

Advances in Group Theory and Applications c 2017 AGTA - www.advgrouptheory.com/journal 4 (2017), pp. [29](#page-0-0)–[40](#page-11-0) ISSN: ²⁴⁹⁹-¹²⁸⁷ DOI: 10.4399/97888255086972

Finite Groups with H_σ-Permutably Embedded Subgroups

DARYA A. SINITSA

(*Received Nov. 24, 2016; Accepted Mar. 27, 2017 — Communicated by A. Skiba*)

Abstract

Let G be a finite group. Let $\sigma = {\sigma_i | i \in I}$ be a partition of the set of all primes $\mathbb P$ and n an integer. We write $\sigma(n) = {\sigma_i | \sigma_i \cap \pi(n) \neq \emptyset}$, $\sigma(G) = \sigma(|G|)$. A set $\mathcal H$ of subgroups of \widetilde{G} is said to be a *complete Hall* σ -set of G if every member of $\mathcal{H} \setminus \{1\}$ is a Hall $\sigma_{\mathfrak i}$ -subgroup of G for some $\sigma_{\mathfrak i}$ and ${\mathcal H}$ contains exact one Hall $\sigma_{\mathfrak i}$ -subgroup of G for every $\sigma_i \in \sigma(G)$. A subgroup A of G is called: (i) a σ-Hall subgroup of \tilde{G} if $σ(|A|) ∩ σ(|G : A|) = ∅$; (ii) $σ$ -permutable in G if G possesses a complete Hall $σ$ -set H such that $AH^x = H^xA$ for all $H \in \mathcal{H}$ and all $x \in G$. We say that a subgroup A of G is Hσ*-permutably embedded* in G if A is a σ-Hall subgroup of some σ-permutable subgroup of G.

We describe the structure of G assuming that every subgroup of G is H_{σ} -permutably embedded in G.

Mathematics Subject Classification (2010): 20D10, 20D15, 20D30 *Keywords*: σ-Hall subgroup; σ-subnormal subgroup; σ-nilpotent group

1 Introduction

Throughout this paper, all groups are finite and G always denotes a finite group. Moreover, n is an integer, **P** is the set of all primes, and if $\pi \subseteq \mathbb{P}$, then $\pi' = \mathbb{P} \setminus \pi$. The symbol $\pi(\mathfrak{n})$ denotes the set of all primes dividing n; as usual, $\pi(G) = \pi(|G|)$, the set of all primes dividing the order of G. In what follows, $\sigma = {\sigma_i} | i \in I$ is some partition of **P**, that is, $\mathbb{P} = \bigcup_{i \in I} \sigma_i$ and $\sigma_i \cap \sigma_j = \emptyset$ for all $i \neq j$; Π is a subset of σ and $\Pi' = \sigma \setminus \Pi$.

Let $\sigma(n) = {\sigma_i | \sigma_i \cap \pi(n) \neq \emptyset}$ and $\sigma(G) = \sigma(|G|)$. Then we say that G is σ -primary [[14](#page-11-1)] if G is a σ_i -group for some $\sigma_i \in \sigma$. A set H of subgroups of G is said to be a *complete Hall* σ*-set* of G (see [[15](#page-11-2)],[[16](#page-11-3)]) if every member of $\mathcal{H} \setminus \{1\}$ is a Hall σ_i -subgroup of G for some σ_i and $\mathcal H$ contains exact one Hall σ_i -subgroup of G for every σⁱ ∈ σ(G). We say that G is σ*-full* if G possesses a complete Hall σ-set. Throughout this paper, G is always supposed to be a σ-full group.

Following [[14](#page-11-1)], a subgroup A of G is called:

- (i) a σ -Hall subgroup of G if $\sigma(|A|) \cap \sigma(|G : A|) = \emptyset$;
- (ii) σ*-subnormal* in G if there is a subgroup chain

$$
A=A_0\leqslant A_1\leqslant\ldots\leqslant A_t=G
$$

such that either $A_{i-1} \nsubseteq A_i$ or $A_i/(A_{i-1})_{A_i}$ is σ -primary for all $i = 1, \ldots, t;$

(iii) σ*-quasinormal* or σ*-permutable* in G if there is a complete Hall σ-set H such that $AH^x = H^xA$ for all $H \in \mathcal{H}$ and all $x \in G$.

In particular, A is called S*-quasinormal* or S*-permutable* in G provided $AP = PA$ for all Sylow subgroups P of G (see [[1](#page-10-0)], [[5](#page-10-1)]).

We say that a subgroup A of G is H_{σ} -permutably embedded in G if A is a σ-Hall subgroup of some σ-permutable subgroup of G. In the special case, when $\sigma = \{\{2\}, \{3\}, \ldots\}$, the definition of H_{σ}-permutably embedded subgroups is equivalent to the concept of Hall S-quasinormally embedded subgroups in [[10](#page-11-4)].

Example For any σ, all σ-Hall subgroups and all σ-permutable subgroups of any group S are H_{σ} -permutably embedded in S. Now, let $p > q > r$ be primes. Let $\sigma = {\sigma_1, \sigma_2}$, where $\sigma_1 = {q, r}$ and $\sigma_2 = \{q, r\}'$ and let C_p , C_q and C_{r^n} be cyclic groups with $|C_p| = p$, $|C_q| = q$ and $|C_{r^n}| = r^n$ $(n > 1)$. Let

$$
H = C_q \wr C_{r^n} = K \rtimes C_{r^n},
$$

where K is the base group of the regular wreath product H. Let

$$
G = C_p \wr H = P \rtimes H = P \rtimes (K \rtimes C_{r^n}),
$$

where P is the base group of the regular wreath product G. Then $C_G(P) \leq P$. Let C_r be a subgroup of C_{r^n} of order r. Then the

subgroup $V = PC_r$ is σ-permutable in G and C_r is a σ-Hall subgroup of V. Hence C_r is H_{σ}-permutably embedded in G. Assume C_r is σ-permutable in G, then C_r is σ-subnormal in G (see Lemma [4](#page-3-0) (1) below). Hence C_r is σ-subnormal in V by Lemma $\overline{5}$ $\overline{5}$ $\overline{5}$ (1) below. Therefore C_r is normal in V by Lemma [5](#page-3-1) (2) below. Then $C_V(P) \le C_r$, a contradiction.

Recall that G is σ -nilpotent (see [[7](#page-10-2)]) if $G = H_1 \times ... \times H_t$ for some σ-primary groups H_1, \ldots, H_t . The σ-nilpotent residual $G^{\mathfrak{N}_{\sigma}}$ of G is the intersection of all normal subgroups N of G with σ-nilpotent quotient G/N , $G^{\mathfrak{N}}$ denotes the nilpotent residual of G. It is clear that every subgroup of a σ-nilpotent group G is σ-permutable and σ-subnormal in G.

Let $\mathfrak F$ be a class of groups. A subgroup H of G is said to be an $\mathfrak F$ -covering subgroup of G (see [[9](#page-11-5)], VI, Definition 7.8) if $H \in \mathfrak F$ and for every subgroup E of G such that $H \le E$ and $E/N \in \mathfrak{F}$ it follows that E = NH. We say that a subgroup H of G is a σ*-Carter subgroup* of G if H is an \mathfrak{N}_{σ} -covering subgroup of G, where \mathfrak{N}_{σ} is the class of all σ-nilpotent groups.

A group G is said to have a *Sylow tower* if G has a normal series

$$
1 = G_0 < G_1 < \ldots < G_{t-1} < G_t = G,
$$

where $|G_i/G_{i-1}|$ is the order of some Sylow subgroup of G for each i ∈ {1, . . . , t}. A chief factor of G is said to be σ*-central* in G if the semidirect product $(H/K) \rtimes (G/C_G(H/K))$ is σ-primary; otherwise, H/K is called σ*-eccentric* in G (see [[14](#page-11-1)]).

We say that G is a HσE*-group* if the following conditions hold:

- (i) G = $D \times M$, where $D = G^{\mathfrak{N}_{\sigma}}$ is a σ -Hall subgroup of G and $|\sigma(D)| = |\pi(D)|$.
- (ii) D has a Sylow tower and every chief factor of G below D is σ-eccentric.
- (iii) M acts irreducibly on every M-invariant Sylow subgroup of D.

Our main goal here is to prove the following theorem.

Theorem 1 *Any two of the following conditions are equivalent:*

- (i) *Every subgroup of* G *is* H_{σ} -permutably embedded in G.
- (ii) $G = D \rtimes M$ *is a* HσE-group, where $D = G^{\mathfrak{N}_{\sigma}}$ *is a cyclic group of square-free order.*

(iii) G = D o M*, where* D *is a* σ*-Hall cyclic subgroup of* G *of square-free order with* $|\sigma(D)| = |\pi(D)|$ *and* M *is σ*-Carter subgroup.

Groups in which either every subgroup is a Hall S-quasinormally embedded subgroup or every subgroup is a Hall normally embedded subgroup were described in [[10](#page-11-4)],[[8](#page-11-6)], respectively. From Theorem [1](#page--1-0) we get the following result in this trend.

Corollary 2 (see [[13](#page-11-7)], Theorem 1) *Every subgroup of* G *is a Hall* S-quasinormally embedded subgroup of G if and only if $G = D \rtimes M$, whe $r e D = G^{\mathfrak{N}}$ *is a cyclic Hall subgroup of* G *of square-free order and* M *is a Carter subgroup of* G*.*

Recall also that a subgroup H of G is said to be a *Hall normally embedded subgroup* of G (see [[8](#page-11-6)]) if H is a Hall subgroup of the normal closure H^G of H in G. From Corollary [2](#page--1-1) we also get the following known result.

Corollary 3 (see [[11](#page-11-8)]) *Every subgroup of* G *is a Hall normally embedded subgroup of* G *if and only if* $G = D \rtimes M$ *, where* $D = G^{\mathfrak{N}}$ *is a cyclic Hall subgroup of* G *of square-free order and* M *is a Degekind group.*

2 Basic lemmas

An integer n is called a Π -*number* if $\sigma(n) \subseteq \Pi$. A subgroup H of G is called a *Hall* Π*-subgroup* of G [[14](#page-11-1)] if |H| is a Π-number and |G : H| is a Π 0 -number. A group G is said to be σ*-soluble* [[14](#page-11-1)] if every chief factor of G is σ-primary.

Lemma 4 (see [[14](#page-11-1)], Lemma 2.8 and Theorems B and C) *Let* A*,* K *and* N *be subgroups of* G*, where* A *is* σ*-permutable in* G *and* N *is normal in* G*.*

- (1) A *is* σ*-subnormal in* G*.*
- (2) If $N \le K$, K/N *is* σ -permutable in G/N and G is σ -soluble, then K *is* σ*-permutable in* G*.*

Lemma 5 (see [[14](#page-11-1)], Lemma 2.6) *Let* A*,* K *and* N *be subgroups of* G*, where* A *is* σ*-subnormal in* G *and* N *is normal in* G*.*

(1) A ∩ K *is* σ*-subnormal in* K*.*

- (2) *If* A *is a* σ-Hall subgroup *of* G*, then* A *is normal in* G*.*
- (3) If $H \neq 1$ *is a Hall* Π -subgroup of G and A *is not a* Π' -group, *then* $A \cap H \neq 1$ *is a Hall* Π *-subgroup of* A *.*

Lemma 6 *Let* H *be a normal subgroup of* G. If $H/H \cap \Phi(G)$ *is a* Π*-group, then* H *has a Hall* Π*-subgroup, say* E*, and* E *is normal in* G*. Hence, if* H/H ∩ Φ(G) *is* σ*-nilpotent, then* H *is* σ*-nilpotent.*

PROOF — Let $D = O_{\Pi'}(H)$. Then, since $H \cap \Phi(G)$ is nilpotent, D is a Hall Π'-subgroup of H. Hence by the Schur-Zassenhaus theorem, H has a Hall Π -subgroup, say E. It is clear that H is π' -soluble where $\pi' = \cup_{\sigma_i \in \Pi'} \sigma_i$, so any two Hall Π-subgroups of H are conjugate. By the Frattini argument,

$$
G=HN_G(E)=(E(H\cap \Phi(G)))N_G(E)=N_G(E).
$$

Therefore E is normal in G .

Lemma 7 *If every chief factor of* G *below* $D = G^{\mathfrak{N}_{\sigma}}$ *is cyclic, then* D *is nilpotent.*

PROOF — Assume that this is false and let G be a counterexample of minimal order. Let R be a minimal normal subgroup of G. Then from the G-isomorphism $D/D \cap R \simeq DR/R = (G/R)^{\mathfrak{N}_{\sigma}}$ we know that every chief factor of G/R below DR/R is cyclic, so the choice of G implies that $D/D \cap R \simeq DR/R$ is nilpotent. Hence $R \le D$ and R is the unique minimal normal subgroup of G. In view of Lemma [6](#page-4-0), $R \nleq \Phi(G)$ and so $R = C_R(R)$ by [[3](#page-10-3)], Chapter A, Theorem 15.2. But by hypothesis, $|R|$ is a prime, hence $G/R = G/C_G(R)$ is cyclic, so G is supersoluble and so $G^{\mathfrak{N}_{\sigma}}$ is nilpotent since $G^{\mathfrak{N}_{\sigma}} \leq G^{\mathfrak{N}}$.

The following lemma is evident.

Lemma 8 *The class of all* σ*-soluble groups is closed under taking direct products, homomorphic images and subgroups. Moreover, any extension of the* σ*-soluble group by a* σ*-soluble group is a* σ*-soluble group as well.*

Let A, B and R be subgroups of G. Then A is said to R*-permute* with B [[6](#page-10-4)] if for some $x \in \mathbb{R}$ we have $AB^x = B^xA$. If G has a complete Hall σ -set $\mathcal{H} = \{1, H_1, \ldots, H_t\}$ such that $H_i H_j = H_j H_i$ for all i, j, then we say that $\{H_1, \ldots, H_t\}$ is a σ *-basis* of G.

Lemma 9 (see [[15](#page-11-2)], Theorems A and B) *Assume that* G *is* σ*-soluble.*

- (i) G *has a* σ -basis {H₁,..., H_t} such that for each $i \neq j$ *every Sylow subgroup of* Hⁱ G*-permutes with every Sylow subgroup of* H^j *.*
- (ii) *For any* Π*, the following hold:* G *has a Hall* Π*-subgroup* E*, every* Π*-subgroup of* G *is contained in some conjugate of* E *and* E G*-permutes with every Sylow subgroup of* G*.*

Lemma 10 *Let* H*,* E *and* R *be subgroups of* G*. Suppose that* H *is* H_σ-permutably embedded in G and R is normal in G.

- (1) If $H \le E$, then H is H_{σ}-permutably embedded in E.
- (2) HR/R *is* H_{σ}-permutably embedded in G/R.
- (3) *If* |G : H| *is* σ*-primary, then* H *is either a* σ*-Hall subgroup of* G *or* σ*-permutable in* G*.*

Proof $-$ Let V be a σ -permutable subgroup of G such that H is a σ-Hall subgroup of V.

(1) Since H is a σ -Hall subgroup of V and V ∩ E is σ -permutable in E, H is a σ-Hall subgroup of $V \cap E$. Hence H is H_σ-permutably embedded in E.

(2) Let H be a π -group. Since $|V : H|$ is a π' -number,

 $|VR : HR| = |V : H|/|V \cap R : H \cap R|$

is a π' -number. Hence, HR/R is a σ-Hall subgroup of VR/R and, therefore, HR/R is H_{σ}-permutably embedded in G/R.

(3) Assume that H is not σ -permutable in G. Then H $\lt V$. By hypothesis, $|G:H|$ is σ-primary, say $|G:H|$ is a σ_i -number. Then $|V:H|$ is a σ_i-number. But H is a σ-Hall subgroup of V. Hence H is a σ-Hall subgroup of G. \Box

Lemma 11 *Let* H *be a* σ*-subnormal subgroup of a* σ*-soluble group* G*. If* $|G \; : \; H|$ *is a* σ_i-number and B *is a* σ_i-complement of H, then $G = HN_G(B)$.

 $Proof$ — Assume that this lemma is false and let G be a counterexample of minimal order. Then $H < G$, so G has a proper subgroup M such that $H \le M$, $|G : M_G|$ is a σ_i -number and H is σ -subnormal in M. The choice of G implies that $M = HN_M(B)$. On the other hand,

clearly that B is a $\sigma_{\mathfrak{i}}$ -complement of M_G. Since G is σ -soluble, Lemma [9](#page-4-1) and the Frattini argument imply that

$$
G = M_G N_G(B) = M N_G(B) = H N_M(B) N_G(B) = H N_G(B).
$$

The statement is proved. \Box

The following lemma is well-known (see for example [[12](#page-11-9)], Lemma 3.29, or [[4](#page-10-5)], 1.10.10).

Lemma 12 *Let* H/K *be an abelian chief factor of* G *and* V *a maximal subgroup of* G *such that* $K \leq V$ *and* $HV = G$ *. Then* G/V_G *is isomorphic to* $(H/K) \rtimes (G/C_G(H/K))$.

Recall that the intersection of all such S-quasinormal subgroups of G which contain a subgroup H of G is called the S*-quasinormal closure of* H *in* G and denoted by H^{sG} (see [[11](#page-11-8)]).

Lemma 13 *If* H *is a Hall normally embedded subgroup of* G*, then* H *is a Hall* S*-quasinormally embedded subgroup of* G*.*

 $Proof$ — Since every normal subgroup of G is a S-quasinormal subgroup of G, $H^{sG} \leq H^G$. Moreover, H is a Hall subgroup of H^G by hypothesis, so H is a Hall subgroup of H^{sG} .

3 Proofs of the results

PROOF OF THEOREM $1 - i$ \Rightarrow $(ii) \Rightarrow$ (i) Assume that this is false and let G be a counterexample of minimal order. Moreover, $D = G^{\mathfrak{N}_{\sigma}} \neq 1$, so $|\sigma(G)| > 1$.

(1) *Condition (ii) is true on every proper section* H/K *of* G, that is, K \neq 1 *or* $H \neq G$ *.*

This directly follows from Lemma [10](#page-5-0) and the choice of G.

(2) D *is a cyclic group of square-free order.*

Let $p \in \sigma_i \cap \pi(D)$ and let P be a Sylow p-subgroup of D. Since G possesses a σ-permutable subgroup E such that $|E| = |G|_{\sigma_i'} p$. Lemma $4(1)$ $4(1)$ implies that E is σ-subnormal in G, so Lemma $5(3)$ $5(3)$ shows that G/E_G is a σ_i -group. Hence $D \leqslant E_G \leqslant E$, so $|P| = p$. Therefore G is supersoluble by [[9](#page-11-5)], Kapitel IV, Satz 2.9, and so every chief factor

of G below D is cyclic. Hence D is nilpotent by Lemma [7](#page-4-2), so D is cyclic of square-free order.

(3) G *is* σ*-soluble.*

In view of Claim (1) and Lemma [8](#page-4-3), it is enough to show that G is not simple. Assume that this is false. Then 1 is the only proper σ-permutable subgroup of G since $|\sigma(G)| > 1$. Hence every subgroup of G is a σ-Hall subgroup of G. Therefore for a Sylow psubgroup P of G, where p is the smallest prime divisor of $|G|$, we have $|P| = p$ and so $|G| = p$ by [[9](#page-11-5)], Kapitel IV, Satz 2.8. This contradiction shows that we have (3).

(4) *If* |G : H| *is a* σⁱ *-number and* H *is not a* σ*-Hall subgroup of* G*, then* H *is* σ*-permutable in* G *and a* σⁱ *-complement* E *of* H *is normal in* G*.*

This follows from Lemmas $10(3)$ $10(3)$ and 11 .

(5) D *is a Hall subgroup of* G*. Hence* D *has a complement* M *in* G*.*

Suppose that this is false and let P be a Sylow p-subgroup of D such that $1 < P < G_p$, where $G_p \in Syl_p(G)$. We can assume without loss of generality that $G_p \le H_1$. Let R be a minimal normal subgroup of G contained in D.

Since D is soluble by Claim (2), R is a q-group for some prime q. Moreover, $D/R = (G/R)^{\mathfrak{N}_{\sigma}}$ is a Hall subgroup of G/R by Claim (1) and Proposition [2](#page-10-6).2.8 in [2]. Suppose that $PR/R \neq 1$. Then PR/R belongs to Syl $_{\rm p}$ (G/R). If q \neq p, then P \in Syl $_{\rm p}$ (G). This contradicts the fact that $P < G_p$. Hence $q = p$, so $R \leq P$ and therefore P/R is a Sylow p-subgroup of G/R. It follows that $P \in \mathrm{Syl}_{\mathbf{p}}(\mathsf{G}).$ This contradiction shows that $PR/R = 1$, which implies that $R = P$ is a Sylow p-subgroup of D. Therefore R is the unique minimal normal subgroup of G contained in D. It is also clear that a p-complement of D is a Hall subgroup of G.

Now we show that $R \nleq \Phi(G)$. Indeed, assume that $R \leq \Phi(G)$. Then $D \neq R$ by Lemma [6](#page-4-0) since $D = G^{\mathfrak{N}_{\sigma}}$. On the other hand, D/R is a p'-group. Hence $O_{p'}(D) \neq 1$ by Lemma [6](#page-4-0). But $O_{p'}(D)$ is characteristic in D and so it is normal G. Therefore G has a minimal normal subgroup L such that $L \neq R$ and $L \leq D$. This contradiction shows that $\mathsf{R} \nleq \Phi(\mathsf{G})$.

Let S be a maximal subgroup of the group G such that $RS = G$. Then |G : S| is a p-number. Hence, since R is not a Sylow p-subgroup of G, p divides |S|. Then S is not a Hall subgroup of G and so S is not a σ-Hall subgroup of G. Therefore S is σ-permutable in G

by Claim (4) and so G/S_G is a σ_i -group, which implies that

$$
R\leqslant D\leqslant S_G\leqslant S
$$

and and so $G = RS = S$. This contradiction completes the proof of (5).

(6) If $M \le E \le G$, then E is not σ -permutable in G and so E a σ -Hall *subgroup of* G*.*

Assume that E is σ-permutable in G. Then E is σ-subnormal in G by Lemma $4(1)$ $4(1)$. Then there is a subgroup chain

$$
E=E_0\leqslant E_1\leqslant\ldots\leqslant E_r=G
$$

such that either E_{i-1} is normal in E_i or $E_i/(E_{i-1})_{E_i}$ is σ-primary for all $i = 1, \ldots, r$. Let $V = E_{r-1}$. We can assume without loss of generality that $V \neq G$. Therefore, since G is σ-soluble by Claim (2), for some σ -primary chief factor G/W of G we have $E \leq V \leq W$. Also we have $D \leq W$ and so $G = DE \leq W$, a contradiction. Hence E is not σ-permutable in G.

By hypothesis, G has a σ-permutable subgroup S such that E is a σ-Hall subgroup of S. But then $S = G$, by the above argument, so E is a σ-Hall subgroup of G. In particular, M is a σ-Hall subgroup of G and so D is a σ-Hall subgroup of G.

(7) D *is soluble,* $|\sigma(D)| = |\pi(D)|$ and M acts irreducibly on every M-in*variant Sylow subgroup of* D.

Let $p \in \sigma_i \in \sigma(D)$. Lemma [9](#page-4-1) and Claims (3) and (5) imply that for some Sylow p-subgroup P of G we have $PM = MP$. Moreover, MP is a σ-Hall subgroup of G by Claim (6). Hence $|\sigma_i \cap \pi(G)| = 1$ for all i such that $\sigma_i \cap \pi(D) \neq \emptyset$ and so $|\sigma(D)| = |\pi(D)|$. Therefore, since D is soluble by Claim (2), M acts irreducibly on every M-invariant Sylow subgroup of D by Claim (6).

(8) D *possesses a Sylow tower.*

Let R be a minimal normal subgroup of G contained in D. Then R is a p-group for some prime p by Claim (7). Then $R \leq P$, where P is a Sylow p-subgroup of D. But M acts irreducible on P by Claim (7), so $R = P$ and D/R possesses a Sylow tower by Claim (1). Hence D possesses a Sylow tower.

(9) *Every chief factor of* G *below* D *is* σ*-eccentric.*

Let H/K be a chief factor of G below D. Then H/K is a p-group for some prime p since D is soluble by Claim (z) . By the Frattini argument, there exist a Sylow p-subgroup P and a p-complement E

of D such that $M \leq N_G(P)$ and $M \leq N_G(E)$. Then $M \leq N_G(P \cap K)$ and $M \leq N_G(P \cap H)$. Hence $P \cap K = 1$ and $P \cap H = P$ by Claim (7), so H = K \times P. Let V = EM. Then K \leq V and HV = G, so V is a maximal subgroup of G. Hence

$$
G/V_G \simeq (H/K) \rtimes G/C_G(H/K)
$$

by Lemma [12](#page-6-0). Therefore, if H/K is σ-central in G, then $D \leq V_G$, which is impossible since evidently p does not divide |V|. Thus we have (9).

From Claims $(5)-(9)$ it follows that G is a H σ E-group. Hence (i) implies (ii).

(ii) \Rightarrow (iii) It is enough to show that M is a σ -Carter subgroup of G. Let R be a minimal normal subgroup of G contained in D and E a subgroup of G containing M. We need to show that $E = E^{y} \sigma M$. The choice of G implies that RM/R is a σ -Carter subgroup of G/R , so

$$
ER/R = (ER/R)^{\mathfrak{N}_{\sigma}}(RM/R).
$$

Hence $ER = E^{\mathfrak{N}_{\sigma}}MR$ since $(ER/R)^{\mathfrak{N}_{\sigma}} = E^{\mathfrak{N}_{\sigma}}R/R$. Moreover, R is a p-group for some prime p and R, E and $E^{\mathfrak{N}_{\sigma}}M$ are σ -Hall subgroups of G by hypothesis. Therefore, if R \nleq E, then E and $E^{\mathfrak{N}_{\sigma}}M$ are Hall p'-subgroups of $ER = E^{\mathfrak{N}_{\sigma}}MR$, so $E = E^{\mathfrak{N}_{\sigma}}M$. Finally, assume that R \leqslant E but R \nleqslant E $^{\mathfrak{N}_{\sigma}}$ M. Then R∩E $^{\mathfrak{N}_{\sigma}}=1.$ On the other hand, since $DE/D \simeq E/D \cap E$ is σ -nilpotent, $E^{\mathfrak{N}_{\sigma}} \le D$ and so $M \cap E^{\mathfrak{N}_{\sigma}} = 1$. Therefore

$$
E^{\mathfrak{N}_{\sigma}} \cap RM = (E^{\mathfrak{N}_{\sigma}} \cap R)(E^{\mathfrak{N}_{\sigma}} \cap M) = 1.
$$

Then $E/E^{\mathfrak{N}_{\sigma}} = E^{\mathfrak{N}_{\sigma}}MR/E^{\mathfrak{N}_{\sigma}} \simeq MR$ is σ -nilpotent. Hence $M \leq C_G(R)$. Suppose that $C_G(R) < G$ and let $C_G(R) \leq W < G$, where G/W is a chief factor of G. Since G is σ-soluble, G/W is σ-primary and so $D \leq W$. But then $G = DM \leq W < G$, a contradiction. Therefore $C_G(R) = G$, that is, $R \le Z(G)$. Let V be a complement to R in D. Then V is a Hall normal subgroup of D, so it is characteristic in D. Hence V is normal in G and $G/V \simeq RM$ is σ-nilpotent, so $D \leq V < D$. This contradiction completes the proof of the implication (ii) \Rightarrow (iii).

(iii) \Rightarrow (i) Let A be any subgroup of G. Then DA is σ -permutable in G by Lemma $4(2)$ $4(2)$ since G is σ-soluble. On the other hand, since $|\sigma(D)| = |\pi(D)|$ and D is a cyclic σ-Hall subgroup of G of squarefree order, A is a σ-Hall subgroup of DA. Hence A is H_{σ} -permutably embedded in G. Therefore the implication (iii) \Rightarrow (i) is true.

The theorem is proved. \Box

PROOF OF COROLLARY [3](#page-3-2) — *Necessity* Let R be a Hall normally embedded subgroup of G. Then R is a Hall S-quasinormally embedded subgroup of G by Lemma [13](#page-6-1), so in view of Corollary [2](#page--1-1) and [[1](#page-10-0)], Theorem 1.4, it is enough to show that G is a T-group. Let H be a subnormal subgroup of G. Then H is subnormal in H^G by [[3](#page-10-3)], Chapter A, Theorem 14.8. Then, since H is a Hall subgroup of H^G by hypothesis, H is characteristic in H^G . Hence H is a normal subgroup of G, so G is a T-group.

Sufficiency Let H be a subgroup of G. Let $D_1 = H \cap D$. Clearly, D_1 is a Hall subgroup of D and D_1 has a complement D_2 in D.

Since $M \simeq G/D$ is Dedekind, all subgroups of G/D are normal in G/D. Then DH/D is normal in G/D. Hence DH is normal in G. Therefore $H \leq H^G \leq D$ H. It is clear also that H is a Hall subgroup of DH, therefore H is a Hall subgroup of H^G . Hence H is Hall normally embedded in G.

The corollary is proved. \Box

R E F E R E N C E S

- [1] M. Asaad – A. Ballester-Bolinches – R. Esteban-Romero: "Products of Finite Groups", *de Gruyter*, Berlin (2010).
- [2] A. BALLESTER-BOLINCHES – L.M. EZQUERRO: "Classes of Finite Groups", *Springer*, Dordrecht (2006).
- [3] K. Doerk – T. Hawkes: "Finite Soluble Groups", *de Gruyter*, Berlin (1992).
- [4] W. Guo: "The Theory of Classes of Groups", *Kluwer*, Beijing (2000).
- [5] W. Guo: "Structure Theory for Canonical Classes of Finite Groups", *Springer*, London (2015).
- [6] W. Guo – K.P. Shum – A.N. Skiba: "X-semipermutable subgroups of finite groups", *J. Algebra* 315 (2007), 31–41.
- [7] W. Guo – A.N. SKIBA: "Finite groups with permutable complete Wielandt sets of subgroups", *J. Group Theory* 18 (2015), 191–200.
- [8] J. $HE - S.R.LI - G.P. NONG - L.Q. ZHOU: "On Hall normally em$ bedded subgroups of finite groups", *Comm. Algebra* 37 (2009), 3360–3367.
- [9] B. Huppert: "Endliche Gruppen I", *Springer*, Berlin (1967).
- [10] S.R. Li – J. Lio: "CLT−groups with Hall S-quasinormally embedded subgroups", *Ukrain. Math. Journal* 66 (2014), 1281–1287.
- [11] S.R. LI – J.J. LIU: "On Hall subnormally embedded and generalized nilpotent groups", *J. Algebra* 388 (2013), 1–9.
- [12] L.A. SHEMETKOV – A.N. SKIBA: "Formations of Algebraic Systems", *Nauka*, Moscow (1989).
- [13] D.A. SINITSA: "A note on Hall S-permutably embedded subgroups of finite groups", *Algebra Discrete Math.* 23 (2017), 305–311.
- [14] A.N. Skiba: "On σ-subnormal and σ-permutable subgroups of finite groups", *J. Algebra* 436 (2015), 1–16.
- [15] A.N. Skiba: "A generalization of a Hall theorem", *J. Algebra Appl.* 15 (2016), 1650085 (13 pages).
- [16] A.N. SKIBA: "On some results in the theory of finite partially soluble groups", *Commun. Math. Stat.* 4 (2016), 281–309.

Darya A. Sinitsa Department of Mathematics 104 Sovetskaya str. Gomel (Belarus) e-mail: lindela@mail.ru