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Abstract
Let G be a p-group and let χ be an irreducible character of G. The codegree of χ is
given by |G : ker(χ)|/χ(1). This paper investigates the relationship between the nilpo-
tence class of a group and the inclusion of p2 as a codegree. If G is a finite p-group
with coclass 2 and order at least p5, or coclass 3 and order at least p6, then G has p2
as a codegree. With an additional hypothesis this result can be extended to p-groups
with coclass n > 3 and order at least p2n.
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1 Introduction

In this paper all groups are finite p-groups for a prime p, and we ex-
amine the relationship between the nilpotence class of a group and
the existence of p2 as a codegree. The codegree of an irreducible
character χ of a finite group G is defined as |G : ker(χ)|/χ(1). The
set of codegrees of the irreducible characters of a finite group G is
denoted cod(G). This definition for codegrees first appeared in [10],
where the authors use a graph-theoretic approach to compare the
structure of a group with its set of codegrees. More recently, Du
and Lewis showed that p-groups with exactly three codegrees have
nilpotence class at most 2 [7]. In [6], it was shown that if G has or-
der pn and cod(G) contains every power of p up to pn−1, then G
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either has maximal class or nilpotence class at most 2. The set of
codegrees of a p-group always includes p [7, Corollary 2.3], and Lem-
ma 2.3 of [6] shows that if G has maximal class, then p2 is always
included in cod(G). When p2 is missing from the set of codegrees of
a group G, the quotient G/G ′ is elementary abelian [7, Corollary 2.5].
In addition, if |G| = p5 or p6, then G has nilpotence class at most 2,
and if |G| = p7, then G has nilpotence class at most 3.

The coclass of a p-group G with nilpotence class n is defined
as logp(|G|) − n. As p-groups with large nilpotence class relative to
their order have a more predictable structure, it is often possible
to characterize groups with small coclass in ways that are impos-
sible for groups with a fixed nilpotence class but arbitrarily large
order. The following theorem describes a feature shared by large
enough p-groups of coclass 2 and coclass 3.

Theorem 1.1 Let G be a p-group.

(i) If G has coclass 2 and order at least p5, then p2 ∈ cod(G).

(ii) If G has coclass 3 and order at least p6, then p2 ∈ cod(G).

With an additional hypothesis, we can broaden our results
to p-groups of arbitrary finite order which have large enough nilpo-
tence class.

Hypothesis (∗) If G is a p-group with nilpotence class n such that
|G| > p2n, then |Z2(G)| 6= p2.

Theorem 1.2 Let a p-group G and all of its quotients satisfy Hypothe-
sis (∗). If G has coclass n > 3 and |G| > p2n, then p2 ∈ cod(G).

We do not know if Hypothesis (∗) is needed to prove the conclusion
of Theorem 1.2. We do not have any examples of a p-group G with
coclass n > 3 and |G| > p2n such that p2 6∈ cod(G). However, at
this time, we do not see how to prove the conclusion of Theorem 1.2
without using this hypothesis.

We expect this work to appear as part of the first author’s Ph.D.
dissertation at Kent State University.

2 Main Results

Our first lemma can be inferred from [7].
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Lemma 2.1 Let G be a p-group with p2 /∈ cod(G). If χ is an irreducible
character of G such that cod(χ) > p, then χ is non-linear.

Proof — Let χ be an irreducible character of G such that

cod(χ) = pa

for some a > 2, and suppose that χ is linear. Then ker(χ) > G ′,
so G/ker(χ) is abelian. Since χ is a faithful irreducible character
of G/ker(χ), this quotient must be cyclic, and

|G/ker(χ)| = χ(1)cod(χ) = pa > p2.

By Corollary 2.5 of [7], G/G ′ is elementary abelian, which is impos-
sible since ker(χ) > G ′ and G/ker(χ) is cyclic with order greater
than p2. ut

We will also make use of the following lemma.

Lemma 2.2 Let G be a p-group with nilpotence class n > 2. Then one of
the following occurs:

(i) G has maximal class,

(ii) G is extraspecial,

(iii) |Zn−1| > pn.

Proof — Let G have nilpotence class n and assume |Zn−1| = p
n−1.

Notice that this order is as small as possible, and hence

|Zn−1/Zn−2| = p.

Since
Zn−1/Zn−2 = Z(G/Zn−2),

and G/Zn−2 has class 2, we have

|(G/Zn−2)
′| = p,

which shows that G/Zn−2 is extraspecial. If |Zn−2| = 1, then G is ex-
traspecial. If |Zn−2| > 1, then G/Zn−2 is also capable, as the quotient
of G/Zn−3 by its center is isomorphic to G/Zn−2. It is known that
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a group which is both extraspecial and capable has order p3 [3, Co-
rollary 8.2], hence |G/Zn−2| = p3, which shows that G has maximal
class. ut

The next lemma gives our first indication of when p2 will, or will
not, be included among a group’s codegrees.

Lemma 2.3 Let G be a p-group. Then p2 ∈ cod(G) if and only if either
the exponent of G/G ′ is at least p2 or there exists NCG such that G/N is
extraspecial of order p3.

Proof — If G/G ′ has exponent at least p2, then p2 ∈ cod(G), since
otherwise G/G ′ is elementary abelian [7, Corollary 2.5]. IfNCG such
that G/N is extraspecial of order p3, then since G/N has nilpotence
class 2, there exists χ ∈ Irr(G/N) such that χ(1) = p. Since

(G/N) ′ = Z(G/N) and |Z(G/N)| = p,

χ must be faithful and hence cod(χ) = p2.
Now assume p2 ∈ cod(G). Let χ ∈ Irr(G) have codegree p2. If χ

is linear, then p2 = |G : ker(χ)| and by Lemma 2.27 of [9], G/ker(χ)
is cyclic. Since the kernel of any linear character contains G ′, we see
that the exponent of G/G ′ is at least p2. Now assume χ is not linear.
By Lemma 2.1 of [7], χ(1) = p. Hence,

p3 = cod(χ)χ(1) = |G : ker(χ)|,

which shows that G/ker(χ) is an extraspecial group of order p3. ut

We are aware of the existence of groups of order p4 with class 2
which do not have p2 as a codegree. For a particular example, we
have the group listed in the Small Groups database of Magma [5]
as SmallGroup(34, 14). For an arbitrary prime p, let

G ' 〈x,y, z | ap = bp = cp
2
, [a,b] = cp〉.

Here G is the central product of an extraspecial group of order p3

and Zp2 . This group has order p4, and G ′ is the unique normal sub-
group of order p. Any non-linear irreducible character must be faith-
ful of degree p, and hence has codegree p3. As G/G ′ is elementary
abelian, any linear character must have kernel of order at least p3,
and hence has codegree at most p.
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As p2 is not always a codegree of G when |G| = p5 and G has
class 2, it will be useful to know something about the structure of G
in that case.

Lemma 2.4 Let G be a p-group with order p5 and nilpotence class 2.
If p2 /∈ cod(G), then cod(G) = {1,p,p3}, and G is either extraspecial or has
no faithful irreducible characters.

Proof — Let χ ∈ Irr(G) with cod(χ) > p, and notice that by Lem-
ma 2.1 χ is non-linear. Then

χ(1)cod(χ) 6 |G| = p5

implies p3 6 cod(χ) 6 p4. If cod(χ) = p4, then χ is faithful and Z is
cyclic. Since G has class 2, by Lemma 2.31 of [9] we have

|G : Z| = χ(1)2 = p2,

and hence
|Z| = p3.

Also notice that G ′ is contained in Z, and p2 /∈ cod(G) implies G ′

is elementary abelian. Since Z is cyclic and contains the elemen-
tary abelian subgroup G ′, we have |G ′| = p. Then G/G ′, which is
also elementary abelian, contains the cyclic subgroup Z/G ′ with or-
der p2, which is impossible, so p4 /∈ cod(G). Since G is not elemen-
tary abelian, cod(G) 6= {1,p} by Lemma 2.4 of [7]. Hence we must
have p3 ∈ cod(G), so cod(G) = {1,p,p3}.

The linear characters of G are not faithful, as G has nilpotence
class 2 and hence |G ′| > 1. Suppose χ ∈ Irr(G) is faithful and note
that cod(χ) = p3. Then

χ(1)cod(χ) = |G|

implies
χ(1) = p2 and |G : Z| = p4.

Since 〈1〉 < G ′ 6 Z, we have G ′ = Z and G is extraspecial. ut

Both cases of Lemma 2.4 can occur: the extraspecial groups are well
known, and the groups identified by Magma [5] as SmallGroup(35, i)
for i = 44, 45, 64, 65, and 66 offer particular examples with no faithful



90 Sarah Croome – Mark L. Lewis

irreducible characters. In general, consider

H ' G×Zp

where G is the central product described in the discussion preced-
ing Lemma 2.4. This group has order p5, and no faithful irreducible
characters. Nonlinear irreducible characters will have degree p and
kernel of size p, giving p3 as a codegree. Linear characters will
have kernel of size at least p4, as H/H ′ is elementary abelian.

The following is Lemma 2.3 of [6], which will be needed for sev-
eral of the remaining results. This lemma follows from the fact that
a maximal class p-group has a quotient which is extraspecial of or-
der p3. This quotient has a faithful non-linear irreducible character
of degree p, and the codegree of this character is p2.

Lemma 2.5 If G is a p-group that has maximal class, then p2 ∈ cod(G).

Lemma 2.6 is the next step toward investigating the connection
between the order of a p-group, it’s nilpotence class, and the presence
of p2 as a codegree.

Lemma 2.6 If G is a group with order p5 and nilpotence class at least 3,
then p2 ∈ cod(G).

Proof — If G has nilpotence class 4, then by Lemma 2.5,

p2 ∈ cod(G).

Thus we may assume G has class 3. Suppose p2 /∈ cod(G). Since G
does not have maximal class and is not extraspecial, we know by Lem-
ma 2.2 that |Z2| = p3. Suppose |Z| = p2. Let

χ ∈ Irr(G/Z)

be non-linear. By Lemma 2.1 of [7], χ(1) < cod(χ), which implies
cod(χ) > p3. Thus

p4 6 χ(1)cod(χ) = |G : ker(χ)| 6 |G : Z| = p3,

which is impossible. Therefore |Z| = p, and

p4 6 χ(1)cod(χ) = |G : ker(χ)| 6 |G : Z| = p4
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shows that χ is faithful and hence Z2/Z is cyclic. As |Z| = p, we have

Z = [G ′,G] < G ′ 6 Z2.

Since Z2/Z is cyclic, while G ′/[G ′,G] is elementary abelian, we have
|G ′| = p2.

Let Z2 = 〈a,Z〉. For any g ∈ G, [a, g] ∈ Z, so

1 = [a, g]p = [ap, g],

which implies ap ∈ Z. As G ′ = 〈ap,Z〉, this implies G ′ = Z, a contra-
diction. Hence p2 ∈ cod(G). ut

We can now prove the first half of Theorem 1.1 using induction,
with Lemma 2.6 as the base case.
Proof of Theorem 1.1 (i) — Induct on |G|. Lemma 2.6 establishes
the base case where |G| = p5, so assume |G| = pn+2. Since G has
coclass 2, the nilpotence class of G is n, the class of G/Z is n − 1,
and Z has order at most p2. If |Z| = p2, then |G/Z| = pn and by Lem-
ma 2.5, p2 ∈ cod(G/Z). If |Z| = p, then |G/Z| = pn+1, so G/Z has
coclass 2 and by the inductive hypothesis, p2 ∈ cod(G/Z). ut

If we increase the order of G in Lemma 2.6 to p6, the result

p2 ∈ cod(G)

will still hold. There are examples of groups of order p6 with class 2
where p2 /∈ cod(G), e.g. semi-extraspecial groups. In these
groups, G ′ = Z and |G ′|2 6 |G : G ′| [1]. Thus if |G| = p6 and G
has class 2, we have |Z| = |G ′| = p2. In [11], it is noted that G/G ′ is
elementary abelian. If a linear character λ ∈ Irr(G) has codegree 2,
then G/ker(λ) is a cyclic quotient of order p2, which is impossi-
ble since the kernel of a linear character contains G ′. If χ ∈ Irr(G)
is nonlinear, then χ(1) = p2, (see, for example, [8, Theorem A]),
so cod(χ) > p2, and we have p2 /∈ cod(G).

The proof of Lemma 2.7 makes use of characterizations found
in [8], called the strong and weak conditions. If for any NE G, ei-
ther

G ′ 6 N or N 6 Z,

a p-group G is said to satisfy the strong condition. If we replace the
requirement that N 6 Z with |NZ : Z| 6 p, G is said to satisfy the
weak condition.
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Lemma 2.7 If G is a p-group with |G| = p6 and nilpotence class at least 3,
then p2 ∈ cod(G).

Proof — If G has nilpotence class 4 or 5, we have p2 ∈ cod(G)
by Theorem 1.1 (i) and Lemma 2.5, respectively. Thus we may as-
sume G has class 3, and suppose p2 /∈ cod(G). The possible code-
grees of non-linear characters of G are p3, p4, and p5. If ϕ ∈ Irr(G)
has codegree p5, then

p6 6 ϕ(1)cod(ϕ) = |G : ker(ϕ)| 6 |G| = p6,

so ϕ is faithful. If µ ∈ Irr(G) has codegree p4, then

p5 6 µ(1)cod(µ) = |G : ker(µ)| 6 p6,

so µ is faithful or |ker(µ)| = p. In the latter case, since G has class 3,
we have |G ′| > p2, and hence G/ker(µ) is nonabelian with class 2 or
class 3. If G/ker(µ) has class 3, then Lemma 2.6 implies

p2 ∈ cod(G/ker(µ)),

contradicting p2 /∈ cod(G). On the other hand, if G/ker(µ) has class 2,
then p4 ∈ cod(G/ker(µ)) is impossible by Lemma 2.4. Thus µ must
be faithful. At least one of p4 and p5 must in cod(G), as |cod(G)| > 4
by Theorem 1.2 of [7]. Thus, G has a faithful irreducible character,
and hence Z is cyclic.

Since G has class 3, we know that G ′ 66 Z, so Z cannot be realized as
the intersection of kernels of only linear characters of G. Therefore Z
must be contained in the kernel of one or more non-linear irreducible
characters of G. Since such a character is clearly not faithful, it must
have codegree p3. Let χ ∈ Irr(G) be one such character. Then

p4 6 χ(1)cod(χ) = |G : ker(χ)| 6 |G : Z| 6 p5.

which shows that |Z| = p or p2.

Case 1. Assume |Z| = p2. Put K = ker(χ) and notice that by the
above inequality we now have K = Z. Since G3 is elementary abelian
and contained in Z, which is cyclic, we have |G3| = p. By Lem-
mas 2.27 (f) and 2.31 of [9], Z(χ) = Z2, and |Z2| = p

4.
Let Z(G/G3) = X/G3 and notice that Z 6 X 6 Z2. If G/G3 is

extraspecial, then X/G3 = (G/G3)
′ = G ′/G3 implies that X = G ′ has
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order p2, and thus X = Z. This is impossible as G has class 3 and
hence G ′ 6= Z. By Lemma 2.4, we now have that G/G3 has no faithful
irreducible characters, thus X/G3 cannot be cyclic, so |X/G3| = p2

or p3.
If |X/G3| = p3, then X = Z2, and |G : X| = p2 shows that G/G3 has

exactly two noncentral generators. Thus |G ′| = p2. Let Z2 = 〈a, z〉
where Z = 〈z〉, and notice that a and z each have order p2. Since G/G ′

is elementary abelian, gp ∈ G ′ for every g ∈ G. Hence G ′ = 〈ap, zp〉.
As ap /∈ Z, there exists some g ∈ G such that 1 6= [ap, g], and since
a ∈ Z2, we have [a, g] ∈ Z which implies [ap, g] = [a, g]p. Thus

[a, g]p 6= 1,

so [a, g] is an element of Z with order greater than p and therefore
generates Z. Since [a, g] is also an element of G ′, this shows that

Z 6 G ′,

which is impossible as they have the same order but cannot be equal.
Thus we may assume that |X/G3| = p2.

By [8, Theorem 2.4], we know that |G ′/G3| 6= p, so G ′ = X. Recall
that since Z is cyclic, G3 is the unique normal subgroup of G with
order p, and hence the kernel of any nonfaithful irreducible charac-
ter of G must contain G3. Any such character which is also nonlinear
must have codegree p3, and since G/G3 has no faithful irreducible
characters, its kernel must have order p2. Thus any nontrivial nor-
mal subgroup of G which does not contain G ′ is either the kernel of
an irreducible character of G with codegree p3, having order p2 and
containing G3, or an intersection of such kernels and therefore equal-
ing G3. Hence G satisfies the weak condition, and by Theorem 5.2
of [8], Z2/Z cannot be cyclic of order p2. This is a contradiction since

Z(χ)/K = Z2/Z

is cyclic by Lemma 2.27 (d) of [9].

Case 2. Assume |Z| = p. Let χ ∈ Irr(G) have codegree p3 and put

K = ker(χ).

If |K| = p then by Lemma 2.4, G/Z is extraspecial. The only capable
extraspecial group has order p3 [3, Corollary 8.2], so this is impossi-



94 Sarah Croome – Mark L. Lewis

ble, and we may assume that |K| = p2. By Lemma 2.2, we have

|Z2| > p
3.

Suppose |Z2| = p
4. Since Z(χ) > Z2, Corollary 2.30 of [9] implies

Z(χ) = Z2.

Since |K : Z| = p, and K/Z must intersect nontrivially with Z2/Z, we
have that K 6 Z2. By Lemma 2.27 (d) of [9],

Z(χ)/ker(χ) = Z2/K

is cyclic. Let Z2 = 〈a,K〉. Since |Z2 : K| = p2, we have ap /∈ K > Z,
and hence there exists some g ∈ G such that [ap, g] 6= 1. As a ∈ Z2,
we have [a, g] ∈ Z, so

1 6= [ap, g] = [a, g]p ∈ Z.

This is impossible since [a, g] ∈ Z and |Z| = p, thus we may as-
sume |Z2| = p

3.

The order of G ′ is now either p2 or p3. Let

Z(χ) = 〈a,K〉.

Observe that [Z(χ),G] is contained in both K and G ′. If |G ′| = p2,
then

K∩G ′ = Z,

giving [Z(χ),G] 6 Z, and hence [a, g] ∈ Z for all g ∈ G. Since ap /∈ Z,
we can find some g ∈ G such that [ap, g] 6= 1. As before, we have

1 6= [ap, g] = [a, g]p,

which is impossible since |Z| = p. Thus |G ′| = p3 and we have G ′=Z2.

Recall that the only non-faithful irreducible characters of G are
either linear, or have codegree p3 and kernel of order p2. Again, G
satisfies the weak condition and Theorem C of [8] implies

cd(G) = {1,p2}.

Since G has at least one irreducible character χ with codegree p3
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and |ker(χ)| = p2, we must have p ∈ cd(G), which is a contradic-
tion. ut

Lemma 2.7 provides the base case for the induction used to prove
the second half of Theorem 1.1.
Proof of Theorem 1.1 (ii) — Induct on |G|. The base case |G| = p6

is established by Lemma 2.7, so we may assume |G| = pn+3. As G
has coclass 3, the order of Z is at most p3. When |Z| = p3, G/Z has
maximal class and p2 ∈ cod(G/Z) by Lemma 2.5. When |Z| = p2,
G/Z has coclass 2 and p2 ∈ cod(G/Z) by Theorem 1.1 (i). The final
possibility is |Z| = p, in which case G/Z has coclass 3, and by the
inductive hypothesis, p2 ∈ cod(G/Z). ut

The following is an easy corollary of Lemma 2.5 and Theorem 1.1.

Corollary 2.8 If G is a group with order p7 and nilpotence class at least 4,
then p2 ∈ cod(G).

The question of whether p2 is in the set of codegrees for groups
of order p8 with class 4 remains unsettled. If there exists a group G
with p2 /∈ cod(G), we can make certain claims about the group’s
structure. These claims are detailed in Lemma 2.9.

Lemma 2.9 Let G be a p-group with nilpotence class 4, |G| = p8,
and p2 /∈ cod(G). Then the following hold:

(i) Z = G4 is the unique normal subgroup of G of order p,

(ii) Z2 = G3 is the unique normal subgroup of G of order p2,

(iii) cod(G/Z2) = {1,p,p3},

(iv) either |Z3| = p
4, Z3 = G ′, and cd(G/Z2) = {1,p,p2}, or |Z3| = p

5,
p4 6 |G ′| 6 p5, and cd(G/Z2) = {1,p}.

Proof — Let G be as stated. If |Z| > p2, then G/Z has class 3 and

p4 6 |G/Z| 6 p6.

Suppose |G/Z| = p4. Notice that G/Z has maximal class, and by Lem-
ma 2.5,

p2 ∈ cod(G/Z),

which is a contradiction. If p5 6 |G/Z| 6 p6, then p2 ∈ cod(G/Z)
by Lemmas 2.6 and 2.7. Hence |Z| = |G4| = p, which proves (i).
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Suppose |G3| > p3, and let N be a normal subgroup of G of or-
der p2 such that N � G3. Then G/N has order p6 and class 3, and
by Lemma 2.7, p2 ∈ cod(G/N), which is a contradiction. Hence

|G3| = p
2.

Let NCG with |N| > p2, N � G3. Then G/N has class 3,

p4 6 |G/N| 6 p6,

and as before, we have p2 ∈ cod(G/N), a contradiction. Hence we
may assume that all normal subgroups of G with order at least p2

contain G3.

Suppose G/G3 has a faithful character. Then

Z(G/G3) = X/G3

is cyclic. Since G/G3 has class 2, we have

X/G3 > (G/G3)
′ = G ′/G3.

As p2 /∈ cod(G), G ′/G3 is elementary abelian, and hence |G ′/G3| = p.
Since G/G ′ is also elementary abelian while X/G3 is cyclic, we have

|X/G3| = p
2,

and G ′/G3 is the unique normal subgroup of G/G3 of order p. Ev-
ery nontrivial normal subgroup of a p-group intersects the center
nontrivially, and hence contains G ′/G3, so G/G3 satisfies the strong
condition in [8]. Thus cd(G/G3) = {1,p2} by Theorem B of [8]. Also
notice that G/G3 has no nonfaithful nonlinear characters, as each
nontrivial kernel K/G3 contains G ′/G3, which implies G/K is abelian
and hence has no nonlinear irreducible characters. Thus, no ker-
nel of a nonlinear character of G can properly contain G3 and the
kernel of any nonfaithful nonlinear irreducible character of G is ei-
ther G3 or G4. Any normal subgroup of G with order at least p3

must contain G ′, which shows that G satisfies the weak condition,
and by Theorem G (ii) of [8], |G| 6 p6. This is a contradiction, and
therefore G/G3 cannot have a faithful character.

Now, the kernel of a nonlinear character of G cannot have order p2,
and |G ′| > p3. Since every normal subgroup is the intersection of one
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or more kernels of irreducible characters, in order to realize G3 as
such a kernel or intesection of kernels, there must be some nonli-
near χ ∈ Irr(G) with |ker(χ)| > p3. Suppose |ker(χ)| = p5. Then

cod(χ)χ(1) = |G|/|ker(χ)| = p3.

Since the degree of χ is strictly less than its codegree, we have χ(1)=p
and cod(χ) = p2, a contradiction. Hence

p3 6 |ker(χ)| 6 p4.

If |ker(χ)| = p4, then cod(χ)χ(1) = p4 implies

cod(χ) = p3.

If |ker(χ)| = p3, then |G/ker(χ)| = p5, class 2, and hence cod(χ) = p3

by Lemma 2.4, proving (iii).

If G/Z has no faithful characters, then cod(G/Z) = {1,p,p3}, imply-
ing G/Z has nilpotence class at most 2, a contradiction. Hence G/Z
has a faithful character, and Z2/Z is cyclic. Let

Z2 = 〈a,Z〉

and suppose |Z2| > p3. Then ap /∈ Z, and there exists some g ∈ G
such that [ap, g] 6= 1. For all x ∈ G, [a, x] ∈ Z, so [ap, x] = [a, x]p = 1
(since |Z| = p). Hence

1 6= [ap, g] = [a, g]p = 1,

a contradiction. Thus |Z2| = p
2 and hence Z2 = G3, proving (ii).

To see (iv), consider |Z3|. As G/Z2 has no faithful irreducible char-
acters, Z3/Z2 is not cyclic, so |Z3| > p4. Suppose |Z3| = p

6. Then

cd(G/Z2) = {1,p},

which implies
|ker(χ)| = p4

for all nonlinear χ ∈ Irr(G) such that |ker(χ)| > p2. By Theorem B
of [8], G/Z2 satisfies the strong condition. Hence ker(χ) 6 Z3, and
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since Z(χ) > Z3, we have that Z3/ker(χ) is cyclic. Put

ker(χ) = K, G = G/Z, and Z3 = 〈a,K〉.

For all g ∈ G, [a, g] ∈ Z2. Since ap /∈ Z2, there is some x ∈ G such
that [ap, x] 6= 1. Then [a, x]p = [ap, x] 6= 1, but this is a contradiction
since |Z2| = p, and hence [a, x]p = 1. Therefore |Z3| 6= p6.

Suppose |Z3| = p4. If |G ′| = p3, then by Lemma 2.5 of [8], G/Z2
is not capable, a contradiction. Hence |G ′| = p4, that is, G ′ = Z3.
By Lemma 1.1 of [2], none of G, G/Z, or G/Z2 has an abelian sub-
group of index p. By Theorem 22.5 of [2], neither cd(G) nor cd(G/Z2)
is {1,p}. Hence p2 ∈ cd(G/Z2), and we have some χ ∈ Irr(G)
with |ker(χ)| = p3.

Suppose p /∈ cd(G/Z2). Then |ker(χ)| = p3 for all nonlinear

χ ∈ Irr(G/Z2).

By Lemma A.6.2 of [2], Z3 > ker(χ) for all such χ, and hence G
is normally constrained, defined in [4] as a p-group with Gi as the
only normal subgroup of G of order |Gi| for every i, 1 6 i 6 c(G),
where c(G) is the nilpotence class of G. If p is odd, then by Theo-
rem 3.5 of [4], |G : G ′| = p4 implies p2 6 |G3 : G4|, a contradiction
since |G3 : G4| = p. If p = 2, then since G/Z satisfies the weak condi-
tion, Theorem F of [8] implies that |G : Z2| = p

3 or p4, a contradiction.
Hence cd(G/Z2) = {1,p,p2}.

Finally, suppose |Z3| = p
5. Recall that for χ ∈ Irr(G), χ(1)2 6 |G : Z|.

Since
|G : Z3| = p

3,

we have cd(G/Z2) = {1,p}. By Lemma 2.4 of [8], |G ′| 6=p3, since |G :Z3|
is not a square. ut

If we consider only p-groups satisfying Hypothesis (∗), these re-
sults can be extended to groups which are arbitrarily large. Theo-
rem 2.10 restates Theorem 1.2 in terms of nilpotence class.

Theorem 2.10 Let a group G and all of its quotients satisfy Hypothe-
sis (∗). If |G| = p2n or p2n−1 where n > 3, and the nilpotence class of G
is at least n, then p2 ∈ cod(G).

Proof — Induct on n. The base case when n = 3 is established
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by Lemmas 2.6 and 2.7. Now assume

|G| = p2n or p2n−1

and c(G) = c > n, where n > 4. Suppose |Z| > p2. Then

c(G/Z) = c− 1 and |G/Z| 6 p2n−2 or p2n−3.

If |G/Z| > p5 then we are done by the inductive assumption.
Since c− 1>3, we know |G/Z|>p4, and if |G/Z|=p4 then

p2∈cod(G/Z)

by Lemma 2.5.
We may now assume |Z| = p. By Hypothesis (∗),

|Z2 : Z| > p2.

Suppose Z2/Z has exponent greater than p, and let a ∈ Z2 such
that ap /∈ Z. There exists g ∈ G such that

[ap, g] 6= 1.

Since [a, g] ∈ Z, we have

1 6= [ap, g] = [a, g]p,

which is trivial, as |Z| = p. This contradiction shows that Z2/Z is
elementary abelian, and we can find NCG such that

Z < N < G, |N : Z| = p, and c(G/N) = c− 1.

Now |G/N| = p2n−2 or p2n−3, and we are done by the inductive
assumption. ut

Theorem 1.2 now follows as a corollary of Theorem 2.10.
Proof of Theorem 1.2 — Let G have coclass n, and |G| = p2m

or p2m+1 where m > n. If |G| = p2m, then c(G) = 2m − n > m.
If |G| = p2m+1, then c(G) = 2m+ 1− n > m. In either case, we are
done by Theorem 2.10. ut
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