

Advances in Group Theory and Applications © 2017 AGTA - www.advgrouptheory.com/journal 4 (2017), pp. 29–40 ISSN: 2499-1287

DOI: 10.4399/97888255086972

Finite Groups with H_σ-Permutably Embedded Subgroups

Darya A. Sinitsa

(Received Nov. 24, 2016; Accepted Mar. 27, 2017 — Communicated by A. Skiba)

Abstract

Let G be a finite group. Let $\sigma = \{\sigma_i | i \in I\}$ be a partition of the set of all primes \mathbb{P} and n an integer. We write $\sigma(n) = \{\sigma_i | \sigma_i \cap \pi(n) \neq \emptyset\}$, $\sigma(G) = \sigma(|G|)$. A set \mathcal{H} of subgroups of G is said to be a *complete Hall* σ -set of G if every member of $\mathcal{H} \setminus \{1\}$ is a Hall σ_i -subgroup of G for some σ_i and \mathcal{H} contains exact one Hall σ_i -subgroup of G for every $\sigma_i \in \sigma(G)$. A subgroup A of G is called: (i) a σ -Hall subgroup of G if $\sigma(|A|) \cap \sigma(|G:A|) = \emptyset$; (ii) σ -permutable in G if G possesses a complete Hall σ -set \mathcal{H} such that $AH^x = H^xA$ for all $H \in \mathcal{H}$ and all $x \in G$. We say that a subgroup A of G is H_σ -permutably embedded in G if A is a σ -Hall subgroup of some σ -permutable subgroup of G.

We describe the structure of G assuming that every subgroup of G is H_{σ} -permutably embedded in G.

Mathematics Subject Classification (2010): 20D10, 20D15, 20D30 *Keywords*: σ-Hall subgroup; σ-subnormal subgroup; σ-nilpotent group

1 Introduction

Throughout this paper, all groups are finite and G always denotes a finite group. Moreover, n is an integer, \mathbb{P} is the set of all primes, and if $\pi \subseteq \mathbb{P}$, then $\pi' = \mathbb{P} \setminus \pi$. The symbol $\pi(n)$ denotes the set of all primes dividing n; as usual, $\pi(G) = \pi(|G|)$, the set of all primes dividing the order of G. In what follows, $\sigma = \{\sigma_i | i \in I\}$ is some partition of \mathbb{P} , that is, $\mathbb{P} = \bigcup_{i \in I} \sigma_i$ and $\sigma_i \cap \sigma_j = \emptyset$ for all $i \neq j$; Π is a subset of σ and $\Pi' = \sigma \setminus \Pi$.

Let $\sigma(n) = {\sigma_i | \sigma_i \cap \pi(n) \neq \emptyset}$ and $\sigma(G) = \sigma(|G|)$. Then we say that G is σ -*primary* [14] if G is a σ_i -group for some $\sigma_i \in \sigma$. A set \mathcal{H} of subgroups of G is said to be a *complete Hall* σ -*set* of G (see [15],[16]) if every member of $\mathcal{H} \setminus {1}$ is a Hall σ_i -subgroup of G for some σ_i and \mathcal{H} contains exact one Hall σ_i -subgroup of G for every $\sigma_i \in \sigma(G)$. We say that G is σ -*full* if G possesses a complete Hall σ -set. Throughout this paper, G is always supposed to be a σ -full group.

Following [14], a subgroup A of G is called:

- (i) a σ -Hall subgroup of G if $\sigma(|A|) \cap \sigma(|G:A|) = \emptyset$;
- (ii) σ -subnormal in G if there is a subgroup chain

$$A = A_0 \leqslant A_1 \leqslant \ldots \leqslant A_t = G$$

such that either $A_{i-1} \trianglelefteq A_i$ or $A_i/(A_{i-1})_{A_i}$ is σ -primary for all i = 1, ..., t;

(iii) σ -quasinormal or σ -permutable in G if there is a complete Hall σ -set \mathcal{H} such that $AH^{x} = H^{x}A$ for all $H \in \mathcal{H}$ and all $x \in G$.

In particular, A is called S-quasinormal or S-permutable in G provided AP = PA for all Sylow subgroups P of G (see [1], [5]).

We say that a subgroup A of G is H_{σ} -permutably embedded in G if A is a σ -Hall subgroup of some σ -permutable subgroup of G. In the special case, when $\sigma = \{\{2\}, \{3\}, \ldots\}$, the definition of H_{σ} -permutably embedded subgroups is equivalent to the concept of Hall S-quasinormally embedded subgroups in [10].

Example For any σ , all σ -Hall subgroups and all σ -permutable subgroups of any group S are H_{σ} -permutably embedded in S. Now, let p > q > r be primes. Let $\sigma = \{\sigma_1, \sigma_2\}$, where $\sigma_1 = \{q, r\}$ and $\sigma_2 = \{q, r\}'$ and let C_p , C_q and C_{r^n} be cyclic groups with $|C_p| = p$, $|C_q| = q$ and $|C_{r^n}| = r^n$ (n > 1). Let

$$\mathsf{H} = \mathsf{C}_{\mathsf{q}} \wr \mathsf{C}_{\mathsf{r}^{\mathsf{n}}} = \mathsf{K} \rtimes \mathsf{C}_{\mathsf{r}^{\mathsf{n}}},$$

where K is the base group of the regular wreath product H. Let

$$\mathbf{G} = \mathbf{C}_{\mathbf{p}} \wr \mathbf{H} = \mathbf{P} \rtimes \mathbf{H} = \mathbf{P} \rtimes (\mathbf{K} \rtimes \mathbf{C}_{\mathbf{r}^{\mathbf{n}}}),$$

where P is the base group of the regular wreath product G. Then $C_G(P) \leq P$. Let C_r be a subgroup of C_{r^n} of order r. Then the subgroup $V = PC_r$ is σ -permutable in G and C_r is a σ -Hall subgroup of V. Hence C_r is H_{σ} -permutably embedded in G. Assume C_r is σ -permutable in G, then C_r is σ -subnormal in G (see Lemma 4 (1) below). Hence C_r is σ -subnormal in V by Lemma 5 (1) below. Therefore C_r is normal in V by Lemma 5 (2) below. Then $C_V(P) \leq C_r$, a contradiction.

Recall that G is σ -nilpotent (see [7]) if $G = H_1 \times \ldots \times H_t$ for some σ -primary groups H_1, \ldots, H_t . The σ -nilpotent residual $G^{\mathfrak{N}_{\sigma}}$ of G is the intersection of all normal subgroups N of G with σ -nilpotent quotient G/N, $G^{\mathfrak{N}}$ denotes the nilpotent residual of G. It is clear that every subgroup of a σ -nilpotent group G is σ -permutable and σ -subnormal in G.

Let \mathfrak{F} be a class of groups. A subgroup H of G is said to be an \mathfrak{F} -covering subgroup of G (see [9], VI, Definition 7.8) if $H \in \mathfrak{F}$ and for every subgroup E of G such that $H \leq E$ and $E/N \in \mathfrak{F}$ it follows that E = NH. We say that a subgroup H of G is a σ -*Carter subgroup* of G if H is an \mathfrak{N}_{σ} -covering subgroup of G, where \mathfrak{N}_{σ} is the class of all σ -nilpotent groups.

A group G is said to have a Sylow tower if G has a normal series

$$1 = G_0 < G_1 < \ldots < G_{t-1} < G_t = G_t$$

where $|G_i/G_{i-1}|$ is the order of some Sylow subgroup of G for each $i \in \{1, ..., t\}$. A chief factor of G is said to be σ -*central* in G if the semidirect product $(H/K) \rtimes (G/C_G(H/K))$ is σ -primary; otherwise, H/K is called σ -*eccentric* in G (see [14]).

We say that G is a $H\sigma E$ -group if the following conditions hold:

- (i) $G = D \rtimes M$, where $D = G^{\mathfrak{N}_{\sigma}}$ is a σ -Hall subgroup of G and $|\sigma(D)| = |\pi(D)|$.
- (ii) D has a Sylow tower and every chief factor of G below D is σ -eccentric.
- (iii) M acts irreducibly on every M-invariant Sylow subgroup of D.

Our main goal here is to prove the following theorem.

Theorem 1 Any two of the following conditions are equivalent:

- (i) Every subgroup of G is H_{σ} -permutably embedded in G.
- (ii) $G = D \rtimes M$ is a HoE-group, where $D = G^{\mathfrak{N}_{\sigma}}$ is a cyclic group of square-free order.

(iii) $G = D \rtimes M$, where D is a σ -Hall cyclic subgroup of G of square-free order with $|\sigma(D)| = |\pi(D)|$ and M is σ -Carter subgroup.

Groups in which either every subgroup is a Hall S-quasinormally embedded subgroup or every subgroup is a Hall normally embedded subgroup were described in [10],[8], respectively. From Theorem 1 we get the following result in this trend.

Corollary 2 (see [13], Theorem 1) Every subgroup of G is a Hall S-quasinormally embedded subgroup of G if and only if $G = D \rtimes M$, where $D = G^{\mathfrak{N}}$ is a cyclic Hall subgroup of G of square-free order and M is a Carter subgroup of G.

Recall also that a subgroup H of G is said to be a *Hall normally embedded subgroup* of G (see [8]) if H is a Hall subgroup of the normal closure H^G of H in G. From Corollary 2 we also get the following known result.

Corollary 3 (see [11]) Every subgroup of G is a Hall normally embedded subgroup of G if and only if $G = D \rtimes M$, where $D = G^{\mathfrak{N}}$ is a cyclic Hall subgroup of G of square-free order and M is a Degekind group.

2 Basic lemmas

An integer n is called a Π -number if $\sigma(n) \subseteq \Pi$. A subgroup H of G is called a *Hall* Π -subgroup of G [14] if |H| is a Π -number and |G : H| is a Π '-number. A group G is said to be σ -soluble [14] if every chief factor of G is σ -primary.

Lemma 4 (see [14], Lemma 2.8 and Theorems B and C) *Let* A, K *and* N *be subgroups of* G, *where* A *is* σ *-permutable in* G *and* N *is normal in* G.

- (1) A is σ -subnormal in G.
- (2) If $N \leq K$, K/N is σ -permutable in G/N and G is σ -soluble, then K is σ -permutable in G.

Lemma 5 (see [14], Lemma 2.6) Let A, K and N be subgroups of G, where A is σ -subnormal in G and N is normal in G.

(1) $A \cap K$ is σ -subnormal in K.

- (2) If A is a σ -Hall subgroup of G, then A is normal in G.
- (3) If $H \neq 1$ is a Hall Π -subgroup of G and A is not a Π' -group, then $A \cap H \neq 1$ is a Hall Π -subgroup of A.

Lemma 6 Let H be a normal subgroup of G. If $H/H \cap \Phi(G)$ is a Π -group, then H has a Hall Π -subgroup, say E, and E is normal in G. Hence, if $H/H \cap \Phi(G)$ is σ -nilpotent, then H is σ -nilpotent.

PROOF — Let $D = O_{\Pi'}(H)$. Then, since $H \cap \Phi(G)$ is nilpotent, D is a Hall Π' -subgroup of H. Hence by the Schur-Zassenhaus theorem, H has a Hall Π -subgroup, say E. It is clear that H is π' -soluble where $\pi' = \bigcup_{\sigma_i \in \Pi'} \sigma_i$, so any two Hall Π -subgroups of H are conjugate. By the Frattini argument,

$$G = HN_G(E) = (E(H \cap \Phi(G)))N_G(E) = N_G(E).$$

Therefore E is normal in G.

Lemma 7 If every chief factor of G below $D = G^{\mathfrak{N}_{\sigma}}$ is cyclic, then D is nilpotent.

PROOF — Assume that this is false and let G be a counterexample of minimal order. Let R be a minimal normal subgroup of G. Then from the G-isomorphism $D/D \cap R \simeq DR/R = (G/R)^{\mathfrak{N}_{\sigma}}$ we know that every chief factor of G/R below DR/R is cyclic, so the choice of G implies that $D/D \cap R \simeq DR/R$ is nilpotent. Hence $R \leq D$ and R is the unique minimal normal subgroup of G. In view of Lemma 6, $R \nleq \Phi(G)$ and so $R = C_R(R)$ by [3], Chapter A, Theorem 15.2. But by hypothesis, |R| is a prime, hence $G/R = G/C_G(R)$ is cyclic, so G is supersoluble and so $G^{\mathfrak{N}_{\sigma}}$ is nilpotent since $G^{\mathfrak{N}_{\sigma}} \leq G^{\mathfrak{N}}$.

The following lemma is evident.

Lemma 8 The class of all σ -soluble groups is closed under taking direct products, homomorphic images and subgroups. Moreover, any extension of the σ -soluble group by a σ -soluble group is a σ -soluble group as well.

Let A, B and R be subgroups of G. Then A is said to R-*permute* with B [6] if for some $x \in R$ we have $AB^x = B^xA$. If G has a complete Hall σ -set $\mathcal{H} = \{1, H_1, \ldots, H_t\}$ such that $H_iH_j = H_jH_i$ for all i, j, then we say that $\{H_1, \ldots, H_t\}$ is a σ -basis of G.

Lemma 9 (see [15], Theorems A and B) Assume that G is σ -soluble.

- (i) G has a σ -basis {H₁,..., H_t} such that for each $i \neq j$ every Sylow subgroup of H_i G-permutes with every Sylow subgroup of H_i.
- (ii) For any Π, the following hold: G has a Hall Π-subgroup E, every Π-subgroup of G is contained in some conjugate of E and E G-permutes with every Sylow subgroup of G.

Lemma 10 Let H, E and R be subgroups of G. Suppose that H is H_{σ} -permutably embedded in G and R is normal in G.

- (1) If $H \leq E$, then H is H_{σ} -permutably embedded in E.
- (2) HR/R is H_{σ} -permutably embedded in G/R.
- (3) If |G : H| is σ -primary, then H is either a σ -Hall subgroup of G or σ -permutable in G.

PROOF — Let V be a σ -permutable subgroup of G such that H is a σ -Hall subgroup of V.

(1) Since H is a σ -Hall subgroup of V and V \cap E is σ -permutable in E, H is a σ -Hall subgroup of V \cap E. Hence H is H $_{\sigma}$ -permutably embedded in E.

(2) Let H be a π -group. Since |V : H| is a π' -number,

 $|\mathbf{V}\mathbf{R}:\mathbf{H}\mathbf{R}| = |\mathbf{V}:\mathbf{H}|/|\mathbf{V}\cap\mathbf{R}:\mathbf{H}\cap\mathbf{R}|$

is a π' -number. Hence, HR/R is a σ -Hall subgroup of VR/R and, therefore, HR/R is H $_{\sigma}$ -permutably embedded in G/R.

(3) Assume that H is not σ -permutable in G. Then H < V. By hypothesis, |G : H| is σ -primary, say |G : H| is a σ_i -number. Then |V : H| is a σ_i -number. But H is a σ -Hall subgroup of V. Hence H is a σ -Hall subgroup of G.

Lemma 11 Let H be a σ -subnormal subgroup of a σ -soluble group G. If |G : H| is a σ_i -number and B is a σ_i -complement of H, then $G = HN_G(B)$.

PROOF — Assume that this lemma is false and let G be a counterexample of minimal order. Then H < G, so G has a proper subgroup M such that $H \leq M$, $|G : M_G|$ is a σ_i -number and H is σ -subnormal in M. The choice of G implies that $M = HN_M(B)$. On the other hand, clearly that B is a σ_i -complement of M_G . Since G is σ -soluble, Lemma 9 and the Frattini argument imply that

$$\mathbf{G} = \mathbf{M}_{\mathbf{G}}\mathbf{N}_{\mathbf{G}}(\mathbf{B}) = \mathbf{M}\mathbf{N}_{\mathbf{G}}(\mathbf{B}) = \mathbf{H}\mathbf{N}_{\mathbf{M}}(\mathbf{B})\mathbf{N}_{\mathbf{G}}(\mathbf{B}) = \mathbf{H}\mathbf{N}_{\mathbf{G}}(\mathbf{B}).$$

The statement is proved.

The following lemma is well-known (see for example [12], Lemma 3.29, or [4], 1.10.10).

Lemma 12 Let H/K be an abelian chief factor of G and V a maximal subgroup of G such that $K \leq V$ and HV = G. Then G/V_G is isomorphic to $(H/K) \rtimes (G/C_G(H/K))$.

Recall that the intersection of all such S-quasinormal subgroups of G which contain a subgroup H of G is called the S-quasinormal closure of H in G and denoted by H^{sG} (see [11]).

Lemma 13 If H is a Hall normally embedded subgroup of G, then H is a Hall S-quasinormally embedded subgroup of G.

PROOF — Since every normal subgroup of G is a S-quasinormal subgroup of G, $H^{sG} \leq H^{G}$. Moreover, H is a Hall subgroup of H^{G} by hypothesis, so H is a Hall subgroup of H^{sG} .

3 Proofs of the results

PROOF OF THEOREM 1 — (i) \Rightarrow (ii) Assume that this is false and let G be a counterexample of minimal order. Moreover, $D = G^{\mathfrak{N}_{\sigma}} \neq 1$, so $|\sigma(G)| > 1$.

(1) Condition (ii) is true on every proper section H/K of G, that is, $K \neq 1$ or $H \neq G$.

This directly follows from Lemma 10 and the choice of G.

(2) D is a cyclic group of square-free order.

Let $p \in \sigma_i \cap \pi(D)$ and let P be a Sylow p-subgroup of D. Since G possesses a σ -permutable subgroup E such that $|E| = |G|_{\sigma'_i}p$. Lemma 4(1) implies that E is σ -subnormal in G, so Lemma 5(3) shows that G/E_G is a σ_i -group. Hence $D \leq E_G \leq E$, so |P| = p. Therefore G is supersoluble by [9], Kapitel IV, Satz 2.9, and so every chief factor

of G below D is cyclic. Hence D is nilpotent by Lemma 7, so D is cyclic of square-free order.

(3) G is σ -soluble.

In view of Claim (1) and Lemma 8, it is enough to show that G is not simple. Assume that this is false. Then 1 is the only proper σ -permutable subgroup of G since $|\sigma(G)| > 1$. Hence every subgroup of G is a σ -Hall subgroup of G. Therefore for a Sylow p-subgroup P of G, where p is the smallest prime divisor of |G|, we have |P| = p and so |G| = p by [9], Kapitel IV, Satz 2.8. This contradiction shows that we have (3).

(4) If |G : H| is a σ_i -number and H is not a σ -Hall subgroup of G, then H is σ -permutable in G and a σ_i -complement E of H is normal in G.

This follows from Lemmas 10(3) and 11.

(5) D is a Hall subgroup of G. Hence D has a complement M in G.

Suppose that this is false and let P be a Sylow p-subgroup of D such that $1 < P < G_p$, where $G_p \in Syl_p(G)$. We can assume without loss of generality that $G_p \leq H_1$. Let R be a minimal normal subgroup of G contained in D.

Since D is soluble by Claim (2), R is a q-group for some prime q. Moreover, $D/R = (G/R)^{\mathfrak{N}_{\sigma}}$ is a Hall subgroup of G/R by Claim (1) and Proposition 2.2.8 in [2]. Suppose that $PR/R \neq 1$. Then PR/R belongs to $Syl_p(G/R)$. If $q \neq p$, then $P \in Syl_p(G)$. This contradicts the fact that $P < G_p$. Hence q = p, so $R \leq P$ and therefore P/R is a Sylow p-subgroup of G/R. It follows that $P \in Syl_p(G)$. This contradiction shows that PR/R = 1, which implies that R = P is a Sylow p-subgroup of D. Therefore R is the unique minimal normal subgroup of G contained in D. It is also clear that a p-complement of D is a Hall subgroup of G.

Now we show that $R \nleq \Phi(G)$. Indeed, assume that $R \leqslant \Phi(G)$. Then $D \ne R$ by Lemma 6 since $D = G^{\mathfrak{N}_{\sigma}}$. On the other hand, D/R is a p'-group. Hence $O_{p'}(D) \ne 1$ by Lemma 6. But $O_{p'}(D)$ is characteristic in D and so it is normal G. Therefore G has a minimal normal subgroup L such that $L \ne R$ and $L \leqslant D$. This contradiction shows that $R \nleq \Phi(G)$.

Let S be a maximal subgroup of the group G such that RS = G. Then |G:S| is a p-number. Hence, since R is not a Sylow p-subgroup of G, p divides |S|. Then S is not a Hall subgroup of G and so S is not a σ -Hall subgroup of G. Therefore S is σ -permutable in G by Claim (4) and so G/S_G is a σ_i -group, which implies that

$$\mathsf{R} \leqslant \mathsf{D} \leqslant \mathsf{S}_\mathsf{G} \leqslant \mathsf{S}$$

and and so G = RS = S. This contradiction completes the proof of (5).

(6) If $M \leq E < G$, then E is not σ -permutable in G and so E a σ -Hall subgroup of G.

Assume that E is σ -permutable in G. Then E is σ -subnormal in G by Lemma 4 (1). Then there is a subgroup chain

$$E = E_0 \leqslant E_1 \leqslant \ldots \leqslant E_r = G$$

such that either E_{i-1} is normal in E_i or $E_i/(E_{i-1})_{E_i}$ is σ -primary for all i = 1, ..., r. Let $V = E_{r-1}$. We can assume without loss of generality that $V \neq G$. Therefore, since G is σ -soluble by Claim (2), for some σ -primary chief factor G/W of G we have $E \leq V \leq W$. Also we have $D \leq W$ and so $G = DE \leq W$, a contradiction. Hence E is not σ -permutable in G.

By hypothesis, G has a σ -permutable subgroup S such that E is a σ -Hall subgroup of S. But then S = G, by the above argument, so E is a σ -Hall subgroup of G. In particular, M is a σ -Hall subgroup of G and so D is a σ -Hall subgroup of G.

(7) D is soluble, $|\sigma(D)| = |\pi(D)|$ and M acts irreducibly on every M-invariant Sylow subgroup of D.

Let $p \in \sigma_i \in \sigma(D)$. Lemma 9 and Claims (3) and (5) imply that for some Sylow p-subgroup P of G we have PM = MP. Moreover, MP is a σ -Hall subgroup of G by Claim (6). Hence $|\sigma_i \cap \pi(G)| = 1$ for all i such that $\sigma_i \cap \pi(D) \neq \emptyset$ and so $|\sigma(D)| = |\pi(D)|$. Therefore, since D is soluble by Claim (2), M acts irreducibly on every M-invariant Sylow subgroup of D by Claim (6).

(8) D possesses a Sylow tower.

Let R be a minimal normal subgroup of G contained in D. Then R is a p-group for some prime p by Claim (7). Then $R \leq P$, where P is a Sylow p-subgroup of D. But M acts irreducible on P by Claim (7), so R = P and D/R possesses a Sylow tower by Claim (1). Hence D possesses a Sylow tower.

(9) Every chief factor of G below D is σ -eccentric.

Let H/K be a chief factor of G below D. Then H/K is a p-group for some prime p since D is soluble by Claim (7). By the Frattini argument, there exist a Sylow p-subgroup P and a p-complement E of D such that $M \leq N_G(P)$ and $M \leq N_G(E)$. Then $M \leq N_G(P \cap K)$ and $M \leq N_G(P \cap H)$. Hence $P \cap K = 1$ and $P \cap H = P$ by Claim (7), so $H = K \rtimes P$. Let V = EM. Then $K \leq V$ and HV = G, so V is a maximal subgroup of G. Hence

$$G/V_G \simeq (H/K) \rtimes G/C_G(H/K)$$

by Lemma 12. Therefore, if H/K is σ -central in G, then D $\leq V_G$, which is impossible since evidently p does not divide |V|. Thus we have (9).

From Claims (5)–(9) it follows that G is a H σ E-group. Hence (i) implies (ii).

(ii) \Rightarrow (iii) It is enough to show that M is a σ -Carter subgroup of G. Let R be a minimal normal subgroup of G contained in D and E a subgroup of G containing M. We need to show that $E = E^{\mathfrak{N}_{\sigma}}M$. The choice of G implies that RM/R is a σ -Carter subgroup of G/R, so

$$ER/R = (ER/R)^{\mathfrak{N}_{\sigma}}(RM/R).$$

Hence $ER = E^{\mathfrak{N}_{\sigma}}MR$ since $(ER/R)^{\mathfrak{N}_{\sigma}} = E^{\mathfrak{N}_{\sigma}}R/R$. Moreover, R is a p-group for some prime p and R, E and $E^{\mathfrak{N}_{\sigma}}M$ are σ -Hall subgroups of G by hypothesis. Therefore, if $R \nleq E$, then E and $E^{\mathfrak{N}_{\sigma}}M$ are Hall p'-subgroups of $ER = E^{\mathfrak{N}_{\sigma}}MR$, so $E = E^{\mathfrak{N}_{\sigma}}M$. Finally, assume that $R \leqslant E$ but $R \nleq E^{\mathfrak{N}_{\sigma}}M$. Then $R \cap E^{\mathfrak{N}_{\sigma}} = 1$. On the other hand, since $DE/D \simeq E/D \cap E$ is σ -nilpotent, $E^{\mathfrak{N}_{\sigma}} \leqslant D$ and so $M \cap E^{\mathfrak{N}_{\sigma}} = 1$. Therefore

$$E^{\mathfrak{N}_{\sigma}} \cap RM = (E^{\mathfrak{N}_{\sigma}} \cap R)(E^{\mathfrak{N}_{\sigma}} \cap M) = 1.$$

Then $E/E^{\mathfrak{N}_{\sigma}} = E^{\mathfrak{N}_{\sigma}}MR/E^{\mathfrak{N}_{\sigma}} \simeq MR$ is σ -nilpotent. Hence $M \leq C_G(R)$. Suppose that $C_G(R) < G$ and let $C_G(R) \leq W < G$, where G/W is a chief factor of G. Since G is σ -soluble, G/W is σ -primary and so $D \leq W$. But then $G = DM \leq W < G$, a contradiction. Therefore $C_G(R) = G$, that is, $R \leq Z(G)$. Let V be a complement to R in D. Then V is a Hall normal subgroup of D, so it is characteristic in D. Hence V is normal in G and $G/V \simeq RM$ is σ -nilpotent, so $D \leq V < D$. This contradiction completes the proof of the implication (ii) \Rightarrow (iii).

(iii) \Rightarrow (i) Let A be any subgroup of G. Then DA is σ -permutable in G by Lemma 4(2) since G is σ -soluble. On the other hand, since $|\sigma(D)| = |\pi(D)|$ and D is a cyclic σ -Hall subgroup of G of squarefree order, A is a σ -Hall subgroup of DA. Hence A is H $_{\sigma}$ -permutably embedded in G. Therefore the implication (iii) \Rightarrow (i) is true.

The theorem is proved.

PROOF OF COROLLARY 3 — *Necessity* Let R be a Hall normally embedded subgroup of G. Then R is a Hall S-quasinormally embedded subgroup of G by Lemma 13, so in view of Corollary 2 and [1], Theorem 1.4, it is enough to show that G is a T-group. Let H be a subnormal subgroup of G. Then H is subnormal in H^G by [3], Chapter A, Theorem 14.8. Then, since H is a Hall subgroup of H^G by hypothesis, H is characteristic in H^G. Hence H is a normal subgroup of G, so G is a T-group.

Sufficiency Let H be a subgroup of G. Let $D_1 = H \cap D$. Clearly, D_1 is a Hall subgroup of D and D_1 has a complement D_2 in D.

Since $M \simeq G/D$ is Dedekind, all subgroups of G/D are normal in G/D. Then DH/D is normal in G/D. Hence DH is normal in G. Therefore $H \leq H^G \leq DH$. It is clear also that H is a Hall subgroup of DH, therefore H is a Hall subgroup of H^G . Hence H is Hall normally embedded in G.

The corollary is proved.

REFERENCES

- [1] M. ASAAD A. BALLESTER-BOLINCHES R. ESTEBAN-ROMERO: "Products of Finite Groups", *de Gruyter*, Berlin (2010).
- [2] A. BALLESTER-BOLINCHES L.M. EZQUERRO: "Classes of Finite Groups", *Springer*, Dordrecht (2006).
- [3] K. DOERK T. HAWKES: "Finite Soluble Groups", de Gruyter, Berlin (1992).
- [4] W. Guo: "The Theory of Classes of Groups", *Kluwer*, Beijing (2000).
- [5] W. Guo: "Structure Theory for Canonical Classes of Finite Groups", *Springer*, London (2015).
- [6] W. Guo K.P. Shum A.N. Skiba: "X-semipermutable subgroups of finite groups", J. Algebra 315 (2007), 31–41.
- [7] W. GUO A.N. SKIBA: "Finite groups with permutable complete Wielandt sets of subgroups", J. Group Theory 18 (2015), 191–200.

- [8] J. HE S.R.LI G.P. NONG L.Q. ZHOU: "On Hall normally embedded subgroups of finite groups", Comm. Algebra 37 (2009), 3360–3367.
- [9] B. HUPPERT: "Endliche Gruppen I", Springer, Berlin (1967).
- [10] S.R. LI J. LIO: "CLT–groups with Hall S-quasinormally embedded subgroups", Ukrain. Math. Journal 66 (2014), 1281–1287.
- [11] S.R. LI J.J. LIU: "On Hall subnormally embedded and generalized nilpotent groups", *J. Algebra* 388 (2013), 1–9.
- [12] L.A. SHEMETKOV A.N. SKIBA: "Formations of Algebraic Systems", Nauka, Moscow (1989).
- [13] D.A. SINITSA: "A note on Hall S-permutably embedded subgroups of finite groups", *Algebra Discrete Math.* 23 (2017), 305–311.
- [14] A.N. SKIBA: "On σ-subnormal and σ-permutable subgroups of finite groups", J. Algebra 436 (2015), 1–16.
- [15] A.N. SKIBA: "A generalization of a Hall theorem", J. Algebra Appl. 15 (2016), 1650085 (13 pages).
- [16] A.N. SKIBA: "On some results in the theory of finite partially soluble groups", *Commun. Math. Stat.* 4 (2016), 281–309.

Darya A. Sinitsa Department of Mathematics 104 Sovetskaya str. Gomel (Belarus) e-mail: lindela@mail.ru