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Abstract
The paper entitled Characterizations of Fitting p-Groups whose Proper Subgroups are Solv-
able (Adv. Group Theory Appl. 3 (2017), 31-53) contains a serious error. The proof
of Lemma 2.8 relating to p = 3 is false. This forces a slight change in the implications
of Theorem 1.1 and Corollary 1.2 for p = 3. The new statements of Theorem 1.1
and Corollary 1.2 are stated below (Theorem 1.3 is correct).
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1 Introduction

For p 6= 2, a p-group G is called powerful by Lubotzky and Mann
if G′ 6 f1(G).

Theorem 1.1 Let G be a Fitting p-group satisfying the normalizer con-
dition, where p 6= 2. Suppose that in every homomorphic image H of G
every Λ-pair (wH,VH) has a (wH,VH)-maximal subgroup satisfying the
(∗∗)-property. Then either G is not perfect or every homomorphic image H
of G contains a normal nilpotent metabelian 3-subgroup BH of class 3 and
exponent 9 which is not powerful (that is, B′H � f1(BH)).
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Thus G cannot be perfect for p > 3.

Corollary 1.2 Let G be a Fitting p-group satisfying the normalizer condi-
tion in which every proper subgroup is solvable, where p 6= 2. Suppose that
in every homomorphic image H of G every dominant pair (wH,VH) has
a (wH,VH)-maximal subgroup satisfying the (∗∗)-property. Then either G
is solvable or every homomorphic image H of G contains a normal nilpotent
metabelian 3-subgroup BH of class 3 and exponent 9 which is not powerful.

2 Proofs

Lemma 2.1 (2.8’) Let G be a Fitting 3-group. Suppose that the hypothesis
of Lemma 2.7 is satisfied in G. Thus B is a normal nilpotent metabelian
subgroup of G with c(B) 6 3 and B contains a normal abelian subgroup A
of G with B/A is elementary abelian. Then the following hold.

(a) D 6= 1.

(b) exp(D) = 3.

(c) |D| = 3.

Proof — The notations are the same as in Lemma 2.5. By the hy-
pothesis

B � N = NG(E)

since B is metabelian, t∈B \N,Nt=N, t3∈N,H=H/D∗ and T = 〈t〉R.
If c(T) < 3, then T is abelian by the proof of Lemma 2.7, which is a
contradiction since CT (R) = R by Lemma 2.5 (a). Therefore

c(T) = c = 3.

Furthermore exp([R, t]) = 3 by Lemma 2.6. Finally assume if possible
that R is infinite. Then R = R

o ×D by Lemma 2.5 (c). Also Ro CN
since RCN. This implies that Ro 6 Z(N) since G is Fitting.
(a) Assume if possible that D = 1. First assume that R is infinite.

Then
R = R

o ×D = R
o

by Lemma 2.5 (b) and R
o
C T . But then Ro 6 Z(T) since T is nilpo-

tent, which is a contradiction since T is not abelian. Next suppose
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that R = 〈r〉 for an r ∈ R with |r| = 3n and n > 1. Then T = 〈t〉〈r〉.
Also rt 6= r. Then rt = r1+3

n−1
and hence [r, t] = r3

n−1
by [6], Corol-

lary 4.2 (ii). This shows that [r, t]3 = 1 and so [r, t] ∈ Z(T) since 〈r〉C T .
But then c 6 2, which is another contradiction. Therefore D 6= 1.

(b) Let d ∈ D and put y = dd
t
d
t
2

. Then y ∈ Z(T). Also it is easy to
see that

y = d
3
[d, t]3[d, t, t] = d3[d, t, t]

since exp([R, t]) = 3. Moreover [d, t, t] ∈ Z(T) since c = 3. Therefore
d
3 ∈ Z(T). But since Z(T)∩D = 1 it follows that d3 = 1. Since d is

any element of D it follows that exp(D) = 3.

(c) We have exp(D) = 3. NowD
t
6 R and since R/D is (locally) cyclic

it follows that
D
t
D/D ∼= D

t
/(D

t ∩D)

is cyclic and so has order 6 3. The same thing holds for Dt
2

/(D
t2∩D).

These imply that each of

D/(D
t ∩D) and D/(Dt

2

∩D)

have orders 6 3. Therefore

|D/(D∩Dt ∩Dt
2

)| 6 32.

But since CoreH(D) = 1, it follows that |D| 6 32.

Now assume if possible that |D| = 32. Then

D = 〈u〉 × 〈v〉 and |u| = |v| = 3

by (b). Let Z(G) = 〈z〉. Then z ∈ Z(T). Hence

[u, t, t], [v, t, t] ∈ 〈z1〉

since c = 3, where z1 ∈ 〈z〉 and |z1| = 3.

First suppose that [u, t], [v, t] ∈ Z(T). Then since Z(T) is (locally)
cyclic, by replacing v by a suitable power of itself we may suppose
that [v, t] = [u, t] and then

[v, t]([u, t])−1 = [vu−1, t] = 1.



94 A.O. Asar

This gives vu−1 ∈ Z(T), which is a contradiction since T ∩D = 1. Hen-
ce without loss of generality we may suppose that [u, t] /∈Z(T). Now
if [v, t]∈Z(T), then [uv, t] /∈ Z(T). Therefore we may also suppose
that [v, t] /∈ Z(T).

Let e ∈ E. Then [e, t] = ridj for an r ∈ Rwith 〈r〉 ∩D = 1 and i, j > 1
(here R may be infinite). Also

1 = [r, t]3 = [r3, t]

since R 6 Z(N) by Lemma 2.5 (a) and exp([[R, t]) = 3, which implies
that r3 ∈ Z(T). Thus

[e3, t] = [e, t]3 = (rid
j
)3 = r3i ∈ Z(T)

and hence
[e3, t] ∈ Z(T) (1)

Next
1 = [e, t3] = [e, t2][e, t]t

2

= [e, t]3[e, t, t][e, t, t2]

since [e, t] ∈ R 6 Z(N). Hence

1 = ([e, t]3[e, t, t][e, t, t2])3 = [e, t]9

since exp([R, t]) = 3 by Lemma 2.6 of [4]. Since e is any element of E,
it follows that

[E
9, t] = [E, t]9 = 1 (2)

We have RE/E is (locally) cyclic. First suppose that EEt/E has order 3.

Then Et 6 〈z〉E and in this case t normalizes 〈z〉E since then

E
t
2

6 〈z〉Et 6 〈z〉E,

which is impossible by (∗∗). Therefore EEt/E and EEt
2

/E are (locally)
cyclic and

|EE
t
/E| = |EE

t
2

/E| > 9. (3)
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Also (3) holds if E is exchanged with Et or replaced Et
2

since

RE = RE
t
= RE

t
2

.

Put
K = E∩ Et ∩ Et

2

.

Then KCH and E/K is abelian. In particular [K, t] = 1 since D∩K = 1.
Furthermore E9 6 K by (2) and so exp(E/K) 6 9. Clearly then

exp(E/K) = 9 (4)

by (3). Now (3) together (4) gives

E/(E∩ Et) and E/(E∩ Et
2

) are cyclic of order 9 (5)

Furthermore

E/K - E/(E∩ Et)× E/(E∩ Et
2

) (6)

Thus it follows from (5) and (6) that

Ω1(E/K) = DK/K (7)

since K∩D = 1 and D = 〈u〉 × 〈v〉.
Furthermore

(E∩ Et)(E∩ Et
2

)/(E∩ Et
2

)

∼= (E∩ Et)/(E∩ Et ∩ E∩ Et) = (E∩ Et)/K

and so
(E∩ Et)/K is cyclic of order 6 9 (8)

by (5).

Next let y ∈ E∩ Et. Then y = f
t for an f ∈ E. Substituting this in (1)

gives
[f
3, t]t = [(f

3
)t, t] ∈ Z(T)

and then
[f
3, t] = [f, t]3 ∈ Z(T)
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But also f−1y = [f, t]. Therefore we get (f
−1
y)3 ∈ Z(T)∩ E = 1. This

implies that

(f
−1
yK)3 = 1 and hence (yK)3 = (fK)3

since E/K is abelian by (5). Now since y = f
t, it follows that

(fK)3 = (yK)3 = (f
t
K)3 = ((fK)3)t

which implies that [y3K, tK] = 1. Then also y3 ∈ Et ∩ Et
2

and so it

follows that y3 ∈ K. Hence it follows that E∩ Et/K is cyclic of or-

der 6 3 by (7). But since DEt/Et is cyclic and D = 〈u〉 × 〈v〉, we

have D∩ Et 6= 1 but D∩K = 1 due to the fact that K is normalized
by t. Therefore

E∩ Et/K is cyclic of order 3 (9)

Next without loss of generality we may suppose that u /∈ Et

and v ∈ E∩ Et since D = 〈u〉 × 〈v〉. Then v /∈ E∩ Et
2

since D∩K = 1.
Thus

|u(E∩ Et)| = 3 = |v(E∩ Et
2

)|.

Next there are eu, ev ∈ E so that

E/(E∩ Et) = 〈eu(E∩ E
t
)〉

E/(E∩ Et
2

) = 〈ev(E∩ E
t
2

)〉

and
|eu(E∩ E

t
)| = |ev(E∩ E

t
)| = 9

since E/(E∩ Et) and E/(E∩ Et
2

) are cyclic of order 9 by (5). Then

u(E∩ Et) = eu3(E∩ E
t
)

and v(E∩ Et
2

) = ev
3(E∩ Et

2

). Thus E/K = 〈euK, vK〉 since v ∈ E∩ Et.
Hence it follows that 〈uK, vK〉 = 〈eu3K, vK〉 since Ω1(E/K) = DK/K
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by (7). Similarly if

d ∈ D∩ (E∩ Et
2

),

then E/K = 〈evK,dK〉 and hence 〈uK, vK〉 = 〈ev3K,dK〉.
Finally t normalizes Ω1(R) = 〈z1,u, v〉 and [u, t], [v, t] /∈ 〈z1〉 by our

assumption. But [u, t, t], [v, t, t] ∈ 〈z1〉 since c(B) = 3. It follows from
this that either [uv, t] ∈ 〈z1〉 or [uv2, t] ∈ 〈z1〉 but not both of them.
Without loss of generality let [uv, t] ∈ 〈z1〉. But also

[eu
3, t], [ev3, t] ∈ 〈z1〉

by (1). Therefore we must have eu3K, ev3K ∈ 〈uvK〉. This implies that

ev
3K = (eu

3K)i

for an i = 1, 2. But since

ev
3(E∩ Et

2

) = v(E∩ Et
2

) 6= u(E∩ Et) = eu3(E∩ E
t
)

by (6) and K = (E∩ Et)∩ (E∩ Et
2

), this cannot happen. Therefore the
assumption is false and so |D| = 3 must be the case. This completes
the proof of the lemma. ut

Lemma 2.2 (2.9’) Let G be a Fitting 3-group. Suppose that the hypothesis
of Lemma 2.5 is satisfied in G. Thus B is a normal nilpotent metabelian
subgroup of G and contains a normal abelian subgroup A of G with B/A is
elementary abelian and A 6 N. Assume that c(B) = 3. Then

exp(B) = exp(B′)2 = exp(Z(B))2 = exp(B/Z(B))2 = 9.

Proof — Clearly B is not abelian since c(B) = 3. Then

B � N, Z(G) 6 A 6 N, t ∈ B \N, Nt = N, t3 ∈ N,

H = H/D∗, R 6 Z(N) and T = 〈t〉R.

Also T is not abelian since CT (R) = R and then c(T) = 3 by the proof
of Lemma 2.7. Put c = c(T). Then c = c(B) = 3. Furthermore
exp([R, t]) 6 3 by Lemma 2.6 and D = 〈u〉 by Lemma 2.8’ (c), whe-
re |u| = 3.

Assume if possible that R is infinite. Then R = R
o × 〈u〉 by Lem-
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ma 2.5 (b) and then Ro 6 Z(T) since T is nilpotent. But then c(T) 6 2
which is impossible since c = 3. Therefore R is finite and so

R = 〈b〉 × 〈u〉

by Lemma 2.8’ (c).
Clearly if b ∈ Z(T), then c(T) 6 2 since then R〈b〉 = 〈u〉/〈b〉 and so

[u, t] ∈ 〈b〉, which is impossible since c = 3. Therefore b /∈ Z(T). In
particular b3 6= 1 since in the contrary case

|b| = |a| = |z|

in Lemma 2.5 (a) and then RE = 〈z〉E. But now, as

[〈z〉E, t] 6 B∩N = R 6 〈z〉E,

it follows that t normalizes 〈z〉E, which gives a contradiction by (∗∗).
Consequently it follows that

|b| > 32 and b /∈ Z(T) (1)

Since exp([R, t]) = 3 and R 6 Z(N), it follows that [b3, t] = [b, t]3 = 1

and so b3 ∈ Z(T) and then Z(T) = 〈b3〉. This follows since

Z(T)∩ E = 1 and Z(T)E/E < 〈b〉E/E.

Notice that if
Z(T)E/E = 〈b〉E/E,

then buk ∈ Z(T) for a k > 1. But then we may replace b by buk which
is impossible. In particular t3 ∈ 〈b3〉.

We have seen above that

[u, t] ∈ 〈z〉 (2)

and [u, t] 6= 1 since Z(T)∩ E = 1, where z ∈ Z(G) with |z| = 3.
Next let e ∈ E. Then

1 = [e, t3] = [e, t]3[e, t, t]3[e, t, t, t]

= [e, t]3[e, t, t, t]
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and hence
[e, t]3 = [e, t, t, t]−1 ∈ Z(T) (3)

since exp([R, t]) = 3, [e, t] ∈ R and c = 3. Clearly then ([e, t]3)3 = 1.
If [e, t]3 = 1 for every e ∈ E, then since

[E, t]E/E 6 〈z〉E/E,

it follows that [E, t] 6 〈z〉E, which gives a contradiction as before.
Therefore [e, t]3 6= 1 for an e ∈ E and hence

|[e, t]| = 9. (4)

On the other hand [e, t] = biuj for some i, j > 1 since R = 〈b〉 × 〈u〉.
Hence b9i = 1 since u3 = 1 and [t, e]9 = 1. Assume if possible that

[b, t] ∈ Z(T).

Then
[e, t, t] = [b

i, t][uj, t] ∈ Z(T)

by (2) and then [e, t]3 = 1 by (3) which is impossible by (4). This
means that [e3, t] = [e, t]3 = 1. But also (e)3(u)−1 ∈ CE(t) by (4). The-
refore u ∈ Z(T), which is impossible since Z(T)∩D = 1. Consequently
it follows that [b, t] /∈ Z(T).

First suppose that 3|i. Then [e, t] = b3kuj, where i = 3k. Hence

[e, t, t] = [(b)3k(u)j, t] = [(u)j, t]

since b3 ∈ Z(T). But also [u, t] ∈ Z(T) by (2). Therefore

[e, t, t] ∈ Z(T)

and then [e, t]3 = 1 by (3), which gives a contradiction as above.
Thus 3 - i and so |b| = 9. In this case 〈b〉 ∩ 〈D〉 = 1 by Lemma 2.5 (b).
Therefore |b| = 9 = |b|.

Now since Z(T) = b3, as was shown above, and since z ∈ 〈b〉, it
follows that Z(T) = 〈z〉. In this case exp(Z(B)) = 3. To see this let

K = Ωn(Z(B))
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for an n > 2 and let h be the height of z in K. Then there exists a y ∈ K
so that y3

h
= z and K = 〈y〉 ×B1. If |y| < exp(K), then 1 6= (K)|y| CG

and z /∈ K|y|, which is a contradiction as in the proof of Lemma 2.5.
Therefore

exp(K) = |y|.

Since 〈y〉 ∩ E=1 and y ∈ Z(B), it follows that |y|=3 and so exp(K)=3.
Since n > 2 is arbitrary, it follows that exp(γ3(B)) = 3. Now since
[B′,B] 6 γ3(B) it follows that

[(B′)3,B] = [B′,B]3 = 1

and so (B′)3 6 Z(B). If exp(B′) = 9, then again we may choose b ∈ B′.
But this is impossible since [b, t] /∈ Z(B) as was shown above. There-
fore exp(B ′)=3. Then it follows from the last part of the proof of Lem-
ma 2.6 that exp(B/Z(B))=3. Consequently

exp(B) = exp(B′)2 = exp(Z(B))2 = exp(B/Z(B))2 = c(B)2 = 9

since |b| = 9 and so the proof of the lemma is complete. ut

Proof of Theorem 1.1 — Let G be Fitting p-group satisfying the
normalizer condition and p 6= 2. Suppose that in each homomorphic
image of G every Λ-pair has a maximal element satisfying the
(∗∗)-property and every normal nilpotent metabelian 3-subgroup of
class 3 and of exponent 9 is powerful. Assume that G is perfect.
First we show the following. G has a homomorphic image H with
the following property. H has a Λ-pair (wH,VH) satisfying (∗∗) and
the condition W∗(wH,VH) = 1 such that every normal nilpotent sub-
group of H which is abelian- by-elementary abelian is abelian. As-
sume that there exists no such H. For each homomorphic image X
of G satisfying the above properties let n(X) be the minimum of
the classes of all the normal nilpotent abelian-by-elementary abelian
subgroups of X which are not abelian. Among all the homomor-
phic images X of G having a Λ-pair (wX,VX), satisfying (∗∗) and
the condition W∗(wX,VX) = 1 there is a homomorphic image H such
that n(H) 6 n(X) for all such X. Without loss of generality we may
suppose thatH = G. Thus G admits a Λ-pair (w,V) such that (∗∗) and
the condition W∗(w,V) = 1 are satisfied. Also n(G) is minimal in the
above sense and n(G) > 1 by the assumption. Let B be a normal nilpo-
tent abelian-by-elementary abelian subgroup of G so that c(B)=n(G).
Let A be the largest normal abelian subgroup of G contained in B
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such that exp(B/A) = p and B′ 6 A. By the hypothesis there exists
an E ∈ E∗(w,V) satisfying (∗∗). Put N = NG(E). Then N/E is (locally)
cyclic by [5], Lemma 2.2 since p 6= 2. Also A 6 N by Lemma 2.4. Fur-
thermore B � N as in Lemma 2.7 since B is not abelian and thus
there exists t ∈ B \N so that Nt = N and tp ∈ N since G satisfies the
normalizer condition.

If c(B) < 3, then B is abelian by Lemma 2.7 since p 6= 2. There-
fore c(B) > 3. Let c(B) = c and put G = G/γc(B), so that c(B) = c− 1.

Assume first if possible that B′ 6 Z(G). Then [B
′,G] = 1 and hen-

ce [B′,G] 6 γc(B) which implies that [B′,G,B] = 1. This implies that

[B,B,B,B] = 1

and hence c 6 3. It follows that c = 3 since c > 3 and a second appli-
cation of Lemma 2.7 shows that p = 3.

By the hypothesis G satisfies the normalizer condition. By the as-
sumption G has a Λ-pair (w,V) such that W∗(w,V) = 1 and there
exists E ∈ E∗(w,V) such that NG(E) = NG(E′). Now applying Lem-
ma 2.9’ we get

exp(B) = 9 and exp(B/Z(B)) = 3

But also B ′6f1(B) by the assumption, and it follows that B ′6Z(B).
But then c(B) = 2, which is a contradiction. Therefore there exists an
element s ∈ B′ \Z(G). The rest of the proof is the same as the original
proof. ut

Proof of Corollary 1.2 — Let G be a Fitting p-group satisfying
the hypothesis of the corollary, where p 6= 2. Assume that in every
homomorphic of G every normal nilpotent metabelian 3-subgroup
of class 3 and of exponent 9 is powerful but G is not solvable. Thus
every proper homomorphic image of G is an MNS-group and, in par-
ticular, is perfect. By [4], Theorem 1.4 (b) we may suppose that G has
no homomorphic images having (∗)-triples for non-central elements.
Then in every homomorphic image of G there exist distinguished
pairs and dominant pairs by [4], Lemma 3.1 and Lemma 4.1 (b). The
rest of the proof is the same as the original proof. ut
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