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“In re mathematica ars proponendi quaestionem pluris facienda
est quam solvendi’’

Georg Cantor

ADV Perspectives in Group Theory
– an open space –

ADV –4A

Let G denote an arbitrary group. If S is a subset of G, then we write

S2 = {xy | x,y ∈ S}.

If G is an additive group, then we put

2S = {x+ y | x,y ∈ S}.

A well-known problem in additive number theory is to find the pre-
cise structure of S, if S is a finite subset of G, and |S2| 6 α|S| + β,
with α (the doubling coefficient) and |β| small. Problems of this kind
are called inverse problems of small doubling type. These problems have
been first studied in the additive group of the integers. It is very
easy to prove that, if S is a finite subset of the integers, |S| = k,
then |2S| > 2|S|− 1, and |2S| = 2|S| − 1 if and only if there exist in-
tegers a,q such that

S = {a,a+ q,a+ 2q, . . . ,a+ (k− 1)q}

i.e. S is an arithmetic progression of length k. Small doubling prob-
lems with doubling coefficient α = 3 in the group of the integers



132 ADV Perspectives in Group Theory

have been studied by G.A. Freiman. He proved that if S is a finite set
of integers with k > 3 elements and |2S| 6 3k− 4, then there exist
integers a,q such that q > 0 and

S ⊆ {a,a+ q,a+ 2q, . . . ,a+ (2k− 4)q}

(see [G.A. Freiman: “On the addition of finite sets”, Izv. Vyss. Ucebn.
Zaved. Matematika 6(13) (1959), 202–213]). Freiman obtained similar
results if |2S| 6 3|S|− 3, or |2S| 6 3|S|− 2. It is quite natural to ask sim-
ilar questions in any torsion-free group. J.H.B Kemperman showed
that if S is a finite subset of any torsion-free group, then |S2| > 2|S|− 1
(see [J.H.B. Kemperman: “On complexes in a semigroup”, Indag. Mat.
18 (1956), 247–254]), while G.A. Freiman and B.M. Schein proved that,
if S = k, then |S2| = 2|S|− 1 if and only if

S = {a,aq, . . . ,aqk−1}

i.e. S is a geometric progression, and either aq = qa or aqa−1 = q−1

(see [G.A. Freeman and B.M. Schein: “Interconnections between the
structure theory of set addition and rewritability in groups”, Proc.
Amer. Math. Soc. 113 (1991), 899–910]). Therefore it is quite natural to
ask the following question.

Question 1 What is the structure of S, if S a finite subset of a torsion-free
group G, |S| = k > 3, and |S2| 6 3|S|− 4? Is S contained in a geometric
progression of length at most 2|S|− 3?

Question 2 What is the structure of S, if S a finite subset of a torsion-free
group G, |S| = k > 3, and |S2| 6 3|S|− 4? Is S contained in a geometric
progression of length at most 2|S|− 3?

Small doubling problems have been studied in abelian groups by
many authors, for example Y.O. Hamidoune, B. Green, M. Kneser,
A.S. Lladó, A. Plagne, P.P. Palfy, I.Z. Ruzsa, O. Serra, Y.V. Stanchescu.
It could be also interesting to know the answer to the following ques-
tion.

Question 3 What is the structure of 〈S〉, if S is a finite subset of a tor-
sion-free group and |S2| 6 3|S|−β, where β = 2, 3, 4?

We answered to all these questions, if G is an orderable group, in
a series of papers with G.A. Freiman, Y.V. Stanchescu, A. Plagne
and D.J.S. Robinson (see, for example, [Freiman, Herzog, Longobardi,
Maj, Plagne, Robinson and Stanchescu: “On the structure of subsets
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of an orderable group with some small doubling properties”, J. Al-
gebra 445 (2016), 307-326; Freiman, Herzog, Longobardi, Maj, Plagne
and Stanchescu: “Small doubling in ordered groups: generators and
structures”, Groups Geom. Dyn. 11 (2017), 585–612]).

Marcel Herzog
Patrizia Longobardi

Mercede Maj

ADV –4B

In [A. Caranti and F. Dalla Volta: “Groups that have the same holo-
morph as a finite perfect group”, ArXiv (2016); 1612.03573] examples
are constructed of a finite group Q (actually, an infinite family of
groups) which is perfect and centrally indecomposable, such that

1. Z(Q) is not elementary abelian (in particular, Z(Q) is non-tri-
vial), and

2. the automorphism group Aut(Q) acts trivially on Z(Q).

Question Does there exist a finite quasisimple group with these two prop-
erties?

Andrea Caranti

ADV –4C

Recall that a left brace (B,+, ·) is a set B with two operations + and ·
such that (B,+) is an abelian group, (B, ·) is a group and the follow-
ing condition is satisfied for all a,b, c ∈ B:

a · (b+ c) + a = a · b+ a · c.

Algebraic structures of this type yield an important tool in the
study of set theoretic solutions of the Yang-Baxter equation (more
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precisely, they correspond to the so called non-degenerate involu-
tive solutions; see [D. Bachiller, F. Cedó and E. Jespers: “Solutions of
the Yang-Baxter equation associated with a left brace”, J. Algebra 463

(2016), 80–102]), but they also show up in a variety of other math-
ematical contexts. The main challenging problem, perhaps too diffi-
cult at the moment, is to describe all finite left braces. It is known
that, in every finite left brace B, (B, ·) is a solvable group (this is
an easy consequence of Theorem 2.15 of [P. Etingof, T. Schedler and
A. Soloviev: “Set-theoretical solutions to the quantum Yang-Baxter
equation”, Duke Math. J. 100 (1999), 169–209], see also [W. Rump:
“Braces, radical rings, and the quantum Yang-Baxter equation”, J. Al-
gebra 307 (2007), 153–170]). However, there exists a finite nilpotent
group (in fact, a p-group for some prime p) of nilpotency class 9
which is not isomorphic to the multiplicative group of any left brace
(see [D. Bachiller: “Counterexample to a conjecture about braces”,
J. Algebra 453 (2016), 160–176]). A finite group isomorphic to the mul-
tiplicative group of a left brace is called an involutive Yang-Baxter
(IYB, for short) group. Another important problem is to describe the
class of IYB groups. This also seems too difficult in full generality.
But we can begin with the following question.

Question 1 Find the greatest positive integer n such that every finite
nilpotent group of class < n is an IYB group. Is n > 3?

It is known that every finite nilpotent group of class 2 is the cir-
cle group of a nilpotent ring of index 3 (Theorem 2 of [J.C. Ault
and J.F. Watters: “Circle groups of nilpotent rings”, Amer. Math. Mon-
thly 80 (1973), 48–52]). Thus every finite nilpotent group of class 2 is
an IYB group. It is not known whether every finite nilpotent group
of class 3 is an IYB group. Although, if G is a nilpotent group with
centre Z(G) and with a presentation of the following form:

G = 〈x1, . . . , xr | [xk, [xj, xi]] ∈ Z(G), [xk, [xj, xi]]nk,j,i = [xj, xi]nj,i = 1,

x
ni
i = 1, 1 6 i, j, k 6 r〉,

for some r > 1 and non-negative odd integers nk,j,i,nj,i,ni, then G
is an IYB group (see [F. Cedó, E. Jespers and J. Okniński: “Nilpotent
groups of class three and braces”, Publ. Mat. 60 (2016), 55–79]).

Question 2 Let G be a group with a presentation of the above form
with r > 1 and nk,j,i,nj,i,ni powers of 2. Is G an IYB group?
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A natural intermediate step towards a classification of all finite left
braces is the following question.

Question 3 Find new classes of finite simple left braces.

Here, (B,+, ·) is simple if it has no proper ideals. An ideal I of a
left brace B is a normal subgroup of (B, ·) such that ba− b ∈ I for
every b ∈ B,a ∈ I (every ideal leads to a natural left brace structure
on the group B/I).

In order to approach Question 3, we propose three other questions.

Question 4 Construct new classes of finite left braces (B,+, ·) of order pn

for a prime number p.

Question 5 Describe the automorphism group Aut(B,+, ·) of all such
braces.

Recall that every finite left brace B can be written in the form of
the matched product B = B1 · · ·Bk of left braces, where B1, . . . ,Bk
are the Sylow subgroups of (B,+). Therefore, the left braces of Que-
stion 4 are the building blocks, while the collection of compatible
actions of Bi on Bj, for all i, j is an essential factor in the definition of
a matched product of braces; whence the significance of Question 5

(see Proposition 2.7 of [D. Bachiller, F. Cedó, E. Jespers and J. Ok-
niński: “Iterated matched products of finite braces and simplicity;
new solutions of the Yang-Baxter equation”, Trans. Amer. Math. Soc,
to appear; arXiv:1610.00477]).

Question 6 Describe all simple left braces of orders pnqm, for two differ-
ent primes p,q and positive integers n,m.

Notice that, according to a result of W. Rump (see [“Braces, radical
rings, and the quantum Yang-Baxter equation”, J. Algebra 307 (2007),
153–170]), every simple left brace of order pn is the trivial brace of
order p, meaning that (B,+) is a cyclic group of order p and the
operation · coincides with +.

More constructions of finite simple left braces can be found in
[D. Bachiller, F. Cedó, E. Jespers and J. Okniński: “Asymmetric prod-
uct of left braces and simplicity; new solutions of the Yang-Baxter
equation”, preprint on arXiv:1705.08493].

Ferran Cedó
Jan Okniński



136 ADV Perspectives in Group Theory

ADV –4D

A group G is said to admit a complete resolution if there exists a
doubly infinite exact complex of projective ZG-modules E, which co-
incides with a projective resolution P of the trivial ZG-module Z in
sufficiently high dimensions, i.e

E : . . .→ En+1→ En→ En−1→ . . .→ E0→ E−1 → . . .
‖ ‖

P : . . .→ Pn+1→ Pn→ Pn−1→ . . .→ P0→ Z → 0

A group G is said to admit a complete resolution in the strong sense
if it admits a complete resolution such that HomZG(E,P) is exact for
any projective ZG-module P.

Admitting a complete resolution is a subgroup closed property
and if a group G admits a complete resolution then Hi(G,P) 6= 0 for
some i and some projective ZG-module P (see [G. Mislin and O. Ta-
lelli: “On groups which act freely and properly on finite dimen-
sional homotopy spheres”, London Math. Soc. Lecture Note Ser. 275,
208–228]). As there are groups with Hi(G,P) = 0 for all i and all
projective ZG-modules P, e.g. the free abelian group of infinite rank,
GL(n,K), with n > 1 and K a subfield of the algebraic closure of the
rational numbers [G. Mislin: “Tate cohomology for arbitrary groups
via satellites”, Topology Appl. 56 (1994), 293–300], it follows that there
are groups which do not admit a complete resolution. Any finite
group or more generally every group with finite Gorenstein cohomo-
logical dimension admits a complete resolution in the strong sense.

If a group G admits a complete resolution in the strong sense, then
its complete cohomology Ĥi(G,A) (generalized Tate cohomology, de-
fined for any group G) can be calculated via a complete resolution in
the strong sense, i.e.

Ĥi(G,A) = Hi(HomZG(E,A))

for all i ∈ Z and ZG-modules A (see [J. Cornick and P. Kropholler:
“On complete resolutions”, Topology Appl. 78 (1997), 235–250]). If one
wants the complete cohomology to have nice properties, e.g. to sat-
isfy the Eckmann-Schapiro lemma, which relates the cohomology of
a subgroup to the cohomology of the group, then the complete coho-
mology has to be calculated via complete resolutions in the strong
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sense (see [F. Dembegioti and O. Talelli: “A note on complete resolu-
tions”, Proc. Amer. Math. Soc. 138 (2010), 3815–3820]).

If a group G has periodic cohomology after some steps, i.e. there
are natural numbers q, k such that the functors

Hi(G,−) and Hi+q(G,−)

are naturally equivalent for all i > k, then G admits a complete res-
olution (see [O. Talelli: “Periodicity in group cohomology and com-
plete resolutions”, Bull. London Math. Soc. 37 (2005), 547–554]).

Question If G is a group admitting a complete resolution, does it admits
a complete resolution in the strong sense?

There are a few algebraic invariants of a group whose finiteness is
equivalent to the existence of a complete resolution in the strong
sense, e.g. a group G admits a complete resolution in the strong
sense iff the Gorenstein cohomological dimension of G is finite (see
[A. Bahlekeh, F. Dembegioti and O. Talelli, Bull. London Math. Soc. 41

(2009), 859–871]). The conjecture holds for all groups in Kropholler’s
class of groups LHF which contains among others all soluble and all
linear groups.

If the conjecture were true, it would in particular imply that if a
group G has periodic cohomology after some steps then the period-
icity natural equivalences are induced by cup product with an ele-
ment in Hq(G,Z). It would then follow from a Theorem of A. Adem
and J.H. Smith (see [“Periodic complexes and group actions”, Ann.
of Math. 154(2) (2001), 407–435]) that periodicity in cohomology af-
ter some steps is the algebraic characterization of those countable
groups which act freely and properly on Rn × Sm for some n,m.

Olympia Talelli

ADV –4E

Any finite group G contains a subgroup H that has the same expo-
nent as G and can be generated by three elements (see [E. Detomi and
A. Lucchini: “Probabilistic generation of finite groups with a unique
minimal normal subgroup”, J. Lond. Math. Soc. 87 (2013), 689–706]).
In several relevant situations a stronger result holds. For example
any finite soluble group G contains a 2-generated subgroup H with
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the same exponent (see [A. Lucchini, M. Morigi and P. Shumyatsky:
“Boundedly generated subgroups of finite groups”, Forum Math. 24

(2012), 875–887]).

Question Is it true that any finite group G contains a 2-generated proper
subgroup with the same exponent?

Andrea Lucchini

ADV –4F

Let G be a group, let ζα(G) denote the αth term of the upper central
series and let γα(G) denote the αth term of the lower central series.
Let ζ∞(G) denote the upper hypercentre of G. It is a well-known
theorem attributed to I. Schur that if G is a group and G/ζ1(G) is fi-
nite, then γ2(G) is finite. A theorem attributed to R. Baer asserts that
if G/ζn(G) is finite, then γn+1(G) is finite for all natural numbers n.
In [M. De Falco, F. de Giovanni, C. Musella, and Y.P. Sysak: “On the
upper central series of infinite groups”, Proc. Amer. Math. Soc. 139

(2011), 385–389] it was shown that if G/ζ∞(G) is finite, then the lo-
cally nilpotent residual L of G is finite and G/L is hypercentral. There
have been various other generalizations of this latter result concerned
with hypotheses restricting the various ranks of G/ζ∞(G) and some
of these results are collected together in [M.R. Dixon, L.A. Kurda-
chenko, I.Ya. Subbotin: “Ranks of Groups: The Tools, Characteristics,
and Restrictions”, J. Wiley and Sons, Hoboken (2017)]. The following
question arises.

Question Let G be a group such that G/ζ∞(G) is a generalized radical
group of finite 0-rank. Is there a normal subgroup H of G such that H has
finite 0-rank and G/H is hypercentral?

Martyn R. Dixon
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