

Advances in Group Theory and Applications © 2017 AGTA - www.advgrouptheory.com/journal 4 (2017), pp. 91–102 ISSN: 2499-1287

DOI: 10.4399/97888255086977

Corrigendum to: "Characterizations of Fitting p-Groups whose Proper Subgroups are Solvable"

A.O. Asar

(Received Sep. 22, 2017; Accepted Oct. 15, 2017 — Communicated by F. de Giovanni)

Abstract

The paper entitled *Characterizations of Fitting* p-*Groups whose Proper Subgroups are Solvable* (Adv. Group Theory Appl. 3 (2017), 31-53) contains a serious error. The proof of Lemma 2.8 relating to p = 3 is false. This forces a slight change in the implications of Theorem 1.1 and Corollary 1.2 for p = 3. The new statements of Theorem 1.1 and Corollary 1.2 for p = 3. The new statements of Theorem 1.1 and Corollary 1.2 for p = 3.

Mathematics Subject Classification (2010): 20F19, 20F50, 20E25 *Keywords*: Fitting group; minimal non-solvable group

1 Introduction

For $p \neq 2$, a p-group G is called **powerful** by Lubotzky and Mann if $G' \leq \mathcal{O}_1(G)$.

Theorem 1.1 Let G be a Fitting p-group satisfying the normalizer condition, where $p \neq 2$. Suppose that in every homomorphic image H of G every Λ -pair (w_H , V_H) has a (w_H , V_H)-maximal subgroup satisfying the (**)-property. Then either G is not perfect or every homomorphic image H of G contains a normal nilpotent metabelian 3-subgroup B_H of class 3 and exponent 9 which is not powerful (that is, $B'_H \nleq O_1(B_H)$). Thus G cannot be perfect for p > 3.

Corollary 1.2 Let G be a Fitting p-group satisfying the normalizer condition in which every proper subgroup is solvable, where $p \neq 2$. Suppose that in every homomorphic image H of G every dominant pair (w_H, V_H) has a (w_H, V_H)-maximal subgroup satisfying the (**)-property. Then either G is solvable or every homomorphic image H of G contains a normal nilpotent metabelian 3-subgroup B_H of class 3 and exponent 9 which is not powerful.

2 Proofs

Lemma 2.1 (2.8') Let G be a Fitting 3-group. Suppose that the hypothesis of Lemma 2.7 is satisfied in G. Thus B is a normal nilpotent metabelian subgroup of G with $c(B) \leq 3$ and B contains a normal abelian subgroup A of G with B/A is elementary abelian. Then the following hold.

- (a) $\overline{D} \neq 1$.
- (b) $exp(\overline{D}) = 3$.
- (c) $|\overline{D}| = 3$.

PROOF — The notations are the same as in Lemma 2.5. By the hypothesis

$$B \not\leq N = N_G(E)$$

since B is metabelian, $t \in B \setminus N$, $N^t = N$, $t^3 \in N$, $\overline{H} = H/D^*$ and $\overline{T} = \langle \overline{t} \rangle \overline{R}$. If $c(\overline{T}) < 3$, then \overline{T} is abelian by the proof of Lemma 2.7, which is a contradiction since $C_{\overline{T}}(\overline{R}) = \overline{R}$ by Lemma 2.5 (a). Therefore

$$\mathbf{c}(\overline{\mathsf{T}})=\mathbf{c}=3.$$

Furthermore $exp([\overline{R}, \overline{t}]) = 3$ by Lemma 2.6. Finally assume if possible that \overline{R} is infinite. Then $\overline{R} = \overline{R}^{\circ} \times \overline{D}$ by Lemma 2.5 (c). Also $\overline{R}^{\circ} \triangleleft \overline{N}$ since $\overline{R} \triangleleft \overline{N}$. This implies that $\overline{R}^{\circ} \leq Z(\overline{N})$ since G is Fitting.

(a) Assume if possible that $\overline{D} = 1$. First assume that \overline{R} is infinite. Then

$$\overline{R} = \overline{R}^{o} \times \overline{D} = \overline{R}^{o}$$

by Lemma 2.5 (b) and $\overline{R}^{\circ} \triangleleft \overline{T}$. But then $\overline{R}^{\circ} \leq Z(\overline{T})$ since \overline{T} is nilpotent, which is a contradiction since \overline{T} is not abelian. Next suppose

that $\overline{R} = \langle \overline{r} \rangle$ for an $r \in R$ with $|\overline{r}| = 3^n$ and n > 1. Then $\overline{T} = \langle \overline{t} \rangle \langle \overline{r} \rangle$. Also $\overline{r}^{\overline{t}} \neq \overline{r}$. Then $\overline{r}^{\overline{t}} = \overline{r}^{1+3^{n-1}}$ and hence $[\overline{r}, \overline{t}] = \overline{r}^{3^{n-1}}$ by [6], Corollary 4.2 (ii). This shows that $[\overline{r}, \overline{t}]^3 = 1$ and so $[\overline{r}, \overline{t}] \in Z(\overline{T})$ since $\langle \overline{r} \rangle \lhd \overline{T}$. But then $c \leq 2$, which is another contradiction. Therefore $\overline{D} \neq 1$.

(b) Let $d \in D$ and put $\overline{y} = \overline{dd}^{\overline{t}}\overline{d}^{\overline{t}^2}$. Then $\overline{y} \in Z(\overline{T})$. Also it is easy to see that

$$\overline{\mathbf{y}} = \overline{\mathbf{d}}^3 [\overline{\mathbf{d}}, \overline{\mathbf{t}}]^3 [\overline{\mathbf{d}}, \overline{\mathbf{t}}, \overline{\mathbf{t}}] = \overline{\mathbf{d}}^3 [\overline{\mathbf{d}}, \overline{\mathbf{t}}, \overline{\mathbf{t}}]$$

since $exp([\overline{R}, \overline{t}]) = 3$. Moreover $[\overline{d}, \overline{t}, \overline{t}] \in Z(\overline{T})$ since c = 3. Therefore $\overline{d}^3 \in Z(\overline{T})$. But since $Z(\overline{T}) \cap \overline{D} = 1$ it follows that $\overline{d}^3 = 1$. Since d is any element of D it follows that $exp(\overline{D}) = 3$.

(c) We have $exp(\overline{D}) = 3$. Now $\overline{D}^t \leq \overline{R}$ and since $\overline{R}/\overline{D}$ is (locally) cyclic it follows that $\overline{D}^t\overline{D}/\overline{D} \cong \overline{D}^t/(\overline{D}^t \cap \overline{D})$

is cyclic and so has order ≤ 3 . The same thing holds for $\overline{D}^{t^2}/(\overline{D}^{t^2}\cap\overline{D})$. These imply that each of

$$\overline{D}/(\overline{D}^t\cap\overline{D})$$
 and $\overline{D}/(\overline{D}^{t^2}\cap\overline{D})$

have orders \leq 3. Therefore

$$|\overline{D}/(\overline{D}\cap\overline{D}^t\cap\overline{D}^{t^2})|\leqslant 3^2.$$

But since $\operatorname{Core}_{\overline{H}}(\overline{D}) = 1$, it follows that $|\overline{D}| \leq 3^2$.

Now assume if possible that $|\overline{D}| = 3^2$. Then

$$\overline{D} = \langle \overline{u} \rangle \times \langle \overline{v} \rangle$$
 and $|\overline{u}| = |\overline{v}| = 3$

by (b). Let $Z(\overline{G}) = \langle \overline{z} \rangle$. Then $\overline{z} \in Z(\overline{T})$. Hence

$$[\overline{\mathfrak{u}},\overline{\mathfrak{t}},\overline{\mathfrak{t}}], [\overline{\mathfrak{v}},\overline{\mathfrak{t}},\overline{\mathfrak{t}}] \in \langle \overline{z_1} \rangle$$

since c = 3, where $z_1 \in \langle z \rangle$ and $|\overline{z_1}| = 3$.

First suppose that $[\overline{u}, \overline{t}], [\overline{v}, \overline{t}] \in Z(\overline{T})$. Then since $Z(\overline{T})$ is (locally) cyclic, by replacing \overline{v} by a suitable power of itself we may suppose that $[\overline{v}, \overline{t}] = [\overline{u}, \overline{t}]$ and then

$$[\overline{v},\overline{t}]([\overline{u},\overline{t}])^{-1} = [\overline{vu}^{-1},\overline{t}] = 1.$$

This gives $\overline{\nu u}^{-1} \in Z(\overline{T})$, which is a contradiction since $\overline{T} \cap \overline{D} = 1$. Hence without loss of generality we may suppose that $[\overline{u}, \overline{t}] \notin Z(\overline{T})$. Now if $[\overline{\nu}, \overline{t}] \in Z(\overline{T})$, then $[\overline{u}\overline{\nu}, \overline{t}] \notin Z(\overline{T})$. Therefore we may also suppose that $[\overline{\nu}, \overline{t}] \notin Z(\overline{T})$.

Let $e \in E$. Then $[\overline{e}, \overline{t}] = \overline{r}^i \overline{d}^j$ for an $r \in R$ with $\langle \overline{r} \rangle \cap \overline{D} = 1$ and $i, j \ge 1$ (here \overline{R} may be infinite). Also

$$1 = [\overline{\mathbf{r}}, \overline{\mathbf{t}}]^3 = [\overline{\mathbf{r}}^3, \overline{\mathbf{t}}]$$

since $\overline{R} \leq Z(\overline{N})$ by Lemma 2.5 (a) and $exp([[\overline{R}, \overline{t}]) = 3$, which implies that $\overline{r}^3 \in Z(\overline{T})$. Thus

$$[\overline{e}^3,\overline{t}]=[\overline{e},\overline{t}]^3=(\overline{r}^i\overline{d}^j)^3=\overline{r}^{3\,i}\in\mathsf{Z}(\overline{T})$$

and hence

$$[\overline{e}^3, \overline{t}] \in Z(\overline{T})$$
 (1)

Next

$$1 = [\overline{e}, \overline{t}^3] = [\overline{e}, \overline{t}^2][\overline{e}, \overline{t}]^{\overline{t}^2} = [\overline{e}, \overline{t}]^3[\overline{e}, \overline{t}, \overline{t}][\overline{e}, \overline{t}, \overline{t}^2]$$

since $[\overline{e}, \overline{t}] \in \overline{R} \leq Z(\overline{N})$. Hence

$$1 = ([\overline{e}, \overline{t}]^3 [\overline{e}, \overline{t}, \overline{t}] [\overline{e}, \overline{t}, \overline{t}^2])^3 = [\overline{e}, \overline{t}]^9$$

since $exp([\overline{R}, \overline{t}]) = 3$ by Lemma 2.6 of [4]. Since *e* is any element of E, it follows that

$$[\overline{\mathsf{E}}^9, \overline{\mathsf{t}}] = [\overline{\mathsf{E}}, \overline{\mathsf{t}}]^9 = 1 \tag{2}$$

We have $\overline{RE}/\overline{E}$ is (locally) cyclic. First suppose that $\overline{EE}^{\overline{t}}/\overline{E}$ has order 3. Then $\overline{E}^{\overline{t}} \leq \langle \overline{z} \rangle \overline{E}$ and in this case \overline{t} normalizes $\langle \overline{z} \rangle \overline{E}$ since then

$$\overline{\mathsf{E}}^{\overline{\mathsf{t}}^2} \leqslant \langle \overline{z} \rangle \overline{\mathsf{E}}^{\overline{\mathsf{t}}} \leqslant \langle \overline{z} \rangle \overline{\mathsf{E}},$$

which is impossible by (**). Therefore $\overline{EE}^{\overline{t}}/\overline{E}$ and $\overline{EE}^{\overline{t}^2}/\overline{E}$ are (locally) cyclic and

$$\overline{\mathsf{E}}\overline{\mathsf{E}}^{\overline{\mathsf{t}}}/\overline{\mathsf{E}}| = |\overline{\mathsf{E}}\overline{\mathsf{E}}^{\overline{\mathsf{t}}^2}/\overline{\mathsf{E}}| \ge 9.$$
(3)

Also (3) holds if \overline{E} is exchanged with $\overline{E}^{\overline{t}}$ or replaced $\overline{E}^{\overline{t}^2}$ since

$$\overline{\mathsf{RE}} = \overline{\mathsf{RE}}^{\overline{\mathsf{t}}} = \overline{\mathsf{RE}}^{\overline{\mathsf{t}}^2}.$$

Put

$$\overline{\mathsf{K}} = \overline{\mathsf{E}} \cap \overline{\mathsf{E}}^{\overline{\mathsf{t}}} \cap \overline{\mathsf{E}}^{\overline{\mathsf{t}}^2}.$$

Then $\overline{K} \triangleleft \overline{H}$ and $\overline{E}/\overline{K}$ is abelian. In particular $[\overline{K}, \overline{t}] = 1$ since $\overline{D} \cap \overline{K} = 1$. Furthermore $\overline{E}^9 \leq \overline{K}$ by (2) and so $exp(\overline{E}/\overline{K}) \leq 9$. Clearly then

$$\exp(\overline{E}/\overline{K}) = 9 \tag{4}$$

by (3). Now (3) together (4) gives

$$\overline{E}/(\overline{E}\cap\overline{E}^{\overline{t}})$$
 and $\overline{E}/(\overline{E}\cap\overline{E}^{\overline{t}^2})$ are cyclic of order 9 (5)

Furthermore

$$\overline{E}/\overline{K} \precsim \overline{E}/(\overline{E} \cap \overline{E}^{\overline{t}}) \times \overline{E}/(\overline{E} \cap \overline{E}^{\overline{t^2}})$$
(6)

Thus it follows from (5) and (6) that

$$\Omega_1(\overline{\mathsf{E}}/\overline{\mathsf{K}}) = \overline{\mathsf{D}}\overline{\mathsf{K}}/\overline{\mathsf{K}} \tag{7}$$

since $\overline{K} \cap \overline{D} = 1$ and $\overline{D} = \langle \overline{u} \rangle \times \langle \overline{\nu} \rangle$.

Furthermore

$$(\overline{E} \cap \overline{E}^{\overline{t}})(\overline{E} \cap \overline{E}^{\overline{t}^{2}})/(\overline{E} \cap \overline{E}^{\overline{t}^{2}})$$
$$\cong (\overline{E} \cap \overline{E}^{\overline{t}})/(\overline{E} \cap \overline{E}^{\overline{t}} \cap \overline{E} \cap \overline{E} \cap \overline{E}^{\overline{t}}) = (\overline{E} \cap \overline{E}^{\overline{t}})/\overline{K}$$

and so

$$(\overline{E} \cap \overline{E}^{t})/\overline{K}$$
 is cyclic of order ≤ 9 (8)

by (5).

Next let $\overline{y} \in \overline{E} \cap \overline{E}^{\overline{t}}$. Then $\overline{y} = \overline{f}^{\overline{t}}$ for an $f \in E$. Substituting this in (1) gives

$$[\overline{f}^3,\overline{t}]^{\overline{t}} = [(\overline{f}^3)^{\overline{t}},\overline{t}] \in \mathsf{Z}(\overline{\mathsf{T}})$$

and then

$$[\overline{f}^3, \overline{t}] = [\overline{f}, \overline{t}]^3 \in Z(\overline{T})$$

But also $\overline{f}^{-1}\overline{y} = [\overline{f}, \overline{t}]$. Therefore we get $(\overline{f}^{-1}\overline{y})^3 \in Z(\overline{T}) \cap \overline{E} = 1$. This implies that

$$(\overline{f}^{-1}\overline{y}\overline{K})^3 = 1$$
 and hence $(\overline{y}\overline{K})^3 = (\overline{fK})^3$

since $\overline{E}/\overline{K}$ is abelian by (5). Now since $\overline{y} = \overline{f}^{\overline{t}}$, it follows that

$$(\overline{\mathsf{fK}})^3 = (\overline{\mathsf{y}}\overline{\mathsf{K}})^3 = (\overline{\mathsf{f}}^{\overline{\mathsf{t}}}\overline{\mathsf{K}})^3 = ((\overline{\mathsf{fK}})^3)^{\overline{\mathsf{t}}}$$

which implies that $[\overline{y}^3\overline{K},\overline{t}\overline{K}] = 1$. Then also $\overline{y}^3 \in \overline{E}^{\overline{t}} \cap \overline{E}^{\overline{t}^2}$ and so it follows that $\overline{y}^3 \in \overline{K}$. Hence it follows that $\overline{E} \cap \overline{E}^{\overline{t}}/\overline{K}$ is cyclic of order ≤ 3 by (7). But since $\overline{DE}^{\overline{t}}/\overline{E}^{\overline{t}}$ is cyclic and $\overline{D} = \langle \overline{u} \rangle \times \langle \overline{v} \rangle$, we have $\overline{D} \cap \overline{E}^{\overline{t}} \neq 1$ but $\overline{D} \cap \overline{K} = 1$ due to the fact that \overline{K} is normalized by \overline{t} . Therefore

$$\overline{\mathsf{E}} \cap \overline{\mathsf{E}}^{\mathsf{t}} / \overline{\mathsf{K}} \text{ is cyclic of order 3} \tag{9}$$

Next without loss of generality we may suppose that $\overline{u} \notin \overline{E}^{t}$ and $\overline{v} \in \overline{E} \cap \overline{E}^{\overline{t}}$ since $\overline{D} = \langle \overline{u} \rangle \times \langle \overline{v} \rangle$. Then $\overline{v} \notin \overline{E} \cap \overline{E}^{\overline{t}^{2}}$ since $\overline{D} \cap \overline{K} = 1$. Thus

$$|\overline{\mathfrak{u}}(\overline{\mathsf{E}}\cap\overline{\mathsf{E}}^{\overline{\mathsf{t}}})|=3=|\overline{\mathfrak{v}}(\overline{\mathsf{E}}\cap\overline{\mathsf{E}}^{\overline{\mathsf{t}}^2})|.$$

Next there are $e_u, e_v \in \overline{E}$ so that

$$\overline{E}/(\overline{E}\cap\overline{E}^{\overline{t}}) = \langle \overline{e_u}(\overline{E}\cap\overline{E}^{\overline{t}}) \rangle$$

$$\overline{E}/(\overline{E}\cap\overline{E}^{\overline{t}^2}) = \langle \overline{e_{\nu}}(\overline{E}\cap\overline{E}^{\overline{t}^2}) \rangle$$

and

$$|\overline{e_{\mathfrak{u}}}(\overline{E} \cap \overline{E}^{\overline{t}})| = |\overline{e_{\nu}}(\overline{E} \cap \overline{E}^{\overline{t}})| = 9$$

since $\overline{E}/(\overline{E} \cap \overline{E}^{\overline{t}})$ and $\overline{E}/(\overline{E} \cap \overline{E}^{\overline{t}^2})$ are cyclic of order 9 by (5). Then

$$\overline{\mathfrak{u}}(\overline{\mathsf{E}}\cap\overline{\mathsf{E}}^{\overline{\mathsf{t}}})=\overline{\mathfrak{e}_{\mathfrak{u}}}^{3}(\overline{\mathsf{E}}\cap\overline{\mathsf{E}}^{\overline{\mathsf{t}}})$$

and $\overline{\nu}(\overline{E} \cap \overline{E}^{\overline{t}^2}) = \overline{e_{\nu}}^3(\overline{E} \cap \overline{E}^{\overline{t}^2})$. Thus $\overline{E}/\overline{K} = \langle \overline{e_u}\overline{K}, \overline{\nu}\overline{K} \rangle$ since $\overline{\nu} \in \overline{E} \cap \overline{E}^{\overline{t}}$. Hence it follows that $\langle \overline{u}\overline{K}, \overline{\nu}\overline{K} \rangle = \langle \overline{e_u}^3\overline{K}, \overline{\nu}\overline{K} \rangle$ since $\Omega_1(\overline{E}/\overline{K}) = \overline{DK}/\overline{K}$. by (7). Similarly if

$$\overline{d}\in\overline{D}\cap(\overline{E}\cap\overline{E}^{\overline{t}^2}),$$

then $\overline{E}/\overline{K} = \langle \overline{e_{\nu}}\overline{K}, \overline{dK} \rangle$ and hence $\langle \overline{u}\overline{K}, \overline{\nu}\overline{K} \rangle = \langle \overline{e_{\nu}}^3\overline{K}, \overline{dK} \rangle$.

Finally \overline{t} normalizes $\Omega_1(\overline{R}) = \langle \overline{z_1}, \overline{u}, \overline{v} \rangle$ and $[\overline{u}, \overline{t}], [\overline{v}, \overline{t}] \notin \langle \overline{z_1} \rangle$ by our assumption. But $[\overline{u}, \overline{t}, \overline{t}], [\overline{v}, \overline{t}, \overline{t}] \in \langle \overline{z_1} \rangle$ since c(B) = 3. It follows from this that either $[\overline{uv}, \overline{t}] \in \langle \overline{z_1} \rangle$ or $[\overline{uv}^2, \overline{t}] \in \langle \overline{z_1} \rangle$ but not both of them. Without loss of generality let $[\overline{uv}, \overline{t}] \in \langle \overline{z_1} \rangle$. But also

$$[\overline{e_u}^3, \overline{t}], [\overline{e_v}^3, \overline{t}] \in \langle \overline{z_1} \rangle$$

by (1). Therefore we must have $\overline{e_u}^3 \overline{K}$, $\overline{e_v}^3 \overline{K} \in \langle \overline{uv} \overline{K} \rangle$. This implies that

$$\overline{e_{\nu}}^{3}\overline{K} = (\overline{e_{u}}^{3}\overline{K})^{i}$$

for an i = 1, 2. But since

$$\overline{e_{\nu}}^{3}(\overline{E} \cap \overline{E}^{\overline{t}^{2}}) = \overline{\nu}(\overline{E} \cap \overline{E}^{\overline{t}^{2}}) \neq \overline{u}(\overline{E} \cap \overline{E}^{\overline{t}}) = \overline{e_{u}}^{3}(\overline{E} \cap \overline{E}^{\overline{t}})$$

by (6) and $\overline{K} = (\overline{E} \cap \overline{E}^{\overline{t}}) \cap (\overline{E} \cap \overline{E}^{\overline{t}^2})$, this cannot happen. Therefore the assumption is false and so $|\overline{D}| = 3$ must be the case. This completes the proof of the lemma.

Lemma 2.2 (2.9') Let G be a Fitting 3-group. Suppose that the hypothesis of Lemma 2.5 is satisfied in G. Thus B is a normal nilpotent metabelian subgroup of G and contains a normal abelian subgroup A of G with B/A is elementary abelian and $A \leq N$. Assume that c(B) = 3. Then

$$\exp(B) = \exp(B')^2 = \exp(Z(B))^2 = \exp(B/Z(B))^2 = 9.$$

PROOF — Clearly B is not abelian since c(B) = 3. Then

$$\begin{split} B \nleq N, \ Z(G) \leqslant A \leqslant N, \ t \in B \setminus N, \ N^t = N, \ t^3 \in N, \\ \overline{H} = H/D^*, \ \overline{R} \leqslant Z(\overline{N}) \ \text{and} \ \overline{T} = \langle \overline{t} \rangle \overline{R}. \end{split}$$

Also \overline{T} is not abelian since $C_{\overline{T}}(\overline{R}) = \overline{R}$ and then $c(\overline{T}) = 3$ by the proof of Lemma 2.7. Put $c = c(\overline{T})$. Then c = c(B) = 3. Furthermore $exp([\overline{R},\overline{t}]) \leq 3$ by Lemma 2.6 and $\overline{D} = \langle \overline{u} \rangle$ by Lemma 2.8' (c), where $|\overline{u}| = 3$.

Assume if possible that \overline{R} is infinite. Then $\overline{R} = \overline{R}^o \times \langle \overline{u} \rangle$ by Lem-

ma 2.5 (b) and then $\overline{R}^{o} \leq Z(\overline{T})$ since \overline{T} is nilpotent. But then $c(\overline{T}) \leq 2$ which is impossible since c = 3. Therefore \overline{R} is finite and so

$$\overline{\mathbf{R}} = \langle \overline{\mathbf{b}} \rangle \times \langle \overline{\mathbf{u}} \rangle$$

by Lemma 2.8' (c).

Clearly if $\overline{b} \in Z(\overline{T})$, then $c(\overline{T}) \leq 2$ since then $\overline{R}\langle \overline{b} \rangle = \langle \overline{u} \rangle / \langle \overline{b} \rangle$ and so $[\overline{u}, \overline{t}] \in \langle \overline{b} \rangle$, which is impossible since c = 3. Therefore $\overline{b} \notin Z(\overline{T})$. In particular $\overline{b}^3 \neq 1$ since in the contrary case

$$|\overline{\mathbf{b}}| = |\overline{\mathbf{a}}| = |\overline{\mathbf{z}}|$$

in Lemma 2.5 (a) and then $\overline{RE} = \langle \overline{z} \rangle \overline{E}$. But now, as

$$[\langle \overline{z} \rangle \overline{\mathsf{E}}, \overline{\mathsf{t}}] \leqslant \overline{\mathsf{B}} \cap \overline{\mathsf{N}} = \overline{\mathsf{R}} \leqslant \langle \overline{z} \rangle \overline{\mathsf{E}},$$

it follows that \overline{t} normalizes $\langle \overline{z} \rangle \overline{E}$, which gives a contradiction by (**). Consequently it follows that

$$|\overline{b}| \ge 3^2 \text{ and } \overline{b} \notin Z(\overline{T})$$
 (1)

Since $exp([\overline{R}, \overline{t}]) = 3$ and $\overline{R} \leq Z(\overline{N})$, it follows that $[\overline{b}^3, \overline{t}] = [\overline{b}, \overline{t}]^3 = 1$ and so $\overline{b}^3 \in Z(\overline{T})$ and then $Z(\overline{T}) = \langle \overline{b}^3 \rangle$. This follows since

$$Z(\overline{T}) \cap \overline{E} = 1$$
 and $Z(\overline{T})\overline{E}/\overline{E} < \langle \overline{b} \rangle \overline{E}/\overline{E}$.

Notice that if

$$Z(\overline{T})\overline{E}/\overline{E} = \langle \overline{b} \rangle \overline{E}/\overline{E},$$

then $\overline{b}\overline{u}^k \in Z(\overline{T})$ for a $k \ge 1$. But then we may replace \overline{b} by $\overline{b}\overline{u}^k$ which is impossible. In particular $\overline{t}^3 \in \langle \overline{b}^3 \rangle$.

We have seen above that

$$[\overline{\mathrm{u}},\overline{\mathrm{t}}] \in \langle \overline{z}
angle$$
 (2)

and $[\overline{u}, \overline{t}] \neq 1$ since $Z(\overline{T}) \cap \overline{E} = 1$, where $z \in Z(G)$ with |z| = 3. Next let $e \in E$. Then

$$1 = [\overline{e}, \overline{t}^3] = [\overline{e}, \overline{t}]^3 [\overline{e}, \overline{t}, \overline{t}]^3 [\overline{e}, \overline{t}, \overline{t}, \overline{t}]$$
$$= [\overline{e}, \overline{t}]^3 [\overline{e}, \overline{t}, \overline{t}, \overline{t}]$$

and hence

$$[\overline{e},\overline{t}]^3 = [\overline{e},\overline{t},\overline{t},\overline{t}]^{-1} \in Z(\overline{T})$$
(3)

since $\exp([\overline{R}, \overline{t}]) = 3$, $[\overline{e}, \overline{t}] \in \overline{R}$ and c = 3. Clearly then $([\overline{e}, \overline{t}]^3)^3 = 1$. If $[\overline{e}, \overline{t}]^3 = 1$ for every $e \in E$, then since

$$[\overline{\mathsf{E}},\overline{\mathsf{t}}]\overline{\mathsf{E}}/\overline{\mathsf{E}} \leqslant \langle \overline{z} \rangle \overline{\mathsf{E}}/\overline{\mathsf{E}},$$

it follows that $[\overline{E}, \overline{t}] \leq \langle \overline{z} \rangle \overline{E}$, which gives a contradiction as before. Therefore $[\overline{e}, \overline{t}]^3 \neq 1$ for an $e \in E$ and hence

$$|[\overline{e},\overline{t}]| = 9. \tag{4}$$

On the other hand $[\overline{e},\overline{t}] = \overline{b}^{i}\overline{u}^{j}$ for some $i, j \ge 1$ since $\overline{R} = \langle \overline{b} \rangle \times \langle \overline{u} \rangle$. Hence $\overline{b}^{9i} = 1$ since $\overline{u}^{3} = 1$ and $[\overline{t},\overline{e}]^{9} = 1$. Assume if possible that

$$[\overline{b},\overline{t}] \in Z(\overline{T}).$$

Then

$$[\overline{e},\overline{t},\overline{t}] = [\overline{b}^{i},\overline{t}][\overline{u}^{j},\overline{t}] \in Z(\overline{T})$$

by (2) and then $[\overline{e}, \overline{t}]^3 = 1$ by (3) which is impossible by (4). This means that $[\overline{e}^3, \overline{t}] = [\overline{e}, \overline{t}]^3 = 1$. But also $(\overline{e})^3 (\overline{u})^{-1} \in C_{\overline{E}}(\overline{t})$ by (4). Therefore $\overline{u} \in Z(\overline{T})$, which is impossible since $Z(\overline{T}) \cap \overline{D} = 1$. Consequently it follows that $[\overline{b}, \overline{t}] \notin Z(\overline{T})$.

First suppose that 3|i. Then $[\overline{e}, \overline{t}] = \overline{b}^{3k}\overline{u}^{j}$, where i = 3k. Hence

$$[\overline{e},\overline{t},\overline{t}] = [(\overline{b})^{3k}(\overline{u})^{j},\overline{t}] = [(\overline{u})^{j},\overline{t}]$$

since $\overline{\mathfrak{b}}^3\in \mathsf{Z}(\overline{\mathsf{T}}).$ But also $[\overline{\mathfrak{u}},\overline{t}]\in\mathsf{Z}(\overline{\mathsf{T}})$ by (2). Therefore

$$[\overline{e},\overline{t},\overline{t}] \in \mathsf{Z}(\overline{\mathsf{T}})$$

and then $[\overline{e}, \overline{t}]^3 = 1$ by (3), which gives a contradiction as above. Thus $3 \nmid i$ and so $|\overline{b}| = 9$. In this case $\langle \overline{b} \rangle \cap \langle \overline{D} \rangle = 1$ by Lemma 2.5 (b). Therefore $|\overline{b}| = 9 = |b|$.

Now since $Z(\overline{T}) = \overline{b}^3$, as was shown above, and since $\overline{z} \in \langle \overline{b} \rangle$, it follows that $Z(\overline{T}) = \langle \overline{z} \rangle$. In this case exp(Z(B)) = 3. To see this let

$$\mathsf{K} = \Omega_{\mathfrak{n}}(\mathsf{Z}(\mathsf{B}))$$

for an $n \ge 2$ and let h be the height of z in K. Then there exists a $y \in K$ so that $y^{3^h} = z$ and $K = \langle y \rangle \times B_1$. If $|y| < \exp(K)$, then $1 \ne (K)^{|y|} \lhd G$ and $z \notin K^{|y|}$, which is a contradiction as in the proof of Lemma 2.5. Therefore

$$\exp(\mathbf{K}) = |\mathbf{y}|.$$

Since $\langle y \rangle \cap E = 1$ and $y \in Z(B)$, it follows that |y| = 3 and so exp(K) = 3. Since $n \ge 2$ is arbitrary, it follows that $exp(\gamma_3(B)) = 3$. Now since $[B', B] \le \gamma_3(B)$ it follows that

$$[(B')^3, B] = [B', B]^3 = 1$$

and so $(B')^3 \leq Z(B)$. If $\exp(B') = 9$, then again we may choose $b \in B'$. But this is impossible since $[b, t] \notin Z(B)$ as was shown above. Therefore $\exp(B')=3$. Then it follows from the last part of the proof of Lemma 2.6 that $\exp(B/Z(B))=3$. Consequently

$$\exp(B) = \exp(B')^2 = \exp(Z(B))^2 = \exp(B/Z(B))^2 = c(B)^2 = 9$$

since |b| = 9 and so the proof of the lemma is complete.

PROOF OF THEOREM 1.1 — Let G be Fitting p-group satisfying the normalizer condition and $p \neq 2$. Suppose that in each homomorphic image of G every Λ -pair has a maximal element satisfying the (**)-property and every normal nilpotent metabelian 3-subgroup of class 3 and of exponent 9 is powerful. Assume that G is perfect. First we show the following. G has a homomorphic image H with the following property. H has a Λ -pair (w_H , V_H) satisfying (**) and the condition $W^*(w_H, V_H) = 1$ such that every normal nilpotent subgroup of H which is abelian- by-elementary abelian is abelian. Assume that there exists no such H. For each homomorphic image X of G satisfying the above properties let n(X) be the minimum of the classes of all the normal nilpotent abelian-by-elementary abelian subgroups of X which are not abelian. Among all the homomorphic images X of G having a Λ -pair (w_X, V_X) , satisfying (**) and the condition $W^*(w_X, V_X) = 1$ there is a homomorphic image H such that $n(H) \leq n(X)$ for all such X. Without loss of generality we may suppose that H = G. Thus G admits a Λ -pair (w, V) such that (**) and the condition $W^*(w, V) = 1$ are satisfied. Also n(G) is minimal in the above sense and n(G) > 1 by the assumption. Let B be a normal nilpotent abelian-by-elementary abelian subgroup of G so that c(B) = n(G). Let A be the largest normal abelian subgroup of G contained in B

such that exp(B/A) = p and $B' \leq A$. By the hypothesis there exists an $E \in E^*(w, V)$ satisfying (**). Put $N = N_G(E)$. Then N/E is (locally) cyclic by [5], Lemma 2.2 since $p \neq 2$. Also $A \leq N$ by Lemma 2.4. Furthermore $B \nleq N$ as in Lemma 2.7 since B is not abelian and thus there exists $t \in B \setminus N$ so that $N^t = N$ and $t^p \in N$ since G satisfies the normalizer condition.

If c(B) < 3, then B is abelian by Lemma 2.7 since $p \neq 2$. Therefore $c(B) \ge 3$. Let c(B) = c and put $\overline{G} = G/\gamma_c(B)$, so that $c(\overline{B}) = c - 1$.

Assume first if possible that $\overline{B}' \leq Z(\overline{G})$. Then $[\overline{B}', \overline{G}] = 1$ and hence $[B', G] \leq \gamma_c(B)$ which implies that [B', G, B] = 1. This implies that

$$[\mathsf{B},\mathsf{B},\mathsf{B},\mathsf{B}]=1$$

and hence $c \leq 3$. It follows that c = 3 since $c \geq 3$ and a second application of Lemma 2.7 shows that p = 3.

By the hypothesis G satisfies the normalizer condition. By the assumption G has a Λ -pair (w, V) such that $W^*(w, V) = 1$ and there exists $E \in E^*(w, V)$ such that $N_G(E) = N_G(E')$. Now applying Lemma 2.9' we get

$$exp(B) = 9$$
 and $exp(B/Z(B)) = 3$

But also $B' \leq \Im_1(B)$ by the assumption, and it follows that $B' \leq Z(B)$. But then c(B) = 2, which is a contradiction. Therefore there exists an element $\overline{s} \in \overline{B}' \setminus Z(\overline{G})$. The rest of the proof is the same as the original proof.

PROOF OF COROLLARY 1.2 — Let G be a Fitting p-group satisfying the hypothesis of the corollary, where $p \neq 2$. Assume that in every homomorphic of G every normal nilpotent metabelian 3-subgroup of class 3 and of exponent 9 is powerful but G is not solvable. Thus every proper homomorphic image of G is an MNS-group and, in particular, is perfect. By [4], Theorem 1.4 (b) we may suppose that G has no homomorphic images having (*)-triples for non-central elements. Then in every homomorphic image of G there exist distinguished pairs and dominant pairs by [4], Lemma 3.1 and Lemma 4.1 (b). The rest of the proof is the same as the original proof.

A.O. Asar

Yargic Sokak 11/6, Cebeci Ankara (Turkey) e-mail: aliasar@gazi.edu.tr