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Abstract
A group partition is a group cover in which the elements have trivial pairwise
intersection. Here we define the partition number of a group - the minimal number
of subgroups necessary to form a partition - and examine some of its properties,
including its relation to the covering number for solvable groups.

Mathematics Subject Classification (2010): 20D99, 20E34

Keywords: dihedral group; covering of groups; partition of groups; partition
of vector spaces

1 Introduction

A group cover is a collection of proper subgroups whose union is the group.
For brevity, we say that a group G is coverable if there exists some covering
of G. Among the set of all coverable groups exists a certain subset, the parti-
tionable groups, which admit a particular type of cover known as a partition.
This is not a partition in the set-theoretic sense, but rather a collection of
subgroups that cover the group and have trivial pairwise intersection:

Definition 1.1 A collection of nontrivial proper subgroups

{H1,H2, . . . ,Hn}

is a partition of a group G if G = ∪Hi and Hi ∩Hj = {e} whenever i 6= j.
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We will call a subgroup Hi ∈ {H1,H2, . . . ,Hn} a summand of the partition.
The study of group partitions began with the work of Miller in 1906

(see [17]), and culminated in the complete classification of partitionable
groups through the combined efforts of Baer, Kegel, and Suzuki in 1961

(see [3],[14],[19]):

Theorem 1.2 A group G is partitionable if and only if G is isomorphic to one of:

1. S4,

2. a noncyclic p-group with Hp(G) 6= G, where

Hp(G) = 〈x ∈ G : xp 6= 1〉 ,

3. a group of the Hughes-Thompson type,

4. a Frobenius group,

5. PSL(2,pn), with pn > 4,

6. PGL(2,pn), with pn > 5 and p odd,

7. Sz(22n+1),

for some prime p and some n ∈N.

Definition 1.3 The covering number of a group, denoted σ(G), is the minimal
number of subgroups necessary to form a cover of the group. If G is not coverable,
then σ(G) =∞.

The covering number has received attention in the literature, and there are
a modest number of known results. For example, no group has a covering
number of 2 (discovered independently by Scorza, among others [13]); and
a group has a covering number of 3 if and only if the group is homomorphic
to the Klein four group (see [5],[13]). Other bounds and various minimality
conditions have places upon σ(G) for various classes of groups. See the
work of Cohn [7], Maróti [16], Kappe [13], Garonzi [9],Tomkinson [20], Ab-
dollahi [1],[2], among others.

We can extend the idea of the covering number and analogously define
the partition number of a group.

Definition 1.4 The partition number of a group, denoted ρ(G), is the minimal
number of subgroups necessary to form a partition of G. If G has no partition,
then ρ(G) =∞.

Of course, making the definition presumes that it is an interesting enough
number to warrant its own definition; in particular, that it is distinct from the
covering number at least sometimes. Note that since all partitions are covers,
then σ(G) 6 ρ(G) for any partitionable group G. But for which partitionable
groups is σ(G) < ρ(G)?, and for which partitionable groups σ(G) = ρ(G)?
While we cannot completely answer these questions, it turns out that the di-
hedral groups, generalized dihedral groups, Frobenius groups and p-groups
provide us with nice examples.
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2 The dihedral groups and σ(G) < ρ(G)

In the discussion that follows, for the dihedral group Dn of order 2n, we
will use the presentation

Dn =
〈
a,b : an = b2 = e,ab = (ab)−1

〉
.

We will use the following theorem of Tomkinson [20] to find the covering
number of Dn and other solvable groups.

Theorem 2.1 (Tomkinson) Let G be a finite solvable group and let pn be
the order of the smallest chief factor having more than one complement. Then
σ(G) = pn + 1.

Thus by applying Tomkinson’s Theorem to Dn we get the following Corol-
lary.

Corollary 2.2 If p is the smallest prime such that p
∣∣n, then

σ(Dn) = σ(Dp) = p+ 1.

It is known that the coverable groups are precisely the noncyclic groups [5],
so groups of order 2, 3, 5, and 7 have no covers or partitions. Further, no
group of order 4 or 6 can satisfy σ(G) < ρ(G) due to the observation below:

Remark 2.3 If |G| = pq for some primes p and q, then σ(G) = ρ(G), because
two distinct subgroups of prime order have trivial intersection.

Thus if a group G satisfies σ(G) < ρ(G), then |G| > 8.

Remark 2.4 By Corollary 2.2 we see that σ(D4) = 3. Since subgroup 〈a〉 must
be a summand in any partition of D4, an inspection of the subgroup structure of D4
reveals that ρ(D4) = 5. Therefore, σ(D4) < ρ(D4).

It turns out that the partition number of Dn can be expressed as a closed
formula that holds without restriction on n.

Lemma 2.5 Let G be a group with a partition

{H1,H2, . . . ,Hn}

such that |H1| = |G|/2. If x ∈ G−H1, then |x| = 2.

Proof — Since H1 is a normal subgroup of index 2 in G, x2 ∈ H1 for
all x ∈ G. If x ∈ G−H1, then x ∈ Hi for some i 6= 1, so 〈x〉 ∩H1 = e which
implies |x| = 2. ut
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Theorem 2.6 For n > 1, ρ(Dn) = n+ 1.

Proof — Observe that any covering of Dn must include the subgroup 〈a〉,
since this is the only proper subgroup that contains a. Thus by Lemma 2.5
since 〈a〉 has index 2 in Dn, the remaining subgroups in the partition will
then have the form 〈bai〉, where 0 6 i < n. Each of these subgroups has
order 2, and they intersect trivially. So the only partition we can form is

Π = {〈a〉}∪
{
〈bai〉 : 0 6 i < n

}
,

and clearly, |Π | = n+ 1. ut

Remark 2.7 Given n > 3 there is a partitionable group G with ρ(G) = n.

Corollary 2.2 and Theorem 2.6 give us immediately a large class of groups
for which the covering number is strictly less than the partition number.

Corollary 2.8 If n is composite, then σ(Dn) < ρ(Dn).

Proof — If n is composite, then n has a prime divisor strictly less than n.
Let p be the smallest such divisor. Then by Corollary 2.2 and Theorem 2.6,
σ(Dn) = p+ 1 < n+ 1 = ρ(Dn). ut

Corollary 2.9 σ(Dn) = ρ(Dn) if and only if n is a prime.

Proof — That ρ(Dp) = p+ 1 for a prime p was established in Theorem 2.6.
The other direction is immediate from Corollary 2.2 because, if p is prime,
then p is the smallest prime divisor of p. ut

3 The Frobenius groups and σ(G) = ρ(G)

In Remark 2.3 we noted that if |G | = pq for some primes p and q, then σ(G)
is equal to ρ(G). In this section we look at another family of groups
with σ(G) = ρ(G). In the discussion that follows, for a Frobenius group,
we will denote the Frobenius complement by H and the Frobenius ker-
nel by K. For more information about the structure of the Frobenius group
see [18].

Theorem 3.1 If G is a finite solvable Frobenius group with the Frobenius kernel K
which is a minimal normal subgroup and an abelian Frobenius complement H,
then σ(G) = ρ(G).

Proof — By 8.5.5 of [18], K has more than one complement, and since G
is a finite solvable group, |K | = pn for p a prime. Since H is abelian, it is
in fact cyclic, by Corollary 6.17 of [12]; thus K is the only chief factor with
more than one complement. Thus, by Tomkinson’s Theorem (Theorem 2.1),

σ(G) = pn + 1.
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On the other hand, by 8.5.5 of [18],

{K,Hx | x ∈ K}

is a partition of G with pn + 1 summands. So σ(G) = ρ(G). ut
Example 3.2 below is also an immediate consequence of Remark 2.3.

Example 3.2 If G = 〈a,b〉 is nonabelian of order pq for some primes p and q
with 〈a〉 C G, then G is a finite solvable Frobenius group with the Frobenius
kernel K = 〈a〉 a minimal normal subgroup, and an abelian Frobenius comple-
ment H = 〈b〉.

Example 3.3 The Frobenius group of order 20. In this case, K the Frobenius
kernel is isomorphic to Z5, and the Frobenius complement H is isomorphic to Z4.

Example 3.3 is a special case of Example 3.4.

Example 3.4 For every finite field GF(pn) with pn(> 2) elements, the group
of invertible affine transformations acting naturally on GF(pn) is a Frobenius
group with the Frobenius kernel K ' Znp a minimal normal subgroup, and an
abelian Frobenius complement H ' Zpn−1.

4 ρ(G) for G an elementary abelian group

Similar to the dihedral groups, we can calculate ρ(G) for G an elementary
abelian group. We will denote the elementary abelian group of order pn
by Epn . The following result of Beutelspacher [4] gives us a lower bound
for ρ(Epn).

Lemma 4.1 If p is a prime, then 1+ pd
n
2 e 6 ρ(Epn).

Remark 4.2 Using the construction of Bu in [6], given n > 1 and p an odd prime,
one can construct a partition of G = Epn with pn−1 + 1 < pn + 1 summands, by
viewing

G = GF(pn−1)×GF(p)

as a vector space over GF(p). Also using Bu’s construction, if d | n one can
construct a partition of G composed of (pn − 1)/(pd − 1) subgroups isomorphic
to Epd by viewing

G = GF(pd)× . . .×GF(pd)

as a vector space over GF(p).

Remark 4.3 Using the construction of Bu in [6] we see that

1+ p2 = ρ(Ep3) = ρ(Ep4).
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These results are generalized in Theorem 4.5.

Lemma 4.4 If K 6 G are two partitionable groups such that ρ(K) = n, and Π is
a partition of G with no H ∈ Π containing K, then |Π| > n.

Proof — Let ΠK = {H∩K | H ∈ Π and H∩K 6= {1}}. Since there is noH ∈ Π
containing K, all subgroups in ΠK are proper. And since Π is a partition
of G, ΠK is a partition of K. Thus |Π| > |ΠK | > ρ(K) = n. ut

Theorem 4.5 If p is a prime and n > 1, then 1+ pd
n
2 e = ρ(Epn).

Proof — Case 1. If n = 2d is even, then by [4]

1+ pd 6 ρ(Epn)

and by [6] there is a partition of Epd with

(pn − 1)/(pd − 1) = ((pd)2 − 1)/(pd − 1) = pd + 1

summands. So
1+ pd

n
2 e = ρ(Epn).

Case 2. If n = 2d− 1 is odd, then by [4] 1+ pd 6 ρ(Epn) and by Case 1 above

1+ pd = ρ(Epn+1).

Using Lemma 4.4, we see that

ρ(Epn) 6 ρ(Epn+1),

and so again that 1+ pd
n
2 e = ρ(Epn). ut

Corollary 4.6 If n > 2, then σ(Epn) < ρ(Epn).

Proof — By Tomkinson’s Theorem (Theorem 2.1) σ(Epn) = 1 + p and
by Theorem 4.5 ρ(Epn) = 1+ pd

n
2 e . ut

5 Generalized dihedral groups and nonabelian
summands

Having seen some interesting results surrounding the dihedral groups, there
are other interesting questions we might ask. One observation we may ex-
tract from our study of the dihedral groups is that the subgroups contained
in the partitions we constructed were always abelian.
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In the discussion that follows, we will denote by Epn oZ2 for p an odd
prime the generalized dihedral group, formed from the semidirect product
of the elementary abelian group of order pn with a cyclic group of order
two acting via the inverse map.

Theorem 5.1 G = Epn oZ2 for p an odd prime and n > 2 does contain a
nonabelian summand in a partition.

Proof — Let H be a proper nonabelian subgroup in G , since every non-tri-
vial element in G has order 2 or p,

Π = {H}
⋃

{〈x〉 |x ∈ G−H}

is a partition of G. ut

Corollary 5.2 G = E9 oZ2 does contain a nonabelian summand in a partition.

Remark 5.3 Using GAP [8] one can show that G = E9 oZ2 is the smallest
example of a group that contains a nonabelian summand in a partition.

Theorem 5.4 For p an odd prime,

σ(Ep2 oZ2) = p+ 1 < ρ(Ep2 oZ2) = p
2 + 1.

Proof — By Tomkinson’s Theorem (Theorem 2.1), σ(Ep2 oZ2) = p+ 1.
In any partition Π = {H1,H2, . . . ,Hn} of Ep2 oZ2,

|Hi | ∈ {2, 2p,p,p2}.

Note that G has
(p2 − 1)/(p− 1) = p+ 1

subgroups of order p and and p2 subgroups of order 2. So if all subgroups
in Π have order 2 or p, then

|Π| = p2 + p+ 1.

Case 1. There is a subgroup in Π isomorphic to Ep2 , then by Lemma 2.5

|Π| = p2 + 1.

Case 2. There is a subgroup in Π isomorphic to Dp, then without loss of
generality, we may assume that H1 = 〈x,y1〉. Note that the order of any
other summand must be < 2p. Thus,

Π=
{
〈x,y1〉 , {Cp(G) − 〈y1〉} ,

{
C2(G) −

{
〈x〉 , 〈xy1〉 ,

〈
xy21

〉
, . . . ,

〈
xy
p−1
1

〉}}}
,
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where as before,

Cp(G) = {subgroups of G with order p}

and
C2(G) = {subgroups of G with order 2}.

Also in this case, |Π| = 1+ p+ (p2 − p) = p2 + 1. ut

Lemma 5.5 If Π is a partition of G = Epn oZ2 containing a subgroup isomor-
phic to Epn or Epn−1 oZ2, then |Π| = pn + 1.

Proof — Case 1. Π contains a subgroup isomorphic to Epn . We may assume
that H1 ' Epn ; then the other subgroups in Π are C2(G), so

|Π| = pn + 1.

Case 2. Π contains a subgroup isomorphic to Epn−1 oZ2. Here, we may
assume that

H1 ' Epn−1 oZ2

and
H1 = 〈x,y1 . . . yn−1〉 .

Note that any other summand must have order 2 or p. Now

|C2(G) −C2(H1)| = p
n − pn−1

and

|Cp(G) −Cp(H1)| =

n−1∑
k=0

pk −

n−2∑
k=0

pk = pn−1,

so |Π| = pn + 1. ut

Lemma 5.6 For p an odd prime and n > 2, ρ(Epn−1 oZ2) 6 ρ(Epn oZ2).

Proof — Note that by Lemma 5.5

ρ(Epn−1 oZ2) 6 p
n−1 + 1.

Let Π be a partition of Epn oZ2 with |Π| = ρ(Epn oZ2).
Case 1. Π contains a subgroup isomorphic to Epn−1 oZ2 so

ρ(Epn oZ2) = p
n + 1 > ρ(Epn−1 oZ2)

by Lemma 5.5.
Case 2. Π does not contains a subgroup isomorphic to Epn−1 oZ2, so by Lem-
ma 4.4 ρ(Epn−1 oZ2) 6 ρ(Epn oZ2). ut
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Remark 5.7 Let G = Epn oZ2 and denote byMt any subgroup of G isomorphic
to Ept oZ2. Note that if Π is a partition of G, then

Π = {Epi1 , . . . , Epik ,Mt1 , . . . ,Mtm , 〈x〉g1 , . . . , 〈x〉gl }

and
|Π| = k+m+ [pn − (pt1 + . . .+ ptm)].

Also note that:

{Epi1 , . . . , Epik , Sylp(Mt1), . . . , Sylp(Mtm)}

is a partition of Epn .

Lemma 5.8 For p an odd prime and Π a partition of Epn oZ2, then |Π|>ρ(Epn).

Proof — If Π is a partition of G = Epn oZ2 then

|Π| = k+m+ [pn − (pt1 + . . .+ ptm)] > k+m > ρ(Epn).

The statement is proved. ut

Corollary 5.9 For p an odd prime

ρ(Epn) 6 ρ(Epn oZ2) 6 p
n + 1.

Theorem 5.10 For p an odd prime and n > 3, then

1+ p2 6 1+ pd
n
2 e = ρ(Epn) 6 ρ(Epn oZ2) 6 p

n + 1

and
ρ(Epn−1 oZ2) 6 ρ(Epn oZ2).

Proof — Theorem 4.5, Lemmas 5.6 and Corollary 5.9. ut

Remark 5.11 For p an odd prime one can find examples where

1+ pd
n
2 e < ρ(Epn oZ2) < p

n + 1.

Let p = n = 3 using GAP [8] we see that

10 = 1+ 3d
3
2 e = 1+ 32 < ρ(E33 oZ2) =

33 − 1

3− 1
= 13 < 33 + 1

this partition consists of nine subgroups of order 6 isomorphic to D3 and four of
order 3.

Lemma 5.12 For p a prime, then ρ(Epn oZ2) ≡ 1 mod p.
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Proof — Let Π be a partition of Epn oZ2 then

Π = {Epi1 , . . . , Epik ,Mt1 , . . . ,Mtm , 〈x〉g1 , . . . , 〈x〉gl }

so
|Π| = k+m+ [pn − (pt1 + . . .+ ptm)].

By the first packing condition in the Introduction of [10] we see that k+m ≡ 1
mod p, so |Π| ≡ 1 mod p. ut

6 Partitionable p-groups with σ(G) < ρ(G)

Remark 6.1 Note that a partitionable nilpotent group is a p-group.

Hughes conjectured in [11] that if G > |Hp(G)| > 1, then

Hp(G) = 〈x ∈ G : xp 6= 1〉

has index p in G. While the conjecture is false, it is true for large families of
groups (see [15]).

Definition 6.2 We will call a partitionable p-group of Hughes type If Hp(G)
has index p in G.

Lemma 6.3 If G is a p-group with partition Π and |Hp(G)| > 1, then Hp(G) lies
in one summand.

Proof — Let x ∈ Z(G) with order p. Let y be an element of order greater
than p (note that y ∈ Hp(G)). Assume x ∈ H1 and that y ∈ Hi. Note
that yp ∈ Hi and yp = (xy)p; thus xy ∈ Hi since Π is a partition. Now
sinceHi is a group, x ∈ Hi, which implies that i = 1, and thusHp(G) ⊆ H1. ut

Lemma 6.4 If G is a group of exponent p and order p3, then

1+ p = σ(G) < 1+ p2 = ρ(G).

Proof — Note that if Π is a partition, then either there is one summand of
order p2 or all summands have order p. If all summands have order p, then

|Π| = 1+ p+ p2.

If there is a summand of order p2, then |Π| = 1+ p2. ut

Lemma 6.5 If G is a p-group with partition Π which has a summand of order

|G|

p
= pn−1,
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then |Π| = 1+ pn−1.

Proof — Note that all but one summand have order p, so |Π|=1+ pn−1.ut

Lemma 6.6 If G is a finite p-group and

1 < |Hp(G)| <
|G|

p
,

then for every partition Π of G there exists a subgroup KΠ such that Hp(G) has
index p in KΠ and for all H ∈ Π, KΠ * H.

Proof — By Lemma 6.3 Hp(G) lies in one summand (say H1), and every
other summand must have exponent p. Let x be in H2 − {1} and
let KΠ = Hp(G) 〈x〉. ut

Theorem 6.7 If G is a finite p-group with partition and |G| > p3,
then σ(G)<ρ(G).

Proof — By Tomkinson’s Theorem (Theorem 2.1), σ(G) = p+ 1.
Note that by Lemmas 6.4 and 6.5 if G is p-group of order p3 with a

partition, then ρ(G) = 1+ p2.
Case 1. For G an exponent p group we will use induction. From the remarks
above if |G| = p3, then ρ(G) = 1+ p2 > 1+ p2.

Assume that
ρ(G) > 1+ p2

for any group G of order pk and exponent p, k > 3. Consider the case k+ 1.
Let Π be a partition of G with |Π| = ρ(G), since |G| = pk+1 > p3 there is a
maximal subgroup M which is not contained in any summand (G has more
than one maximal subgroup and any two of them intersect nontrivially).
Thus by Lemma 4.4 we have ρ(G) > ρ(M) > 1+ p2 > σ(G) = p+ 1.
Case 2. If G is a partitionable p-group of Hughes type, then Hp(G) is a
maximal subgroup of G, and by Lemma 6.3 it is a summand, thus by Lem-
ma 6.5, ρ(G) = 1+ pn−1 > σ(G).
Case 3. If

1 < |Hp(G)| <
|G|

p

and Π be a partition of G with |Π| = ρ(G), then by Lemma 6.6 there ex-
ists KΠ 6 G a partitionable p-group of Hughes type which is not contained
in any summand of Π. From case above 1 + p2 6 ρ(KΠ), so by Lem-
ma 4.4, 1+ p2 6 ρ(G). ut



66 Tuval Foguel – Nick Sizemore

REFERENCES

[1] A. Abdollahi – S.M. Jafarian Amiri: “Minimal coverings of com-
pletely reducible groups”, Publ. Math. Debrecen 72 (2008), 167–172.

[2] A. Abdollahi – F. Ashraf – S.M. Shaker: “The symmetric group
of degree six can be covered by 13 and no fewer proper subgroups”,
Bull. Malaysian Math. Sci. Soc. 30 (2007), 57–58.

[3] R. Baer: “Partitionen endlicher Gruppen”, Math. Z. 75 (1960), 333–372.

[4] A. Beutelspacher: “Blocking sets and partial spreads in finite pro-
jective spaces”, Geom. Dedicata 9 (1980), 425–449.

[5] M. Bruckheimer – A.C. Bryan – A. Muir: “Groups which are the
union of three subgroups”, Amer. Math. Monthly 77 (1970), 52–57.

[6] T. Bu: “Partitions of a vector space”, Discrete Math. 31 (1980), 79–83.

[7] J.H.E. Cohn: “On n-sum groups”, Math. Scand. 75 (1994), 44–58.

[8] The GAP Group: “GAP – Groups, Algorithms, and Programming”,
4.6.2 (2013).

[9] M. Garonzi: “Finite groups that are the union of at most 25 proper
subgroups”, J. Algebra Appl. 12 (4) (2013), 1350002, 11pp.

[10] O. Heden – J. Lehmann: “Some necessary conditions for vector space
partitions”, Discrete Math. 312 (2012), 351–361.

[11] D.R. Hughes: “A problem in group theory”, Bull. Amer. Math. Soc. 63

(1957), 209.

[12] I.M. Isaacs: “Finite Group Theory”, American Mathematical Society,
Providence (2008).

[13] L.C. Kappe – J. Redden: “On the covering number of small alternat-
ing groups”, Contemp. Math. 511 (2010), 109–125.

[14] O.H. Kegel: “Nicht-einfache partitionen endlicher gruppen”, Arch.
Math. (Basel) 12 (1961), 170–175.

[15] I.D. MacDonald: “Solution of the Hughes problem for fi-
nite p-groups of class 2p− 2”, Proc. Amer. Math. Soc. 27 (1971), 39–42.

[16] A. Maróti: “Covering the symmetric group with proper subgroups”,
J. Comb. Theory Ser. A 110 (2005), 97–111.



Partition numbers of finite solvable groups 67

[17] G.A. Miller: “Groups in which all the operators are contained in a
series of subgroups such that any two only have identity in common”,
Bull. Amer. Math. Soc. 17 (1906), 446–449.

[18] D.J.S. Robinson: “A Course in the Theory of Groups’, Springer, Berlin
(1995).

[19] M. Suzuki: “On a finite group with a partition”, Arch. Math. (Basel) 12

(1961), 241–274.

[20] M.J. Tomkinson: “Groups as the union of proper subgroups”, Math.
Scand. 81 (1997), 191–198.

Tuval Foguel
Department of Mathematics and Computer Science
Adelphi University
One South Avenue
Garden City, NY 11010 (USA)
e-mail: tfoguel@adelphi.edu

Nick Sizemore
Department of Mathematics
University of Florida
1400 Stadium Rd
Gainesville, FL 32611 (USA)
e-mail: ncsizemore@ufl.edu


	Tuval Foguel — Nick Sizemore: Partition Numbers of Finite Solvable Groups



