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Abstract
Let G be a group and p a prime number. G is said to be a Yp-group if whenever K is
a p-subgroup of G every subgroup of K is an S-permutable subgroup in NG(K). The
group G is a soluble PST -group if and only if G is a Yp-group for all primes p. It is
our purpose here to define a number of local properties related to Yp which lead to
several new characterizations of soluble PST -groups.
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1 Introduction and Statement of Results

All groups considered in this article are finite.

A subgroup H of a group G is said to permute with a subgroup K
of G if HK is a subgroup of G. H is said to be permutable (resp. S-per-
mutable) if it permutes with all the subgroups (resp. Sylow sub-
groups) of G. Examples of permutable subgroups include the nor-
mal subgroups of G. However, if G is a modular, non-Dedekind
p-group, p a prime, we see permutability is quite different from nor-
mality. For instance, letting Cn denote the cyclic group of order n, we
see that C2 is permutable but not normal in the group C8 oC2 where
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the generator for C2 maps a generator of C8 to its fifth power. Ke-
gel [12] proved that an S-permutable subgroup is always subnormal.
In particular, a permutable subgroup of a group is subnormal. A
group G is called a PST -group (resp. PT -group) if S-permutability
(resp. permutability) is a transitive relation. By Kegel’s result, a group
G is a PST -group (resp. PT -group) if every subnormal subgroup of G
is S-permutable (resp. permutable) in G.

A number of research papers have been written on these groups.
See for example [1],[2],[3],[4],[5],[6],[7],[8],[9],[10],[16].

Another class of groups is the so called T -groups. A group G is
a T -group if normality in G is transitive, that is, if H E K E G then
H E G. There are several nice characterizations of T -groups in [15].

Soluble PST , PT and T -groups were characterized by Agrawal [1],
Zacher [18] and Gaschütz [11], respectively.

Theorem 1.1

1. A soluble group G is a PST -group if and only if the nilpotent resi-
dual L of G is an abelian Hall subgroup of G on which G acts by
conjugation as power automorphisms.

2. A soluble PST -group G is a PT -group (respectively T -group) if and
only if G/L is a modular (respectively Dedekind) group.

Note that if G is a soluble T , PT or PST -group then every subgroup
and every quotient of G inherits the same properties.

We mention that in [6, Chapter 2] many of the beautiful results on
these classes of groups are presented.

Subgroup embedding properties closely related to permutability
and S-permutability are semipermutability and S-semipermutability.
A subgroup X of a group G is said to be semipermutable (respective-
ly, S-semipermutable) in G provided that it permutes with every sub-
group (respectively, Sylow subgroup) K of G such that gcd(|X| , |K|)=1.
A semipermutable subgroup of a group need not be subnormal. For
example a 2-Sylow subgroup of the non-abelian group of order 6 is
semipermutable but not subnormal.

Note that a subnormal semipermutable (respectively, S-semiper-
mutable) subgroup X of a group G must be normalised by every sub-
group (respectively, Sylow subgroup) P ofG such that gcd(|X| , |P|) = 1.
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This observation was the basis for Beidleman and Ragland [10] to in-
troduce the following subgroup embedding properties.

A subgroup X of a group G is said to be seminormal (respective-
ly, S-seminormal)1 in G if it is normalised by every subgroup (respec-
tively, Sylow subgroup) K of G such that gcd(|X| , |K|) = 1.

By [10, Theorem 1.2], a subgroup of a group is seminormal if and
only if it is S-seminormal. Furthermore, seminormal subgroups are
not necessarily subnormal: it is enough to consider a non-subnormal
subgroup H of a group G such that π(H) = π(G). To see some of the
properties of these subgroups see Examples 1, 2 and 3 in Section 3.

However, a p-subgroup of a group G, p a prime, which is also semi-
normal is subnormal [10, Theorem 1.3].

Semipermutable, S-semipermutable and seminormal subgroups
have been investigated in [10],[17],[19],[20].

The following result is an interesting characterisation of solu-
ble PST -groups.

Theorem 1.2 ([10, 1.5]) Let G be a soluble group. Then the following
statements are pairwise equivalent:

1. G is a PST -group.

2. All the subnormal subgroups of G are seminormal in G.

3. All the subnormal subgroups of G are semipermutable in G.

4. All the subnormal subgroups of G are S-semipermutable in G.

The following beautiful result is due to H. Wielandt.

Theorem 1.3 ([13, 7.3.3]) Let H be a subgroup of a group G. Then the
following statements are equivalent:

1. H is subnormal in G.

2. H is subnormal in 〈H,Hg〉 for all g ∈ G.

3. H is subnormal in 〈H, g〉 for all g ∈ G.
1 Note that the term seminormal has several different meanings in the literature
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Wielandt’s result seems to have inspired the authors of [5] to intro-
duce the concept of weakly S-permutable subgroups of a subgroup H
of a group G. This concept led to several new characterizations of
soluble PST -groups which are presented in the following theorem
from [5].

Theorem 1.4 Let G be a group. The following statements are pairwise
equivalent:

1. G is a soluble PST -group.

2. Every subgroup of G is weakly S-permutable in G.

3. For every prime number p, every p-subgroup of G is weakly S-permu-
table in G.

Theorems 1.3 and 1.4 motivate the following definition.

Definition 1.5 Let H be a subgroup of a group G.

1. H is said to be weakly S-permutable in G if whenever g ∈ G and H is
S-permutable in 〈H,Hg〉, then H is S-permutable in 〈H, g〉.

2. H is said to be weakly semipermutable in G if whenever g ∈ G and H
is semipermutable in 〈H,Hg〉, then H is semipermutable in 〈H, g〉.

3. H is said to be weakly S-semipermutable in G if whenever g ∈ G
and H is S-semipermutable in 〈H,Hg〉, then H is S-semipermutable
in 〈H, g〉.

4. H is said to be weakly seminormal in G if whenever g ∈ G and H is
seminormal in 〈H,Hg〉, then H is seminormal in 〈H, g〉.

The next theorem relates the concept of S-permutable subgroups
of a group G with weakly S-permutable subgroups of G.

Theorem 1.6 ([5]) A subgroup H of a group G is S-permutable in G if
and only if H is S-permutable in 〈H, g〉 for every g ∈ G.

Theorem 1.6 and its proof are used to establish the following result.

Theorem A Let H be a subnormal subgroup of a group. Then:

1. H is S-semipermutable in G if and only if H is S-semipermutable
in 〈H, g〉 for every g ∈ G.
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2. H is seminormal in G if and only if H is seminormal in 〈H, g〉 for
every g ∈ G.

A class of groups G is a PST -group if and only if Sylow permutabil-
ity is a transitive relation in G.

Definition 1.7 Let G be a group and p a prime. Then

1. G is a Yp-group if for every p-subgroup K of G every subgroup of K
is S-permutable in NG(K).

2. G is a Ŷp-group if for every p-subgroup K of G every subgroup of K
is semipermutable in NG(K).

3. G is a Ỹp-group if for every p-subgroup K of G every subgroup of K
is S-semipermutable in NG(K).

4. G is a ˜̃Yp-group if for every p-subgroup K of G every subgroup of K
is seminormal in NG(K).

5. G is a Yp-group if for every p-subgroup K of G every subgroup of K
is weakly S-permutable in NG(K).

6. G is a Ỹp-group if for every p-subgroup K of G every subgroup of K
is weakly S-semipermutable in NG(K).

7. G is a ˜̃Yp-group if for every p-subgroup K of G every subgroup of K
is weakly seminormal in NG(K).

The following result is a very nice local characterization of solu-
ble PST -groups.

Theorem 1.8 ([6, 2.2.9] and [4, Theorem 4]) A group G is a soluble
PST -group if and only if it satisfies Yp for all primes p.

Our next result shows how some of the classes in Definition 1.7 are
related to the class Yp.

Theorem 1.9 ([6, 1.8]) Let p be a prime and G a group. Then

Yp = Ŷp = Ỹp =
˜̃
Yp.

Using Theorems 1.8 and 1.9 we note that the next result shows that

all of the classes Yp, Ỹp and ˜̃Yp are just Yp.
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Theorem B Let p be a prime and G a group. Then

1. G ∈ Yp if and only if G ∈ Yp.

2. G ∈ Ỹp if and only if G ∈ Ỹp.

3. G ∈ ˜̃Yp if and only if G ∈ ˜̃Yp.

From Theorem 1.9 and Theorem B we obtain several results that
yield new local characterizations of soluble PST -groups.

Corollary 1.10 Let p be a prime. Then

Yp = Yp = Ŷp = Ỹp = Ỹp =
˜̃
Yp =

˜̃
Yp.

Using Theorem B and Corollary 1.10 we obtain the main result of
this paper.

Theorem C Let G be a group. Then the following statements are pairwise
equivalent:

1. G is a soluble PST -group.

2. G is a Yp-group for all primes p.

3. G is a Yp-group for all primes p.

4. G is a Ŷp-group for all primes p.

5. G is a Ỹp-group for all primes p.

6. G is a Ỹp-group for all primes p.

7. G is a ˜̃Yp-group for all primes p.

8. G is a ˜̃Yp-group for all primes p.

2 Preliminaries

The lemmas which follow are used in the proof of Theorems A – C.

The first lemma follows from the definitions of the terms given in
parts 1 – 4 of Lemma 2.1.
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Lemma 2.1 Let H and K be subgroups of a group G. Then

1. If H 6 K and H is S-permutable in G, then H is S-permutable in K.

2. If H 6 K and H is semipermutable in G, then H is semipermutable
in K.

3. If H 6 K and H is S-semipermutable in G, then H is S-semipermuta-
ble in K.

4. If H 6 K and H is seminormal in G, then H is seminormal in K.

The next lemma is a result of H. Wielandt.

Lemma 2.2 ([14, 13.3.7]) Let N be a minimal normal subgroup of a
group G. Then N normalizes every subnormal subgroup of G.

3 Examples

Example 3.1 Let S4,A4 and K4 denote, respectively, the symmetric group
of order 4, the alternating group of order 4, and the Klein 4-group. LetG=S4
and let H = 〈(123)〉. Then H is S-semipermutable in G but it is not semiper-
mutable in G since it does not permute with an element of order 2 in K4,
the Sylow 2-subgroup of A4.

An S-permutable subgroup of a group is subnormal. That this is
not the case with S-semipermutable subgroups can be seen in the
subgroup H in S4. Notice that H is not seminormal in S4.

Example 3.2 Let

D10 = 〈x,y | x5 = y2 = 1, xy = x−1〉,

the dihedral group of order 10, and

C15 = 〈t, s | t5 = s3 = 1, ts = st〉,

the cyclic group of order 15. Let G = D10 × C15 and let K = 〈t〉 × 〈y〉.
Since 〈s〉 centralizes K it follows that K is seminormal in G. Note that K is
not subnormal in G.

Example 3.3 Let H = 〈x〉 o 〈y〉 be a semidirect product of a cyclic
group, 〈x〉, of order 11 by a cyclic group, 〈y〉, of order 5. Let G = H× S4.
Set K = 〈x〉 × S3 where S3 is a copy of the symmetric group on three ele-
ments in S4. Then K is a seminormal subgroup of G which is not subnormal.
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4 Proof of the Theorems

Proof of Theorem A — Let H be a subnormal subgroup of G.

1. Assume H is S-semipermutable in G and let g ∈ G. Let p be
a prime divisor of |〈H, g〉| such that gcd(p, |H|) = 1. We are to
show that H is S-semipermutable in 〈H, g〉. Let P ∈ Sylp (〈H, g〉)
and let Q ∈ Sylp (G) be such that P 6 Q. Note that HQ = QH.
Consider HQ∩ P = HP so that H is S-semipermutable in 〈H, g〉.
Now assume that G is a group of minimal order such that H is
not S-semipermutable in G. Note that H / /G. Let M be a maxi-
mal normal subgroup of G such that H 6M.
There is a prime p such that gcd(p, |H|) = 1 and a Sylow p-sub-
group P of G such that HP is not a subgroup of G. Let M1 be a
maximal subgroup of G such that H 6M1 and M 66M1. Then
G = MM1 and H is S-semipermutable in both M1 and M. So
there exists a Sylow p-subgroup Q1 of M1 and a Sylow p-sub-
group Q of M such that QQ1 is a Sylow p-subgroup of G and H
permutes with QQ1. Let QQ1 = P0 ∈ Sylp(G), so that there is
an element x ∈ G such that P0 = Px.
Let N be a minimal normal subgroup of G with N 6M. Hence
HN 6 M and by a result due to Wielandt (Lemma 2.2) N nor-
malizes H. Notice by the minimality of G, HN/N permutes
with PN/N and hence P permutes with HN in G. Assume that
P(HN) = X is a proper subgroup of G. Then H / /X and H
is S-semipermutable in 〈H, t〉 for all t ∈ X. By choice of G, we
have HP = PH, a contradiction and so P(HN) = X = G.
Let x = x1x2 where x1 ∈ P and x2 ∈ HN. It follows that

P0 = Px = Px2 and Hx
−1
2 = H.

This means that HP = PH or H permutes with P. This is a con-
tradiction, so that H 6M 6M1.
Now HN 6 M and |G :M| is a power of p. Hence all the max-
imal subgroups of G/M are normal. This means that M is a
maximal subgroup of G containing H. Therefore, if t ∈ G\M, it
follows that G = 〈M, t〉. From the hypothesis, H is S-semiper-
mutable in 〈M, t〉 = G, a final contradiction.

2. Assume that G is a group of minimal order such that H is
seminormal in 〈H, g〉 for each g ∈ G but H is not seminormal
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in G. Let M be a maximal normal subgroup of G such that
H 6 M. There is a prime p and a Sylow p-subgroup P of G
such that gcd(p, |H|) = 1 and P does not normalize H.
Let M1 be a maximal subgroup of G such that H 6 M1 but M
is not contained in M1. Then G =M1M and H is S-seminormal
in both M and M1. Hence there exists a Sylow p-subgroup Q
of M and a Sylow p-subgroup Q1 of M1 such that QQ1 is a
Sylow p-subgroup of G and QQ1 normalizes H. Let P0 = QQ1
and note there is an element x ∈ G such that P0 = Px.
For the next part of the proof consider the last part of the proof
of 1. ut

Proof of Theorem B — Let G be a group and K a p-subgroup of G.

1. Assume that G ∈ Yp and let H be a subgroup of the p-subgroup
K of G and consider H 6 K 6 NG(K). Suppose that H is S-per-
mutable in 〈H,Hg〉 where g ∈ NG(K). Since G ∈ Yp, H is S-per-
mutable in NG(K). But 〈H, g〉 6 NG(K) and hence H is S-permu-
table in 〈H, g〉, by part 1 of Lemma 2.1, for all g ∈ NG(K). Note
that H is subnormal in NG(K) and H is weakly S-permutable
in NG(K). Therefore G ∈ Yp.
Conversely, assume that G ∈ Yp and let H be a subgroup of
the p-subgroup K of G and note H 6 K 6 NG(K). We are to
show that H is S-permutable under the assumption that H is
weakly S-permutable in NG(K). Let g ∈ NG(K) and assume
that H is S-permutable in 〈H,Hg〉. Then

〈H,Hg〉 6 〈H, g〉 6 NG(K)

and H is S-permutable in 〈H, g〉 for all g ∈ NG(K) and by Theo-
rem 1.6 H is S-permutable in NG(K). Thus G ∈ Yp.

2. Assume first that G is a Ỹp-group and let H be a subgroup of
the p-subgroup K of G such that H 6 K 6 NG(K). Since G ∈ Ỹp,
H is S-semipermutable in NG(K). Assume that H is S-semiper-
mutable in 〈H,Hg〉 where g ∈ NG(K). Now 〈H, g〉 6 NG(K) so
that H is S-semipermutable in 〈H, g〉, for all g ∈ G, by part 3 of
Lemma 2.1. Therefore, H is weakly S-semipermutable in NG(K)
and so G ∈ Ỹp.
Conversely, assume that G is a Ỹp-group and assume H is a
subgroup of the p-subgroup K of G such that H 6 K 6 NG(K).
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Also let H be weakly S-semipermutable in NG(K). We are to
show that H is S-semipermutable in NG(K). Let g be an element
in NG(K) such that H is S-semipermutable in 〈H,Hg〉. Then H
is S-semipermutable in 〈H, g〉 and we note that this is true for
all g ∈ NG(K). By part 1 of Theorem A G is S-semipermutable
in NG(K). It follows that G ∈ Ỹp.

3. Assume that G is in ˜̃Yp and let H be a subgroup of the p-sub-
group K of G such that H 6 K 6 NG(K). Let g be an element of
NG(K) and assume H is seminormal in 〈H,Hg〉. Note, since G
is seminormal in NG(K), H is seminormal in 〈H, g〉 6 NG(K),
by part 4 of Lemma 2.1. This is true for all g ∈ NG(K) so that H

is weakly seminormal in NG(K) and G ∈ ˜̃Yp.

Conversely, assume that G is contained in ˜̃Yp and let H be a sub-
group of G such that H 6 K 6 NG(K) where K is a p-subgroup
of G. Let g be an arbitrary element of NG(K). Note that H is
weakly seminormal inNG(K) so thatH is seminormal in 〈H,Hg〉
and hence in 〈H, g〉. But this is true for all g ∈ NG(K) so that H

is seminormal in NG(K) by part (2) of Theorem A. Thus G ∈ ˜̃Yp.

This completes the proof of Theorem B. ut

Proof of Theorem C — The proof of Theorem C follows from The-
orems 1.8, 1.9 and B. ut
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