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Abstract
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1 Introduction

A subgroup H of a group G is said to be permutable if HK = KH for
every subgroup K of G. This concept was introduced by Ore [14]. It
is clear that every normal subgroup of a group is permutable, but ar-
bitrary permutable subgroups need not to be normal. It is easy to see
that a maximal permutable subgroup is normal, so that a permutable
subgroup of a finite group is subnormal. For infinite groups, Stone-
hewer [17] has proved that a permutable subgroup of an arbitrary
group is ascendant. A group G is called quasihamiltonian if every sub-
group of G is permutable. The structure of quasihamiltonian groups
has been completely described by Iwasawa [11], we refer to [16] for
a detailed account on this subject.

A subgroup H of a group G is called nearly normal if it has finite in-
dex in its normal closure HG. In [13], B. H. Neumann has proved that
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every subgroup of a group is nearly normal if and only if its commu-
tator subgroup is finite. A corresponding property, where normality
is replaced by permutability, has been introduced in [5]. More pre-
cisely, a subgroup H of a group G is called nearly permutable if it has
finite index in a permutable subgroup of G. In [5], the authors proved
that a periodic group has all its subgroups nearly permutable if only
if it is finite-by-quasihamiltonian.

A group G is said to have finite (Prüfer) rank r if every finitely gen-
erated subgroup of G can be generated by at most r elements and r
is the least positive integer with such property; if such an r does not
exist, we will say that the group G has infinite rank. In recent years,
many authors have proved that in a (generalized) soluble group of
infinite rank the behaviour of subgroups of infinite rank has an in-
fluence on the structure of the whole group (for example, see [4] for
a survey on this topic). In particular, in [3] the authors have proved
that a (generalized) soluble group of infinite rank whose subgroups
of infinite rank are nearly normal has finite commutator subgroup.

The aim of this paper is to investigate the structure of a locally fi-
nite group of infinite rank in which every subgroup of infinite rank
is nearly permutable. It will turn out that the behaviour of the sub-
groups of finite rank can be neglected.

Theorem Let G be a locally finite group of infinite rank whose subgroups
of infinite rank are nearly permutable. ThenG is finite-by-quasihamiltonian.

The structure of non-periodic groups of infinite rank in which ev-
ery subgroup of infinite rank is nearly permutable has been studied
in [7] and it has been obtained as a corollary of a more general situa-
tion.

In a forthcoming paper [6] a dual concept to nearly permutability
will be treated.

Most of our notation is standard and can be found in [15].

2 Primary groups

Our first purpose is to show that a locally finite p-group of infinite
rank whose subgroups of infinite rank are nearly permutable is fini-
te-by-quasihamiltonian.

In order to prove the main theorem of this section, we need the
following lemma, which shows that, at least in the universe of locally
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finite groups, under certain conditions a subgroup of finite rank is
the intersection of two subgroups of infinite rank.

Lemma 2.1 Let G be a group and let A be a periodic normal subgroup
of infinite rank of G. If X is a subnormal Černikov subgroup of G, then A
contains a subgroup of infinite rank B such that [X,B] = {1}.

Proof — Let

X = L0 / L1 / . . . / Lk−1 / Lk = XA

be a subnormal series of X in XA and argue by induction on k.
If k = 1, then X is normal in XA, so the factor group A/CA(X) is
a Černikov group ([15], Theorem 3.29) and we can choose B = CA(X).
Now, let k > 1 and put L = Lk−1. If L has finite rank, then L is
a Černikov group and we can choose B = CA(L). So we can sup-
pose that L has infinite rank. Since L = X(A ∩ L), then A ∩ L has infi-
nite rank and, by induction, there exists a subgroup B of A ∩ L such
that [X,B] = {1} and the statement is true for any k. ut

It is known that a locally finite quasihamiltonian p-group is abe-
lian-by-finite, so that a primary group in which every subgroup is
nearly permutable is finite-by-abelian-by-finite. The next proposition
shows that it suffices to require only that the subgroups of infinite
rank are nearly permutable.

Proposition 2.2 Let G be a locally finite p-group of infinite rank whose
subgroups of infinite rank are nearly permutable. Then G is finite-by-abe-
lian-by-finite.

Proof — Suppose by contradiction that G is not finite-by-abelian-
by-finite and put A = Ω1(G). Every subgroup of infinite rank of A
is nearly normal in A and so A ′ is finite (see [3], Theorem B). More-
over, G/A is finite-by-quasihamiltonian (see [5], Theorem). In particu-
lar, G/A is finite-by-abelian-by-finite. Let H be a normal subgroup of
finite index of G such that H/A is finite-by-abelian. Thus H/A ′ is still
a counterexample to the proposition and we may assume that A is
abelian and G/A is finite-by-abelian. Let N/A be a finite normal sub-
group of G/A such that G/N is abelian, and let K be a permutable
subgroup of G. Then K is normal in KA, the index |KN : KA| is finite
and KN is normal in G; it follows that there exists a positive integer n
such that every permutable subgroup of G is subnormal of defect at
most n. Hence every subgroup of infinite rank of G has finite index
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in a subnormal subgroup of defect at most n. In particular, every sub-
group of infinite rank of G is subnormal. Therefore every subgroup
of G is subnormal in G (see [12], Theorem 5). Let X be any subgroup
of finite rank of G, then X is a Černikov group (see [15], Corolla-
ry 1, p.38, Part 2) and X is subnormal in XA, so, by Lemma 2.1, A
contains a subgroup C = C1 × C2, with C1 and C2 of infinite rank
and X ∩C = {1}, such that X = XC1 ∩ XC2. As XCi has infinite rank
for i = 1, 2, X has finite index in a subnormal subgroup of G of de-
fect at most n. Thus there exists a finite normal subgroup K of G such
that G/K is nilpotent (see [8], Theorem 1) and G is nilpotent. Among
all counterexamples to the proposition obtained in this way, choose
a nilpotent group G with minimal nilpotency class c > 1.

If the centre Z(G) of G has infinite rank, then Z(G) contains a
subgroup Z1 × Z2, with Z1 and Z2 of infinite rank. Then G/Zi is
finite-by-abelian-by-finite, for i = 1, 2, and so the same holds for G,
a contradiction. It follows that Z(G) has finite rank and, by the mini-
mality of c, G/Z(G) is finite-by-abelian-by-finite. Thus Z(G)∩Ω1(G)
is finite and G/(Z(G)∩Ω1(G)) is finite-by-abelian-by-finite, so that G
is finite-by-abelian-by-finite and this last contradiction completes the
proof of the proposition. ut

Lemma 2.3 Let G be a group of infinite rank whose subgroups of infi-
nite rank are nearly permutable. If G contains an elementary abelian nor-
mal p-subgroup A of finite index, then the commutator subgroup G ′ of G
is finite.

Proof — Let H be any subgroup of infinite rank of G and let K be a
permutable subgroup of G such that H has finite index in K. Then K
is normal in KA, further KA has finite index in G and it follows
from Proposition 3.3 of [7] that G ′ is finite. ut

Theorem 2.4 Let G be a locally finite p-group of infinite rank whose
subgroups of infinite rank are nearly permutable. Then G is finite-by-quasi-
hamiltonian.

Proof — By Proposition 2.2,G contains a finite normal sub-groupN
such that G/N is abelian-by-finite. Without loss of generality it can
be assumed that N = {1}, so that G is abelian-by-finite. Let A be an
abelian normal subgroup of finite index of G. First, suppose that G
has infinite exponent. By Lemma 6 of [3], Ω1(A) contains a direct
product Y1 × Y2 of G-invariant subgroups of infinite rank Y1 and Y2
and G/Yi is finite-by-quasihamiltonian, for i = 1, 2. Since Y1 and Y2
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have finite exponent, it follows that G/Yi is finite-by-abelian,
for i = 1, 2. Hence G is finite-by-abelian. So we can suppose that G
has finite exponent. Put G = AE, where E is a finite subgroup of G
and let H be any subgroup of infinite rank of G. Then there exists
a permutable subgroup K1 of G such that |K1 : H| is finite. Let K be
a permutable subgroup of G such that K1E has finite index in K. It
follows that |K : H| is finite and G = AK. As a consequence |K : HK|
is finite and K ∩ A is a G-invariant subgroup of finite index of K.
Hence, HK ∩A has finite index in K and, being a normal subgroup
of HKA, it is also normal in G. In particular every subgroup of in-
finite rank of G is normal-by-finite, so that every subgroup of G is
normal-by-finite (see [3], Theorem C). Since A is a bounded abelian
group, it is the direct product of cyclic subgroups and so it is clearly
residually finite. Application of Lemma 2.1 of [2] yields that A con-
tains a subgroup B of finite index such that every subgroup of B
is G-invariant. Then B has finite index in G and, replacing A by B,
we may assume that every subgroup of A is G-invariant.

Let Y = Y1 × Y2 be a subgroup of A with Y1 and Y2 of infinite
rank such that E∩ Y = {1} and let Ki be a permutable subgroup of G
such that |Ki : EYi| is finite, for i = 1, 2. Then E = EY1 ∩ EY2 has
finite index in F = K1 ∩ K2, so that F is finite and G = AF. Without
loss of generality we may assume that E = K1 ∩ K2. Moreover, we
can replace G with G/EG, so that E is a core-free subgroup of G. In
particular A∩ E = CE(A) = {1}, and E acts on A as a group of power
automorphisms. If p > 2, then E is cyclic and by Lemma 2.3.4 of [16]
we have that G is locally quasihamiltonian and hence even quasi-
hamiltonian. So we can assume p = 2. If A has exponent 2, then G
is finite-by-abelian by Lemma 2.3. So, we can suppose that the expo-
nent of A is at least 4. Let U be a cyclic subgroup of order 4 of A,
then UKi/CKi(U) has order at most 8 and, as Ki is permutable, it fol-
lows that [U,Ki] is contained in Ki. Thus [U,E] = {1} and U 6 Z(G).
Hence, E is cyclic and, applying Lemma 2.3.4 of [16] again, we ob-
tain that G is quasihamiltonian and so the theorem is completely
proved. ut

3 Periodic Groups

Since a quasihamiltonian group is locally nilpotent, a periodic
group G in whose subgroups are nearly permutable is finite-by-(lo-
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cally nilpotent) and hence G is also (locally nilpotent)-by-finite. In
order to prove the main theorem of this paper, the first step is to
show that a locally finite group of infinite rank whose subgroups of
infinite rank are nearly permutable is (locally nilpotent)-by-finite.

Recall that the Hirsch-Plotkin radical of a group G is the largest
locally nilpotent normal subgroup of G and it contains every locally
nilpotent ascendant subgroup of G.

Lemma 3.1 Let G be a locally finite group of infinite rank whose sub-
groups of infinite rank are nearly permutable. Then G contains a nilpotent
normal subgroup A of infinite rank such that the commutator subgroup A ′

of A is finite and for every prime p the p-component of A is generated by
elements of order p.

Proof — f Let B be an abelian subgroup of infinite rank of G and
let K be a permutable subgroup of G such that |K : B| is finite. Then
|K : BK| is finite and BK is an abelian ascendant subgroup of infinite
rank of G. Thus, BK is contained in the Hirsch-Plotkin radical R of G
and, in particular, R has infinite rank. Let

A = DrpΩ1(Rp),

where Rp is the p-component of R. Then A has infinite rank and
every permutable subgroup of A is normal in A. It follows that every
subgroup of infinite rank of A is nearly normal in A and A ′ is fini-
te (see [3], Theorem B) and the lemma is proved. ut

We say that a subgroup X of a group G is finite-permutable-finite
if there exist subgroups H and K of G such that the indeces |H : X|
and |G : K| are finite and H is permutable in K. This definition has
been introduced in [7] and clearly every nearly permutable subgroup
is also finite-permutable-finite.

Lemma 3.2 Let G be a locally finite group, and let S be a Sylow p-sub-
group of G. If S is finite-permutable-finite, then S/Op(G) is finite.

Proof — Let H and K be subgroups of G such that the indexes |H : S|
and |G : K| are finite and H is permutable in K. The core SH of S in H
is an ascendant p-subgroup of K and so it is contained in Op(K). Sin-
ce S/SH is finite, it follows that S/Op(K) is finite. Clearly

Op(G) = Op(K)∩KG



Nearly permutable subgroups 59

and, since G/KG is finite, we have that also the factor group S/Op(G)
is finite. ut

We put here a technical lemma that will be needed in the following.

Lemma 3.3 Let G be a locally finite group of infinite rank whose sub-
groups of infinite rank are finite-permutable-finite and such that every sec-
tion H/K of G is finite-by-quasihamiltonian, when K has infinite rank. If G
contains an abelian normal subgroup of infinite rank A such that for ev-
ery prime p the p-component of A is elementary abelian, then one of the
following conditions holds:

1. G is (locally nilpotent)-by-finite,

2. G contains a non-(locally nilpotent)-by-finite subgroup M = QB,
where B is a normal elementary abelian p-subgroup of infinite rank
of M and Q is a locally nilpotent p ′-group of finite rank, for some
prime p.

Proof — Assume that G is not (locally nilpotent)-by-finite. If for ev-
ery prime p the p-component Ap of A has finite rank, then A contains
a direct product B1×B2 of G-invariant subgroups of infinite rank B1
and B2. Then G/Bi is (locally nilpotent)-by-finite, for i = 1, 2, and
also G is (locally nilpotent)-by-finite, a contradiction. It follows that
for some prime p the rank of B = Ap is infinite. Then there exists
a normal subgroup H of finite index of G such that H/B is locally
nilpotent. Therefore, H is not (locally nilpotent)-by-finite and we can
replace G by H, so that we can assume that G/B is locally nilpotent.
Moreover, as G/B is finite-by-quasihamiltonian, its primary compo-
nents are nilpotent and so every finite subgroup of G/B is subnormal
in G/B. Let x be any element of G of order pn, for some positive in-
teger n, then the p-subgroup 〈x〉B is subnormal in G and so it is
contained in Op(G). In particular, x belongs to Op(G) and, as a con-
sequence, P = Op(G) is the unique Sylow p-subgroup of G. Clear-
ly, B 6 P and so G/P is a locally nilpotent p ′-group. By contradiction,
suppose that there exists a Sylow q-subgroup Q of infinite rank of G,
with q 6= p. Then Q is finite-permutable-finite and Q/Oq(G) is finite
by Lemma 3.2. Thus, Oq(G) has infinite rank and, as P ∩Oq(G) = {1},
the group G is (locally nilpotent)-by-finite, a contradiction. It fol-
lows that for every q 6= p, every Sylow q-subgroup of G has finite
rank and G satisfies the minimal condition on q-subgroups. There-
fore, by Lemma 2.5.10 of [9] every q-component of G/P is a Černikov
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group and so, in particular, G/P is countable. Hence, there exists a
locally nilpotent p ′-subgroup Q of G such that G = QP (see [9], The-
orem 2.4.5). Since G/B is locally nilpotent, QB is normal in G, so
that QB is not (locally nilpotent)-by-finite. If Q has infinite rank, then
there exist subgroups H and K of QB such that the indexes |H : Q|

and |QB : K| are finite and H is permutable in K. In particular

K = H(K∩B)

and H is normal in K. It follows that H∩B is a finite normal subgroup
of K and K/(H∩ B) is the product of two (locally nilpotent)-by-finite
normal subgroups. Hence, K is finite-by-(locally nilpotent)-by-finite
and this implies that K is also (locally nilpotent)-by-finite. Since K
has finite index in G, also G is (locally nilpotent)-by-finite, a contra-
diction. Thus, Q has finite rank and M = QB is the required sub-
group. ut

Proposition 3.4 Let G be a locally finite group of infinite rank whose
subgroups of infinite rank are nearly permutable. Then G is (locally nilpo-
tent)-by-finite.

Proof — Suppose that G is not (locally nilpotent)-by-finite. By Lem-
ma 3.1, G contains a normal subgroup of infinite rank A such that A ′

is finite and for every prime p the p-component of A is generated by
elements of order p. Thus, G/A ′ is still a counterexample and so, re-
placing G by G/A ′, we can suppose that A is abelian. Then it follows
from Lemma 3.3 that G contains a non-(locally nilpotent)-by-finite
subgroup M = QB, where B is a normal elementary abelian p-sub-
group of infinite rank of M and Q is a locally nilpotent p ′-group
of finite rank, for some prime p. Without loss of generality we can
replace G by M. Put π = π(Q) and first suppose that π is a finite
set. Then Q is a Černikov group. Let J be any quasicyclic subgroup
of Q and let x be any element of J. It follows from Lemma 2.9 of [5]
that JB and X = 〈x〉B are normal subgroups of G. Moreover, by Lem-
ma 2.3, X ′ = [x,B] is finite. As a consequence, J is normal in J[x,B]
for every x ∈ J and, hence, J is normal also in J[J,B] = JB. There-
fore the finite residual of Q is subnormal in G and Q/Oπ(G) is fi-
nite. As Oπ(G)B is contained in the Hirsch-Plotkin radical R of G,
we have that G/R is finite. By this contradiction, the set π is infinite.
Let C = C1 ×C2 be a subgroup of B, with C1 and C2 of infinite rank,
and let Ki be a permutable subgroup of G such that |Ki : Ci| is finite,
for i = 1, 2. Then K1 ∩ K2 is finite and, by Lemma 1.2.5 of [1], C has
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finite index in K1K2 and, it follows that the set σ = π(K1K2) is finite.
Put Q = Qσ ×Qσ ′ , then Qσ ′ ∩K1K2 = {1}, so that

Qσ ′K1 ∩Qσ ′K2 = Qσ ′(K1 ∩K2).

Let Li be a permutable subgroup of G such that Qσ ′Ki has finite
index in Li, for i = 1, 2. Then Qσ ′ has finite index in L = L1 ∩L2. As L
is normal in LB, there exists a normal subgroup N of Qσ ′B such that
|N : Qσ ′ | is finite. Hence, N ∩ B is finite and Qσ ′B/(N ∩ B) is locally
nilpotent, so that Qσ ′B is (locally nilpotent)-by-finite. On the other
hand, as σ is a finite set, the previous argument shows that also QσB
is (locally nilpotent)-by-finite. Thus, G is the product of its (locally
nilpotent)-by-finite normal subgroups QσB and Qσ ′B and this last
contradiction completes the proof. ut

Lemma 3.5 Let G be a locally finite group of infinite rank whose sub-
groups of infinite rank are nearly permutable. If X is a subgroup of finite
rank of G, then X is finite-by-quasihamiltonian.

Proof — Let A be an abelian subgroup of infinite rank of G such
that A ∩ X = {1} and let L be any subgroup of X. As A has finite
index in a permutable subgroup H of G, H ∩ X is finite and L has
finite index HL∩X = L(H∩X). Let K be a permutable subgroup of G
such that |K : HL| is finite, then K ∩ X is permutable in X and L has
finite index in K ∩ X. It follows that every subgroup of X is nearly
permutable and X is finite-by-quasihamiltonian (see [5], Theorem). ut

The next lemma is a generalization of Lemma 3.3 of [5]. We omit
the proof since it is analogous to the proof contained in [5].

Lemma 3.6 Let G be a periodic group and let (En)n∈N be a sequence of
subgroups of G such that π(En) is finite for every n, π(En) ∩ π(Em) = ∅
for n 6= m and all subgroups of En+1 are normalized by 〈E1, . . . ,En〉
for each positive integer n. If every En contains a non-permutable sub-
group Hn, then the subgroup H = 〈Hn | n ∈ N〉 is not nearly-permutable
in G.

We are now in the position to prove the main theorem of the paper.
First, we consider the locally nilpotent case.

Proposition 3.7 Let G be a periodic locally nilpotent group of infinite
rank whose subgroups of infinite rank are nearly permutable. Then G is
finite-by-quasihamiltonian.
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Proof — Assume by contradiction that G is not finite-by-quasiha-
miltonian. Let n be a positive integer for which there exist n sub-
groups E1, . . . ,En of G such that π(Ei) is finite for every i 6 n,
π(Ei) ∩ π(Ej) = ∅ for i 6= j, every Ei contains a non-permutable sub-
group Hi of rank ri and ri < ri+1 for every i < n. By Theorem 2.4
and Lemma 3.5, every primary component Gp of G is finite-by-qua-
sihamiltonian. As the set

π = π(E1)∪ · · · ∪ π(En)

is finite, it follows that Gπ is finite-by-quasihamiltonian and so Gπ ′
contains a finite subgroup En+1 and a subgroup Hn+1 of En+1 such
that Hn+1 is not permutable in En+1. Let rn+1 be the rank of Hn+1.
If rn < rn+1, put En+1 = En+1 and Hn+1 = Hn+1. So, suppose
that rn+1 6 rn and put πn+1 = π∪π(En+1). As πn+1 is finite, Gπ ′n+1
is not finite-by-quasihamiltonian and hence it has infinite rank,
by Lemma 3.5. It follows that there exists a prime p /∈ πn+1 such
that rn is strictly less than the rank of Gp. In this case,
put En+1 = En+1 ×Gp and Hn+1 = Hn+1 ×Gp.

In both cases, we have that π(En+1) is finite, π(Ei) ∩ π(En+1) = ∅
for i 6 n, Hn+1 is not permutable in En+1 and rn < rn+1. It follows
from Lemma 3.6 that H = 〈Hn | n ∈ N〉 is not nearly permutable
in G and this is a contradiction, since H has infinite rank. ut

Proof of the Theorem — By Proposition 3.4, G contains a lo-
cally nilpotent normal subgroup Q such that the index |G : Q| is
finite, so there exists a finite subgroup E of G such that G = QE.
It follows from Theorem 1 of [10] that Q contains an abelian sub-
group A = A1 ×A2 such that A1 and A2 are E-invariant subgroups
of infinite rank and A ∩ E = {1}. Let Ki be a permutable subgroup
of G such that EAi has finite index in Ki, for i = 1, 2. Then E has fi-
nite index in K1 ∩K2 and K = K1 ∩K2 is a finite subgroup of G such
that G = QK. Replacing Gwith G/KG, it can be assumed without loss
of generality that K is core-free. In particular, (K1)G ∩ (K2)G = {1}.
Since (Ki)

G/(Ki)G is locally nilpotent, for i = 1, 2 (see [16], Theo-
rem 6.3.1), KG is locally nilpotent. Then G = QKG is locally nilpotent
and, by Proposition 3.7, G is finite-by-quasihamiltonian.
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