

Advances in Group Theory and Applications c 2017 AGTA - www.advgrouptheory.com/journal 3 (2017), pp. [55](#page-0-0)–[66](#page-11-0) ISSN: ²⁴⁹⁹-¹²⁸⁷ DOI: 10.4399/97888255036924

Some New Local Properties Defining Soluble PST-Groups

J.C. Beidleman

(*Received Aug. 14, 2016; Accepted Nov. 24, 2016 — Communicated by F. de Giovanni*)

Abstract

Let G be a group and p a prime number. G is said to be a Y_p -group if whenever K is a p-subgroup of G every subgroup of K is an S-permutable subgroup in $N_G(K)$. The group \tilde{G} is a soluble PST-group if and only if \tilde{G} is a Y_p -group for all primes p. It is our purpose here to define a number of local properties related to Y_p which lead to several new characterizations of soluble PST-groups.

Mathematics Subject Classification (2010): 20D10, 20D20, 20D35

Keywords: S-permutable subgroup; semipermutable subgroup; seminormal subgroup; PST-group

1 Introduction and Statement of Results

All groups considered in this article are finite.

A subgroup H of a group G is said to permute with a subgroup K of G if HK is a subgroup of G. H is said to be permutable (resp. S-permutable) if it permutes with all the subgroups (resp. Sylow subgroups) of G. Examples of permutable subgroups include the normal subgroups of G. However, if G is a modular, non-Dedekind p-group, p a prime, we see permutability is quite different from normality. For instance, letting C_n denote the cyclic group of order n, we see that C_2 is permutable but not normal in the group $C_8 \rtimes C_2$ where

the generator for C_2 maps a generator of C_8 to its fifth power. Kegel [[12](#page-10-0)] proved that an S-permutable subgroup is always subnormal. In particular, a permutable subgroup of a group is subnormal. A group G is called a PST-group (resp. PT-group) if S-permutability (resp. permutability) is a transitive relation. By Kegel's result, a group G is a PST-group (resp. PT-group) if every subnormal subgroup of G is S-permutable (resp. permutable) in G.

A number of research papers have been written on these groups. See for example [[1](#page-9-0)],[[2](#page-9-1)],[[3](#page-10-1)],[[4](#page-10-2)],[[5](#page-10-3)],[[6](#page-10-4)],[[7](#page-10-5)],[[8](#page-10-6)],[[9](#page-10-7)],[[10](#page-10-8)],[[16](#page-10-9)].

Another class of groups is the so called T-groups. A group G is a T-group if normality in G is transitive, that is, if $H \trianglelefteq K \trianglelefteq G$ then H \leq G. There are several nice characterizations of T-groups in [[15](#page-10-10)].

Soluble PST, PT and T-groups were characterized by Agrawal [[1](#page-9-0)], Zacher [[18](#page-11-1)] and Gaschütz [[11](#page-10-11)], respectively.

Theorem 1.1

- 1. *A soluble group* G *is a* PST*-group if and only if the nilpotent residual* L *of* G *is an abelian Hall subgroup of* G *on which* G *acts by conjugation as power automorphisms.*
- 2. *A soluble* PST*-group* G *is a* PT*-group (respectively* T*-group) if and only if* G/L *is a modular (respectively Dedekind) group.*

Note that if G is a soluble T, PT or PST-group then every subgroup and every quotient of G inherits the same properties.

We mention that in [[6](#page-10-4), Chapter 2] many of the beautiful results on these classes of groups are presented.

Subgroup embedding properties closely related to permutability and S-permutability are semipermutability and S-semipermutability. A subgroup X of a group G is said to be *semipermutable* (respectively, S*-semipermutable*) in G provided that it permutes with every subgroup (respectively, Sylow subgroup) K of G such that $gcd(|X|, |K|)=1$. A semipermutable subgroup of a group need not be subnormal. For example a 2-Sylow subgroup of the non-abelian group of order 6 is semipermutable but not subnormal.

Note that a subnormal semipermutable (respectively, S-semipermutable) subgroup X of a group G must be normalised by every subgroup (respectively, Sylow subgroup) P of G such that $gcd(|X|, |P|) = 1$. This observation was the basis for Beidleman and Ragland [[10](#page-10-8)] to introduce the following subgroup embedding properties.

A subgroup X of a group G is said to be *seminormal* (respective-ly, S-seminormal)^{[1](#page-2-0)} in G if it is normalised by every subgroup (respectively, Sylow subgroup) K of G such that $gcd(|X|, |K|) = 1$.

By [[10](#page-10-8), Theorem 1.2], a subgroup of a group is seminormal if and only if it is S-seminormal. Furthermore, seminormal subgroups are not necessarily subnormal: it is enough to consider a non-subnormal subgroup H of a group G such that $\pi(H) = \pi(G)$. To see some of the properties of these subgroups see Examples 1, 2 and 3 in Section 3.

However, a p-subgroup of a group G, p a prime, which is also seminormal is subnormal [[10](#page-10-8), Theorem 1.3].

Semipermutable, S-semipermutable and seminormal subgroups have been investigated in [[10](#page-10-8)],[[17](#page-11-2)],[[19](#page-11-3)],[[20](#page-11-4)].

The following result is an interesting characterisation of soluble PST-groups.

Theorem 1.2 ([[10](#page-10-8), 1.5]) *Let* G *be a soluble group. Then the following statements are pairwise equivalent:*

- 1. G *is a* PST*-group.*
- 2. *All the subnormal subgroups of* G *are seminormal in* G*.*
- 3. *All the subnormal subgroups of* G *are semipermutable in* G*.*
- 4. *All the subnormal subgroups of* G *are* S*-semipermutable in* G*.*

The following beautiful result is due to H. Wielandt.

Theorem 1.3 ([[13](#page-10-12), 7.3.3]) *Let* H *be a subgroup of a group* G*. Then the following statements are equivalent:*

- 1. H *is subnormal in* G*.*
- 2. H *is subnormal in* $\langle H, H^g \rangle$ *for all* $g \in G$ *.*
- 3. H *is subnormal in* $\langle H, g \rangle$ *for all* $g \in G$ *.*

¹ Note that the term *seminormal* has several different meanings in the literature

Wielandt's result seems to have inspired the authors of [[5](#page-10-3)] to introduce the concept of weakly S-permutable subgroups of a subgroup H of a group G. This concept led to several new characterizations of soluble PST-groups which are presented in the following theorem from [[5](#page-10-3)].

Theorem 1.4 *Let* G *be a group. The following statements are pairwise equivalent:*

- 1. G *is a soluble* PST*-group.*
- 2. *Every subgroup of* G *is weakly* S*-permutable in* G*.*
- 3. *For every prime number* p*, every* p*-subgroup of* G *is weakly* S*-permutable in* G*.*

Theorems [1](#page--1-0).3 and [1](#page-3-0).4 motivate the following definition.

Definition 1.5 *Let* H *be a subgroup of a group* G*.*

- 1. H *is said to be weakly S-permutable in* G *if whenever* $g \in G$ *and* H *is* S-permutable in $\langle H, H^g \rangle$, then H is S-permutable in $\langle H, g \rangle$.
- 2. H *is said to be weakly semipermutable in* G *if whenever* $g \in G$ *and* H *is semipermutable in* $\langle H, H^g \rangle$, then H *is semipermutable in* $\langle H, g \rangle$.
- 3. H *is said to be weakly* S*-semipermutable in* G *if whenever* g ∈ G *and* H *is* S-semipermutable in $\langle H, H^g \rangle$, then H is S-semipermutable *in* $\langle H, g \rangle$ *.*
- 4. H *is said to be weakly seminormal in* G *if whenever* g ∈ G *and* H *is seminormal in* $\langle H, H^g \rangle$, then H *is seminormal in* $\langle H, g \rangle$ *.*

The next theorem relates the concept of S-permutable subgroups of a group G with weakly S-permutable subgroups of G.

Theorem 1.6 ([[5](#page-10-3)]) *A subgroup* H *of a group* G *is* S*-permutable in* G *if and only if* H *is* S-permutable *in* $\langle H, g \rangle$ *for every* $g \in G$ *.*

Theorem [1](#page-3-1).6 and its proof are used to establish the following result.

Theorem A *Let* H *be a subnormal subgroup of a group. Then:*

1. H *is* S*-semipermutable in* G *if and only if* H *is* S*-semipermutable in* $\langle H, g \rangle$ *for every* $g \in G$ *.*

2. H *is seminormal in* G *if and only if* H *is seminormal in* $\langle H, g \rangle$ *for every* $g \in G$ *.*

A class of groups G is a PST-group if and only if Sylow permutability is a transitive relation in G.

Definition 1.7 *Let* G *be a group and* p *a prime. Then*

- 1. G *is a Y*p*-group if for every* p*-subgroup* K *of* G *every subgroup of* K *is* S-permutable in $N_G(K)$ *.*
- 2. G *is a* \hat{Y}_p -group *if for every* p-subgroup K of G *every* subgroup of K *is semipermutable in* $N_G(K)$ *.*
- ³. ^G *is a* ^Yep*-group if for every* ^p*-subgroup* ^K *of* ^G *every subgroup of* ^K *is* S-semipermutable in $N_G(K)$.
- 4. G *is a* \widetilde{Y}_p -group *if for every* p-subgroup K of G *every* subgroup of K *is seminormal in* $N_G(K)$.
- 5. G *is a* Yp*-group if for every* p*-subgroup* K *of* G *every subgroup of* K *is weakly* S-permutable in $N_G(K)$.
- 6. G is a \widetilde{Y}_p -group if for every p-subgroup K of G every subgroup of K *is weakly* S-semipermutable in $N_G(K)$.
- 7. G is a \widetilde{Y}_p -group if for every p-subgroup K of G every subgroup of K *is weakly seminormal in* $N_G(K)$ *.*

The following result is a very nice local characterization of soluble PST-groups.

Theorem 1.8 ([[6](#page-10-4), 2.2.9] and [[4](#page-10-2), Theorem 4]) *A group* G *is a soluble* PST-group if and only if it satisfies Y_p for all primes p.

Our next result shows how some of the classes in Definition [1](#page-4-0).7 are related to the class Y_p .

Theorem 1.9 ([[6](#page-10-4), 1.8]) *Let* p *be a prime and* G *a group. Then*

$$
Y_p = \widehat{Y}_p = \widetilde{Y}_p = \widetilde{\widetilde{Y}}_p.
$$

Using Theorems [1](#page-4-1).8 and [1](#page-4-2).9 we note that the next result shows that all of the classes \underline{Y}_p , \underline{Y}_p and \underline{Y}_p are just Y_p .

Theorem B *Let* p *be a prime and* G *a group. Then*

1. $G \in Y_p$ *if and only if* $G \in Y_p$ *.* 2. $G \in \widetilde{Y}_p$ *if and only if* $G \in \widetilde{\underline{Y}}_p$ *.* 3. $G \in \widetilde{Y}_p$ *if and only if* $G \in \widetilde{\underline{Y}}_p$ *.*

From Theorem [1](#page-4-2).9 and Theorem B we obtain several results that yield new local characterizations of soluble PST-groups.

Corollary 1.10 *Let* p *be a prime. Then*

$$
Y_p = \underline{Y}_p = \widehat{Y}_p = \widetilde{Y}_p = \underline{\widetilde{Y}}_p = \overline{\widetilde{Y}}_p = \underline{\widetilde{Y}}_p.
$$

Using Theorem B and Corollary 1.[10](#page-5-0) we obtain the main result of this paper.

Theorem C *Let* G *be a group. Then the following statements are pairwise equivalent:*

- 1. G *is a soluble* PST*-group.*
- 2. G *is a Y*p*-group for all primes* p*.*
- 3. G *is a* Y_p -group for all primes p.
- 4. G *is a* \hat{Y}_p -group for all primes p.
- 5. G *is a* \widetilde{Y}_p -group for all primes p.
- 6. *G is a* $\frac{\tilde{\gamma}}{2p}$ -group for all primes p.
- 7. *G is a* \widetilde{Y}_p -group for all primes p.
- 8. *G is a* $\frac{\tilde{\gamma}}{p}$ -group for all primes p.

2 Preliminaries

The lemmas which follow are used in the proof of Theorems $A - C$.

The first lemma follows from the definitions of the terms given in parts $1 - 4$ of Lemma [2](#page--1-1).1.

Lemma 2.1 *Let* H *and* K *be subgroups of a group* G*. Then*

- 1. If $H \le K$ and H *is* S-permutable in G, then H *is* S-permutable in K.
- 2. If $H \le K$ *and* H *is semipermutable in* G, then H *is semipermutable in* K*.*
- 3. *If* H 6 K *and* H *is* S*-semipermutable in* G*, then* H *is* S*-semipermutable in* K*.*
- 4. If $H \le K$ and H is seminormal in G, then H is seminormal in K.

The next lemma is a result of H. Wielandt.

Lemma 2.2 ([[14](#page-10-13), 13.3.7]) *Let* N *be a minimal normal subgroup of a group* G*. Then* N *normalizes every subnormal subgroup of* G*.*

3 Examples

Example 3.1 *Let* S4*,* A⁴ *and* K⁴ *denote, respectively, the symmetric group of order* 4*, the alternating group of order* 4*, and the Klein* 4*-group. Let* G=S⁴ and let $H = \langle (123) \rangle$. Then H is S-semipermutable in G but it is not semiper*mutable in* G *since it does not permute with an element of order* 2 *in* K4*, the Sylow* 2*-subgroup of* A4*.*

An S-permutable subgroup of a group is subnormal. That this is not the case with S-semipermutable subgroups can be seen in the subgroup H in S_4 . Notice that H is not seminormal in S_4 .

Example 3.2 *Let*

$$
D_{10} = \langle x, y \mid x^5 = y^2 = 1, x^y = x^{-1} \rangle,
$$

the dihedral group of order 10, and

$$
C_{15} = \langle t, s \mid t^5 = s^3 = 1, ts = st \rangle
$$

the cyclic group of order 15*. Let* $G = D_{10} \times C_{15}$ *and let* $K = \langle t \rangle \times \langle y \rangle$ *. Since* $\langle s \rangle$ *centralizes* K *it follows that* K *is seminormal in* G. Note that K *is not subnormal in* G*.*

Example 3.3 Let $H = \langle x \rangle \rtimes \langle y \rangle$ be a semidirect product of a cyclic *group,* $\langle x \rangle$ *, of order* 11 *by a cyclic group,* $\langle y \rangle$ *, of order* 5*. Let* $G = H \times S_4$ *. Set* $K = \langle x \rangle \times S_3$ *where* S_3 *is a copy of the symmetric group on three elements in* S4*. Then* K *is a seminormal subgroup of* G *which is not subnormal.*

4 Proof of the Theorems

PROOF OF THEOREM $A - \text{Let } H$ be a subnormal subgroup of G.

1. Assume H is S-semipermutable in G and let $q \in G$. Let p be a prime divisor of $\vert\langle H, g\rangle\vert$ such that $\text{gcd}(\mathfrak{p}, |H|) = 1$. We are to show that H is S-semipermutable in $\langle \mathsf{H}, \mathsf{g} \rangle$. Let $\mathsf{P} \in \mathrm{Syl}_{\mathsf{p}}\left(\langle \mathsf{H}, \mathsf{g} \rangle \right)$ and let $Q \in \mathrm{Syl}_{p}$ (G) be such that $P \leq Q$. Note that $HQ = QH$. Consider HQ ∩ \dot{P} = HP so that H is S-semipermutable in $\langle H, g \rangle$. Now assume that G is a group of minimal order such that H is not S-semipermutable in G. Note that $H \triangleleft \triangleleft G$. Let M be a maximal normal subgroup of G such that $H \le M$.

There is a prime p such that $gcd(p, |H|) = 1$ and a Sylow p-subgroup P of G such that HP is not a subgroup of G. Let M_1 be a maximal subgroup of G such that $H \le M_1$ and $M \nleq M_1$. Then $G = MM_1$ and H is S-semipermutable in both M_1 and M. So there exists a Sylow p-subgroup Q_1 of M_1 and a Sylow p-subgroup Q of M such that QQ_1 is a Sylow p-subgroup of G and H permutes with QQ₁. Let QQ₁ = P₀ \in Syl_p(G), so that there is an element $x \in G$ such that $P_0 = P^x$.

Let N be a minimal normal subgroup of G with $N \le M$. Hence $HN \leq M$ and by a result due to Wielandt (Lemma [2](#page--1-2).2) N normalizes H. Notice by the minimality of G, HN/N permutes with PN/N and hence P permutes with HN in G. Assume that $P(HN) = X$ is a proper subgroup of G. Then $H \triangleleft A X$ and H is S-semipermutable in $\langle H, t \rangle$ for all $t \in X$. By choice of G, we have HP = PH, a contradiction and so $P(HN) = X = G$.

Let $x = x_1x_2$ where $x_1 \in P$ and $x_2 \in HN$. It follows that

$$
P_0 = P^x = P^{x_2}
$$
 and $H^{x_2^{-1}} = H$.

This means that $HP = PH$ or H permutes with P. This is a contradiction, so that $H \leq M \leq M_1$.

Now HN \leqslant M and $|G : M|$ is a power of p. Hence all the maximal subgroups of G/M are normal. This means that M is a maximal subgroup of G containing H. Therefore, if $t \in G\backslash M$, it follows that $G = \langle M, t \rangle$. From the hypothesis, H is S-semipermutable in $\langle M, t \rangle = G$, a final contradiction.

2. Assume that G is a group of minimal order such that H is seminormal in $\langle H, q \rangle$ for each $q \in G$ but H is not seminormal in G. Let M be a maximal normal subgroup of G such that $H \leq M$. There is a prime p and a Sylow p-subgroup P of G such that $\gcd(p, |H|) = 1$ and P does not normalize H.

Let M_1 be a maximal subgroup of G such that $H \le M_1$ but M is not contained in M₁. Then $G = M_1M$ and H is S-seminormal in both M and M_1 . Hence there exists a Sylow p-subgroup Q of M and a Sylow p-subgroup Q_1 of M₁ such that QQ_1 is a Sylow p-subgroup of G and QQ_1 normalizes H. Let $P_0 = QQ_1$ and note there is an element $x \in G$ such that $P_0 = P^x$.

For the next part of the proof consider the last part of the proof of 1. \Box

PROOF OF THEOREM $B -$ Let G be a group and K a p-subgroup of G.

1. Assume that $G \in Y_p$ and let H be a subgroup of the p-subgroup K of G and consider $H \le K \le N_G(K)$. Suppose that H is S-permutable in $\langle H, H^g \rangle$ where $g \in N_G(K)$. Since $G \in Y_p$, H is S-permutable in N_G(K). But $\langle H, g \rangle \le N_G(K)$ and hence H is S-permutable in $\langle H, q \rangle$, by part 1 of Lemma [2](#page--1-1).1, for all $q \in N_G(K)$. Note that H is subnormal in $N_G(K)$ and H is weakly S-permutable in $N_G(K)$. Therefore $G \in \underline{Y}_p$.

Conversely, assume that $\vec{G} \in \underline{Y}_p$ and let H be a subgroup of the p-subgroup K of G and note $H \le K \le N_G(K)$. We are to show that H is S-permutable under the assumption that H is weakly S-permutable in $N_G(K)$. Let $g \in N_G(K)$ and assume that H is S-permutable in $\langle H, H^g \rangle$. Then

$$
\langle H,H^g\rangle\leqslant \langle H,g\rangle\leqslant N_G(K)
$$

and H is S-permutable in $\langle H, g \rangle$ for all $g \in N_G(K)$ and by Theo-rem [1](#page-3-1).6 H is S-permutable in $N_G(K)$. Thus $G \in Y_p$.

2. Assume first that G is a \tilde{Y}_p -group and let H be a subgroup of the p-subgroup K of G such that $H \le K \le N_G(K)$. Since $G \in Y_p$, H is S-semipermutable in $N_G(K)$. Assume that H is S-semipermutable in $\langle H, H^g \rangle$ where $g \in N_G(K)$. Now $\langle H, g \rangle \le N_G(K)$ so that H is S-semipermutable in $\langle H, g \rangle$, for all $g \in G$, by part 3 of Lemma [2](#page--1-1).1. Therefore, H is weakly S-semipermutable in $N_G(K)$ and so $G \in \underline{Y}_p$.

Conversely, assume that G is a Y_p -group and assume H is a subgroup of the p-subgroup K of G such that $H \le K \le N_G(K)$. Also let H be weakly S-semipermutable in $N_G(K)$. We are to show that H is S-semipermutable in $N_G(K)$. Let g be an element in $N_G(K)$ such that H is S-semipermutable in $\langle H, H^g \rangle$. Then H is S-semipermutable in $\langle H, g \rangle$ and we note that this is true for all $q \in N_G(K)$. By part 1 of Theorem A G is S-semipermutable in N_G(K). It follows that $G \in \widetilde{Y}_p$.

3. Assume that G is in \tilde{Y}_p and let H be a subgroup of the p-subgroup K of G such that $H \le K \le N_G(K)$. Let g be an element of $N_G(K)$ and assume H is seminormal in $\langle H, H^g \rangle$. Note, since G is seminormal in $N_G(K)$, H is seminormal in $\langle H, g \rangle \le N_G(K)$, by part 4 of Lemma [2](#page--1-1).1. This is true for all $g \in N_G(K)$ so that H is weakly seminormal in $\mathsf{N}_{\mathsf{G}}(\mathsf{K})$ and $\mathsf{G}\in \mathsf{\underline{Y}}_\mathsf{p}.$

Conversely, assume that G is contained in Y_p and let H be a subgroup of G such that $H \le K \le N_G(K)$ where K is a p-subgroup of G. Let g be an arbitrary element of $N_G(K)$. Note that H is weakly seminormal in $N_G(K)$ so that H is seminormal in $\langle H, H^g \rangle$ and hence in $\langle H, q \rangle$. But this is true for all $q \in N_G(K)$ so that H is seminormal in $N_G(K)$ by part (2) of Theorem A. Thus $G \in \widetilde{Y}_p$.

This completes the proof of Theorem B. \Box

PROOF OF THEOREM $C -$ The proof of Theorem C follows from Theorems 1.8 1.8 , 1.9 and B.

R E F E R E N C E S

- [1] R.K. AGRAWAL: "Finite groups whose subnormal subgroups permute with all Sylow subgroups", *Proc. Amer. Math. Soc.* 47 (1975), 77–83.
- [2] K.A. Al-Sharo – J.C. Beidleman – H. Heineken – M.F. RAGLAND: "Some characterizations of finite groups in which semipermutability is a transitive relation", *Forum Math.* 22 (2010) , 855–862.
- [3] A. Ballester-Bolinches – R. Esteban-Romero: "Sylow permutable subnormal subgroups of finite groups II", *Bull. Austr. Math. Soc.* 64 (2001), 479–486.
- [4] A. Ballester-Bolinches – R. Esteban-Romero: "Sylow permutable subnormal subgroups of finite groups", *J. Algebra*, 251 (2002), 727–738.
- [5] A. Ballester-Bolinches – R. Esteban-Romero: "On finite soluble groups in which Sylow permutability is a transitive relation", *Acta. Math. Hungar.* 101 (2007), 193–202.
- [6] A. Ballester-Bolinches – R. Esteban-Romero – M. Asaad: "Products of Finite Groups", *de Gruyter*, Berlin (2010).
- [7] J.C. BEIDLEMAN – H. HEINEKEN: "Finite soluble groups whose subnormal subgroups permute with certain classes of subgroups", *J. Group Theory* 6 (2003), 139–158.
- [8] J.C. BEIDLEMAN – H. HEINEKEN: "Pronormal and subnormal subgroups and permutability", *Boll. Un. Mat. Ital.* 6 B (2003), 605– 615.
- [9] J.C. Beidleman – H. Heineken – M.F. Ragland: "Solvable PST-groups, strong Sylow bases and mutually permutable products", *J. Algebra* 321 (2009), 2022–2027.
- [10] J.C. BEIDLEMAN – M.F. RAGLAND: "Subnormal, permutable, and embedded subgroups in finite groups", *Central Eur. J. Math.* 9 (2011), 915–921.
- [11] W. GASCHÜTZ: "Gruppen, in denen das Normalteilersein transitiv ist", *J. Reine Angew. Math.* 198 (1957), 87–92.
- [12] O.H. KEGEL: "Sylow-Gruppen und Subnormalteiler endlicher Gruppen", *Math. Z.* 78 (1962), 205–221.
- [13] J.C. LENNOX – S.E. STONEHEWER: "Subnormal Subgroups of Groups", *Oxford Mathematical Monographs*, Oxford (1987).
- [14] D.J.S. Robinson: "A Course in the Theory of Groups", *Springer*, Berlin (1996).
- [15] D.J.S. ROBINSON: "A note on finite groups in which normality is transitive", *Proc. Amer. Math. Soc.* 19 (1968), 933–937.
- [16] P. SCHMID: "Subgroups permutable with all Sylow subgroups", *J. Algebra* 207 (1998), 285–293.
- [17] L. Wang, Y. Wang: "Finite groups in which S-semipermutability is a transitive relation", *Int. J. Algebra* 2 (2008), 143–152.
- [18] G. Zacher: "I gruppi risolubili finiti in cui i sottogruppi di composizione coincidono con i sottogruppi quasinormali", *Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur.* 37 (1964), 150–154.
- [19] Q. ZHANG: "s-semipermutability and abnormality in finite groups", *Comm. Algebra* 27 (1999), 4515–4524.
- [20] Q.H. ZHANG, L.F. WANG: "The influence of s-semipermutable subgroups on finite groups", *Acta. Math. Sinica (Chin. Ser.)* 48 (2005) , 81–88.

J.C. Beidleman Department of Mathematics University of Kentucky 715 Patterson Office Tower Lexington, KY (USA) e-mail: james.beidleman@uky.edu