ ∈ Irr(Oπ ′(G)) be a constituent of the re-
striction χOπ ′(G) (we say that B lies over λ). Let Gλ be the iner-
tial group of λ in G. If Gλ = G, then D is a Hall π-subgroup
of G (such subgroups always exist in π-separable groups). Oth-
erwise there exists a unique π-block b of Gλ lying over λ such
that ψG ∈ B for all ψ ∈ b (see Theorem 2.3 below). In this case
we identify D with a defect group of b. As usual, the defect
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groups of B form a conjugacy class of G. It was shown in Theo-
rem 2.1 of [17] that this definition agrees with the usual defini-
tion for p-blocks.

• A π-block B of G covers a π-block b of NEG, if there exist χ ∈ B
and ψ ∈ b such that [χN,ψ] 6= 0 (see Definition 2.5 of [16]).

Proposition 2.2 For every π-block B of a π-separable group G with defect
group D the following holds:

(i) Oπ(G) 6 D.

(ii) For every χ ∈ B we have |D|χ(1)π
|G|π

∈ N and for some χ this fraction
equals 1.

(iii) If the π-elements g,h ∈ G are not conjugate, then∑
χ∈B

χ(g)χ(h) = 0.

(iv) If B covers a π-block b of NEG, then for every ψ ∈ b there exists
some χ ∈ B such that [χN,ψ] 6= 0.

(v) If B lies over a G-invariant λ ∈ Irr(Oπ ′(G)), then B = Irr(G|λ).

Proof —

(i) See Lemma 2.3 of [17].

(ii) See Theorems 2.5 and 2.15 of [17].

(iii) This follows from Corollary 8 of [13] (by Remarks on p. 410

of [13], B is really a π-block in the sense of that paper).

(iv) See Lemma 2.4 of [16].

(v) See Theorem 2.8 of [16].

The statement is proved. ut

The following result allows inductive arguments (see Theorem 2.10

of [16] and Corollary 2.8 of [17]).
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Theorem 2.3 (Fong-Reynolds Theorem for π-blocks) Let N be a nor-
mal π ′-subgroup of a π-separable group G. Let λ ∈ Irr(N) with inertial
group Gλ. Then the induction of characters induces a bijection

b 7→ bG

between the π-blocks of Gλ lying over λ and the π-blocks of G lying over λ.
Moreover, k(b) = k(bG) and every defect group of b is a defect group of bG.

Finally we recall π-special characters, which were introduced by
Gajendragadkar [3]. A character χ ∈ Irr(G) is called π-special, if

χ(1) = χ(1)π

and for every subnormal subgroup N of G and every irreducible
constituent ϕ of χN the order of the linear character detϕ is a π-num-
ber.

Obviously, every character of a π-group is π-special. If χ ∈ Irr(G)
is π-special and N := Oπ ′(G), then χN is a sum of G-conjugates of
a linear character λ ∈ Irr(N) by Clifford theory. Since the order of
det λ = λ is a π-number and divides |N|, we obtain λ = 1N. This
shows that N 6 Ker(χ).

3 Proofs

At some point in the proof of Theorem A we need to refer to Kül-
shammer’s solution (Theorem of [7]) of Brauer’s Problem 21 for p-sol-
vable groups:

Proposition 3.1 There exists a monotonic function

α : N→N

with the following property: For every p-block B of a p-solvable group with
defect group D we have |D| 6 α(k(B)).

The following ingredient is a direct consequence of the classifica-
tion of finite simple groups.

Proposition 3.2 (Theorem 2.1 of [5]) There exists a monotonic function

β : N→N
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with the following property: If G is a finite non-abelian simple group such
that Aut(G) has exactly k orbits on G, then |G| 6 β(k).

In the following series of lemmas, π is a fixed set of primes, G is
a π-separable group and B is a π-block of G with defect group D.
Proposition 2.2 (ii) guarantees the existence of a “height 0” character
in B (meaning that |D|χ(1)π = |G|π). We need to impose an additional
condition on such a character.

Lemma 3.3 There exists some χ ∈ B such that Oπ(G) 6 Ker(χ) and
|D|χ(1)π = |G|π.

Proof — We argue by induction on |G|. Let B lie over

λ ∈ Irr(Oπ ′(G)).

Suppose first that Gλ = G. Then |D| = |G|π and B = Irr(G|λ) by Pro-
position 2.2 (v). Since λ is π ′-special, there exists a π ′-special χ ∈ B
by Lemma 2.7 of [16]. It follows that Oπ(G) 6 Ker(χ) and

|D|χ(1)π = |D| = |G|π.

Now assume that Gλ < G. Let b be the Fong-Reynolds correspon-
dent of B in Gλ. By induction there exists some ψ ∈ b such that

Oπ(Gλ) 6 Ker(ψ) and |D|ψ(1)π = |Gλ|π.

Let χ := ψG ∈ B. Since [Oπ(G), Oπ ′(G)] = 1 we have

Oπ(G) 6 Oπ(Gλ) 6 Ker(ψ) and Oπ(G) 6 Ker(χ)

(see Lemma 5.11 of [4]). Finally,

|D|χ(1)π = |D|ψ(1)π|G : Gλ|π = |Gλ|π|G : Gλ|π = |G|π

proving the statement. ut

For every p ∈ π, the character χ in Lemma 3.3 lies in a p-block
Bp ⊆ B whose defect group has order |D|p. In fact, it is easy to show
that every Sylow p-subgroup of D is a defect group of Bp.

Our second lemma extends an elementary fact on p-blocks (see The-
orem 9.9 (b) of [11]).
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Lemma 3.4 LetN be a normal π-subgroup ofG. Then B contains a π-block
of G/N with defect group D/N.

Proof — Again we argue by induction on |G|. Let λ ∈ Irr(Oπ ′(G)) be
under B. Suppose first that Gλ = G. Then |D| = |G|π. By Lemma 3.3,
there exists some χ ∈ B such that N 6 Oπ(G) 6 Ker(χ) and χ(1)π = 1.
Hence, we may consider χ as a character of G := G/N. As such, χ lies
in a π-block B of G. For any ψ ∈ B there exists a sequence of charac-
ters χ = χ1, . . . ,χk = ψ such that χi and χi+1 lie in the same p-block
of G for some p ∈ π and i = 1, . . . , k− 1. Then χi and χi+1 also lie in
the same p-block of G. This shows that ψ ∈ B and B ⊆ B. For a defect
group P/N of B we have

|P/N| = max
{ |G|π

ψ(1)π
: ψ ∈ B

}
=

|G|π

χ(1)π
= |G|π = |D/N|

by Proposition 2.2 (ii). Since the Hall π-subgroups are conjugate in G,
we conclude that D/N is a defect group of B.

Now let Gλ < G, and let b be the Fong-Reynolds correspondent
of B in Gλ. After conjugation, we may assume that D is a defect
group of b. By induction, b contains a block b of Gλ/N with defect
group D/N. If we regard λ as a character of

Oπ ′(G)N/N ' Oπ ′(G),

we see that
Gλ = Gλ/N.

It follows that the Fong-Reynolds correspondent B = b
G of b is con-

tained in B and has defect group D/N. ut

The next result extends one half of Proposition of [6] to π-blocks.

Lemma 3.5 Let NEG, and let b be a π-block of N covered by B. Then
k(b) 6 |G : N|k(B).

Proof — By Proposition 2.2 (iv),

b ⊆
⋃
χ∈B

Irr(N|χ).

For every χ ∈ B the restriction χN is a sum of G-conjugate characters
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according to Clifford theory. In particular, |Irr(N|χ)| 6 |G : N| and

k(b) 6
∑
χ∈B

|Irr(N|χ)| 6 |G : N|k(B).

The lemma is proved. ut

It is well-known that the number of irreducible characters in
a p-block B is greater or equal than the number of conjugacy classes
which intersect a given defect group of B (see Problem 5.7 of [11]).
For π-blocks we require the following weaker statement.

Lemma 3.6 Let N be a normal π-subgroup of G. Then the number
of G-conjugacy classes contained in N is at most k(B).

Proof — Let R ⊆ N be a set of representatives for the G-conjugacy
classes inside N. By Lemma 3.3, there exists some χ ∈ B such that

χ(r) = χ(1) 6= 0

for every r ∈ R. Thus, the columns of the matrix

M := (χ(r) : χ ∈ B, r ∈ R)

are non-zero. By Proposition 2.2 (iii), the columns of M are pairwise
orthogonal, so in particular they are linearly independent. Hence, the
number of rows of M is at least |R|. ut

We can prove the main theorem now.
Proof of Theorem A — The proof strategy follows closely the ar-
guments in [7]. We construct inductively a monotonic function

γ : N→N

with the desired property. To this end, let B be a π-block of a π-se-
parable group G with defect group D and k := k(B). If k = 1, then
the unique character in B has p-defect 0 for every p ∈ π. It follows
from Proposition 2.2 (ii) that this can only happen if D = 1. Hence,
let γ(1) := 1.

Now suppose that k > 1 and γ(l) is already defined for l < k.
LetN := Oπ ′(G). By a repeated application of the Fong-Reynolds The-
orem for π-blocks and Proposition 2.2 (v), we may assume that B is
the set of characters lying over a G-invariant λ ∈ Irr(N). Then D is
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a Hall π-subgroup of G. By Problem 6.3 of [12], there exists a charac-
ter triple isomorphism

(G,N, λ)→ (Ĝ, N̂, λ̂)

such that G/N ' Ĝ/N̂ and N̂ = Oπ ′(Ĝ) 6 Z(Ĝ). Then B̂ := Irr(Ĝ|̂λ)
is a π-block of Ĝ with defect group D̂ ' D and k(B̂) = k. After
replacing G by Ĝ we may assume that N 6 Z(G). Then

Oπ ′π(G) = N× P

where P := Oπ(G). If P = 1, then G is a π ′-group and we derive the
contradiction k = 1. Hence, P 6= 1.

Let M be a minimal normal subgroup of G contained in P. By Lem-
ma 3.4, B contains a π-block B of G/M with defect group D/M. Since
the kernel of B is a π ′-group (see Theorem 6.10 of [11]), we have

k(B) < k.

By induction, it follows that

|D/M| 6 γ(k− 1) (3.1)

where we use that γ is monotonic. Let H/M be a Hall π ′-subgroup
of G/M, and let

K :=
⋂
g∈G

gHg−1 EG.

Then

|G : K| 6 |G : H|! = |G/M : H/M|! = (|G/M|π)! = |D/M|! 6 γ(k− 1)!

by (3.1). Let b be a π-block of K covered by B. By Lemma 3.5,

k(b) 6 |G : K|k 6 γ(k− 1)!k. (3.2)

Thus we have reduced our problem to the block b of K. Since

K/M 6 H/M

is a π ′-group, b has defect group M by Proposition 2.2 (i).
As a minimal normal subgroup, M is a direct product of isomor-
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phic simple groups. Suppose first that M is an elementary
abelian p-group for some p ∈ π. Then K is p-solvable and b is just
a p-block with defect group M since the q-blocks in b are singletons
for q ∈ π \ {p}. Hence, with the notation from Proposition 3.1 we have

|M| 6 α(k(b)) 6 α
(
γ(k− 1)!k

)
(3.3)

by (3.2).
Now suppose that M = S× . . .× S = Sn where S is a non-abelian

simple group. Let x1, . . . , xs ∈ S be representatives for the orbits
of Aut(S) on S \ {1}. Since

Aut(M) ' Aut(S) o Sn

(where Sn denotes the symmetric group of degree n), the elements

(xi, 1, . . . , 1), (xi, xi, 1, . . . , 1), . . . , (xi, . . . , xi)

of M with i = 1, . . . , s lie in distinct conjugacy classes of K. Conse-
quently, Lemma 3.6 yields ns 6 k(b). Now with the notation of Pro-
position 3.2 we deduce that |S| 6 β(s+ 1) and

c|M| = |S|n 6 β(s+ 1)n 6 β
(
k(b) + 1

)k(b)
6 β

(
γ(k− 1)!k+ 1

)γ(k−1)!k
(3.4)

by (3.2).
Setting

γ(k) := γ(k− 1)max
{
α
(
γ(k− 1)!k

)
, β
(
γ(k− 1)!k+ 1

)γ(k−1)!k}
we obtain

|D| = |D/M||M| 6 γ(k)

by (3.1), (3.3) and (3.4). Obviously, γ is monotonic. ut

Proof of Theorem B — We have seen in the proof of Theorem A
that k(B) = 1 implies D = 1. Conversely, Theorem 3 of [15] shows
that D = 1 implies k(B) = 1.

Now let k(B) = 2. Then B is a p-block for some p ∈ π. By a result
of Brandt (see Theorem A of [1]), p = 2 and |D|2 = 2 follows from Pro-
position 2.2 (ii). For every q ∈ π \ {2}, B consists of two q-defect 0
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characters. This implies D = C2. Conversely, if D = C2, then we
obtain k(B) = 2 by Theorem 3 of [15].

Finally, assume that k(B) = 3. As in the proof of Theorem A, we
may assume that

Oπ ′π(G) = Oπ ′(G)× P

with
P := Oπ(G) 6= 1.

By the remark after Lemma 3.3, for every p ∈ π there exists a p-
block contained in B whose defect group has order |D|p. If |D|2 > 4,
we derive the contradiction k(B) > 4 by Proposition 1.31 of [14].
Hence, |D|2 6 2. By Lemma 3.4, B contains a π-block B of G/P
with defect group D/P and k(B) < k(B). The first part of the proof
yields |D/P| 6 2. In particular, P is a Hall subgroup of D. From Lem-
ma 3.6 we see that P has at most three orbits under Aut(P). If P is
an elementary abelian p-group, then B contains a p-block Bp with
normal defect group P. The case p = 2 is excluded by the second
paragraph of the proof. Hence,

p > 2 and k(Bp) = k(B) = 3.

Now Proposition 15.2 of [14] implies |P| = 3 and |D| ∈ {3, 6}. A
well-known lemma by Hall-Higman states that CG(P) 6 Oπ ′π(G).
Hence, |D| = 6 implies D ' S3. It remains to deal with the case
where P is not elementary abelian. In this case, a result due
to Laffey-MacHale (see Theorem 2 of [9]) shows that

P = P1 oQ

where P1 is an elementary abelian p-group andQ has order q ∈ π \ {p}.
Moreover,

|P1| > p
q−1.

In particular, p > 2 since |D|2 6 2. Again B contains a p-block Bp
with normal defect group P1 and k(Bp) = 3. As before, we obtain

|P1| = 3 and q = 2.

This leads to D ' S3.

Conversely, let D ∈ {C3, S3}. By the first part of the proof, k(B) > 3.
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Let
N := Oπ ′(G).

Using the Fong-Reynolds Theorem for π-blocks again, we may as-
sume that B = Irr(G|λ) where λ ∈ Irr(N) is G-invariant and D is
a Hall π-subgroup of G. By a result of Gallagher (see Theorem 5.16

of [12]), we have k(B) 6 k(G/N). Moreover, Oπ(G/N) 6 DN/N and

CG/N(Oπ(G/N)) 6 Oπ(G/N)

by the Hall-Higman Lemma mentioned above. It is easy to see that
this implies G/N 6 S3. Hence, k(B) 6 3 and we are done. ut
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