

Advances in Group Theory and Applications © 2017 AGTA - www.advgrouptheory.com/journal 3 (2017), pp. 55–66 ISSN: 2499-1287 DOI: 10.4399/97888255036924

Some New Local Properties Defining Soluble PST-Groups

J.C. BEIDLEMAN

(Received Aug. 14, 2016; Accepted Nov. 24, 2016 — Communicated by F. de Giovanni)

Abstract

Let G be a group and p a prime number. G is said to be a Y_p -group if whenever K is a p-subgroup of G every subgroup of K is an S-permutable subgroup in $N_G(K)$. The group G is a soluble PST-group if and only if G is a Y_p -group for all primes p. It is our purpose here to define a number of local properties related to Y_p which lead to several new characterizations of soluble PST-groups.

Mathematics Subject Classification (2010): 20D10, 20D20, 20D35

Keywords: S-permutable subgroup; semipermutable subgroup; seminormal subgroup; PST-group

1 Introduction and Statement of Results

All groups considered in this article are finite.

A subgroup H of a group G is said to permute with a subgroup K of G if HK is a subgroup of G. H is said to be permutable (resp. S-permutable) if it permutes with all the subgroups (resp. Sylow subgroups) of G. Examples of permutable subgroups include the normal subgroups of G. However, if G is a modular, non-Dedekind p-group, p a prime, we see permutability is quite different from normality. For instance, letting C_n denote the cyclic group of order n, we see that C_2 is permutable but not normal in the group $C_8 \rtimes C_2$ where

the generator for C_2 maps a generator of C_8 to its fifth power. Kegel [12] proved that an S-permutable subgroup is always subnormal. In particular, a permutable subgroup of a group is subnormal. A group G is called a PST-group (resp. PT-group) if S-permutability (resp. permutability) is a transitive relation. By Kegel's result, a group G is a PST-group (resp. PT-group) if every subnormal subgroup of G is S-permutable (resp. permutable) in G.

A number of research papers have been written on these groups. See for example [1],[2],[3],[4],[5],[6],[7],[8],[9],[10],[16].

Another class of groups is the so called T-groups. A group G is a T-group if normality in G is transitive, that is, if $H \leq K \leq G$ then $H \leq G$. There are several nice characterizations of T-groups in [15].

Soluble PST, PT and T-groups were characterized by Agrawal [1], Zacher [18] and Gaschütz [11], respectively.

Theorem 1.1

- 1. A soluble group G is a PST-group if and only if the nilpotent residual L of G is an abelian Hall subgroup of G on which G acts by conjugation as power automorphisms.
- 2. A soluble PST-group G is a PT-group (respectively T-group) if and only if G/L is a modular (respectively Dedekind) group.

Note that if G is a soluble T, PT or PST-group then every subgroup and every quotient of G inherits the same properties.

We mention that in [6, Chapter 2] many of the beautiful results on these classes of groups are presented.

Subgroup embedding properties closely related to permutability and S-permutability are semipermutability and S-semipermutability. A subgroup X of a group G is said to be *semipermutable* (respectively, *S-semipermutable*) in G provided that it permutes with every subgroup (respectively, Sylow subgroup) K of G such that gcd(|X|, |K|) = 1. A semipermutable subgroup of a group need not be subnormal. For example a 2-Sylow subgroup of the non-abelian group of order 6 is semipermutable but not subnormal.

Note that a subnormal semipermutable (respectively, S-semipermutable) subgroup X of a group G must be normalised by every subgroup (respectively, Sylow subgroup) P of G such that gcd(|X|, |P|) = 1. This observation was the basis for Beidleman and Ragland [10] to introduce the following subgroup embedding properties.

A subgroup X of a group G is said to be *seminormal* (respectively, S-*seminormal*)¹ in G if it is normalised by every subgroup (respectively, Sylow subgroup) K of G such that gcd(|X|, |K|) = 1.

By [10, Theorem 1.2], a subgroup of a group is seminormal if and only if it is S-seminormal. Furthermore, seminormal subgroups are not necessarily subnormal: it is enough to consider a non-subnormal subgroup H of a group G such that $\pi(H) = \pi(G)$. To see some of the properties of these subgroups see Examples 1, 2 and 3 in Section 3.

However, a p-subgroup of a group G, p a prime, which is also seminormal is subnormal [10, Theorem 1.3].

Semipermutable, S-semipermutable and seminormal subgroups have been investigated in [10],[17],[19],[20].

The following result is an interesting characterisation of soluble PST-groups.

Theorem 1.2 ([10, 1.5]) *Let* G *be a soluble group. Then the following statements are pairwise equivalent:*

- 1. G is a PST-group.
- 2. All the subnormal subgroups of G are seminormal in G.
- 3. All the subnormal subgroups of G are semipermutable in G.
- 4. All the subnormal subgroups of G are S-semipermutable in G.

The following beautiful result is due to H. Wielandt.

Theorem 1.3 ([13, 7.3.3]) Let H be a subgroup of a group G. Then the following statements are equivalent:

- 1. H is subnormal in G.
- **2.** H *is subnormal in* $\langle H, H^g \rangle$ *for all* $g \in G$.
- 3. H is subnormal in $\langle H, g \rangle$ for all $g \in G$.

¹ Note that the term *seminormal* has several different meanings in the literature

Wielandt's result seems to have inspired the authors of [5] to introduce the concept of weakly S-permutable subgroups of a subgroup H of a group G. This concept led to several new characterizations of soluble PST-groups which are presented in the following theorem from [5].

Theorem 1.4 Let G be a group. The following statements are pairwise equivalent:

- 1. G is a soluble PST-group.
- 2. Every subgroup of G is weakly S-permutable in G.
- 3. For every prime number p, every p-subgroup of G is weakly S-permutable in G.

Theorems 1.3 and 1.4 motivate the following definition.

Definition 1.5 *Let* H *be a subgroup of a group* G.

- 1. H is said to be weakly S-permutable in G if whenever $g \in G$ and H is S-permutable in $\langle H, H^g \rangle$, then H is S-permutable in $\langle H, g \rangle$.
- **2.** H is said to be weakly semipermutable in G if whenever $g \in G$ and H is semipermutable in $\langle H, H^g \rangle$, then H is semipermutable in $\langle H, g \rangle$.
- 3. H is said to be weakly S-semipermutable in G if whenever $g \in G$ and H is S-semipermutable in $\langle H, H^g \rangle$, then H is S-semipermutable in $\langle H, g \rangle$.
- 4. H is said to be weakly seminormal in G if whenever $g \in G$ and H is seminormal in $\langle H, H^g \rangle$, then H is seminormal in $\langle H, g \rangle$.

The next theorem relates the concept of S-permutable subgroups of a group G with weakly S-permutable subgroups of G.

Theorem 1.6 ([5]) A subgroup H of a group G is S-permutable in G if and only if H is S-permutable in (H, g) for every $g \in G$.

Theorem 1.6 and its proof are used to establish the following result.

Theorem A Let H be a subnormal subgroup of a group. Then:

1. H is S-semipermutable in G if and only if H is S-semipermutable in $\langle H, g \rangle$ for every $g \in G$.

2. H is seminormal in G if and only if H is seminormal in $\langle H, g \rangle$ for every $g \in G$.

A class of groups G is a PST-group if and only if Sylow permutability is a transitive relation in G.

Definition 1.7 Let G be a group and p a prime. Then

- 1. G is a Y_p -group if for every p-subgroup K of G every subgroup of K is S-permutable in $N_G(K)$.
- 2. G is a \hat{Y}_p -group if for every p-subgroup K of G every subgroup of K is semipermutable in $N_G(K)$.
- 3. G is a \tilde{Y}_p -group if for every p-subgroup K of G every subgroup of K is S-semipermutable in $N_G(K)$.
- 4. G is a \tilde{Y}_p -group if for every p-subgroup K of G every subgroup of K is seminormal in $N_G(K)$.
- 5. G is a \underline{Y}_p -group if for every p-subgroup K of G every subgroup of K is weakly S-permutable in $N_G(K)$.
- 6. G is a $\underline{\widetilde{Y}}_{p}$ -group if for every p-subgroup K of G every subgroup of K is weakly S-semipermutable in N_G(K).
- 7. G is a $\underline{\widetilde{Y}}_{p}$ -group if for every p-subgroup K of G every subgroup of K is weakly seminormal in N_G(K).

The following result is a very nice local characterization of soluble PST-groups.

Theorem 1.8 ([6, 2.2.9] and [4, Theorem 4]) A group G is a soluble PST-group if and only if it satisfies Y_p for all primes p.

Our next result shows how some of the classes in Definition 1.7 are related to the class Y_p .

Theorem 1.9 ([6, 1.8]) Let p be a prime and G a group. Then

$$Y_p = \widehat{Y}_p = \widetilde{Y}_p = \widetilde{\widetilde{Y}}_p.$$

Using Theorems 1.8 and 1.9 we note that the next result shows that all of the classes \underline{Y}_p , $\underline{\widetilde{Y}}_p$ and $\underline{\widetilde{\widetilde{Y}}}_p$ are just Y_p .

Theorem B Let p be a prime and G a group. Then

- 1. $G \in Y_p$ if and only if $G \in \underline{Y}_p$.
- 2. $G \in \widetilde{Y}_p$ if and only if $G \in \underline{\widetilde{Y}}_p$.
- 3. $G \in \widetilde{\widetilde{Y}}_{p}$ if and only if $G \in \widetilde{\widetilde{Y}}_{p}$.

From Theorem 1.9 and Theorem B we obtain several results that yield new local characterizations of soluble PST-groups.

Corollary 1.10 Let p be a prime. Then

$$Y_p = \underline{Y}_p = \widehat{Y}_p = \widetilde{Y}_p = \widetilde{\underline{Y}}_p = \widetilde{\underline{Y}}_p = \widetilde{\widetilde{Y}}_p = \widetilde{\underline{\widetilde{Y}}}_p.$$

Using Theorem B and Corollary 1.10 we obtain the main result of this paper.

Theorem C Let G be a group. Then the following statements are pairwise equivalent:

- 1. G is a soluble PST-group.
- 2. G is a Y_p -group for all primes p.
- 3. G is a \underline{Y}_p -group for all primes p.
- 4. G is a \hat{Y}_p -group for all primes p.
- 5. G is a \widetilde{Y}_{p} -group for all primes p.
- 6. G is a $\underline{\widetilde{Y}}_{p}$ -group for all primes p.
- 7. G is a $\widetilde{\widetilde{Y}}_{p}$ -group for all primes p.
- 8. G is a $\tilde{\underline{Y}}_{p}$ -group for all primes p.

2 Preliminaries

The lemmas which follow are used in the proof of Theorems A – C.

The first lemma follows from the definitions of the terms given in parts 1 – 4 of Lemma 2.1.

Lemma 2.1 Let H and K be subgroups of a group G. Then

- 1. If $H \leq K$ and H is S-permutable in G, then H is S-permutable in K.
- 2. If $H \leq K$ and H is semipermutable in G, then H is semipermutable in K.
- 3. If $H \leq K$ and H is S-semipermutable in G, then H is S-semipermutable in K.
- 4. If $H \leq K$ and H is seminormal in G, then H is seminormal in K.

The next lemma is a result of H. Wielandt.

Lemma 2.2 ([14, 13.3.7]) Let N be a minimal normal subgroup of a group G. Then N normalizes every subnormal subgroup of G.

3 Examples

Example 3.1 Let S_4 , A_4 and K_4 denote, respectively, the symmetric group of order 4, the alternating group of order 4, and the Klein 4-group. Let $G = S_4$ and let $H = \langle (123) \rangle$. Then H is S-semipermutable in G but it is not semipermutable in G since it does not permute with an element of order 2 in K_4 , the Sylow 2-subgroup of A_4 .

An S-permutable subgroup of a group is subnormal. That this is not the case with S-semipermutable subgroups can be seen in the subgroup H in S₄. Notice that H is not seminormal in S₄.

Example 3.2 Let

$$D_{10} = \langle x, y \mid x^5 = y^2 = 1, x^y = x^{-1} \rangle$$

the dihedral group of order 10, and

$$C_{15} = \langle t, s \mid t^5 = s^3 = 1, ts = st \rangle,$$

the cyclic group of order 15. Let $G = D_{10} \times C_{15}$ and let $K = \langle t \rangle \times \langle y \rangle$. Since $\langle s \rangle$ centralizes K it follows that K is seminormal in G. Note that K is not subnormal in G.

Example 3.3 Let $H = \langle x \rangle \rtimes \langle y \rangle$ be a semidirect product of a cyclic group, $\langle x \rangle$, of order 11 by a cyclic group, $\langle y \rangle$, of order 5. Let $G = H \times S_4$. Set $K = \langle x \rangle \times S_3$ where S_3 is a copy of the symmetric group on three elements in S_4 . Then K is a seminormal subgroup of G which is not subnormal.

4 Proof of the Theorems

PROOF OF THEOREM A — Let H be a subnormal subgroup of G.

1. Assume H is S-semipermutable in G and let $g \in G$. Let p be a prime divisor of $|\langle H, g \rangle|$ such that gcd(p, |H|) = 1. We are to show that H is S-semipermutable in $\langle H, g \rangle$. Let $P \in Syl_p(\langle H, g \rangle)$ and let $Q \in Syl_p(G)$ be such that $P \leq Q$. Note that HQ = QH. Consider $HQ \cap P = HP$ so that H is S-semipermutable in $\langle H, g \rangle$. Now assume that G is a group of minimal order such that H is not S-semipermutable in G. Note that $H \triangleleft \triangleleft G$. Let M be a maximal normal subgroup of G such that $H \leq M$.

There is a prime p such that gcd(p, |H|) = 1 and a Sylow p-subgroup P of G such that HP is not a subgroup of G. Let M_1 be a maximal subgroup of G such that $H \leq M_1$ and $M \leq M_1$. Then $G = MM_1$ and H is S-semipermutable in both M_1 and M. So there exists a Sylow p-subgroup Q_1 of M_1 and a Sylow p-subgroup Q of M such that QQ_1 is a Sylow p-subgroup of G and H permutes with QQ_1 . Let $QQ_1 = P_0 \in Syl_p(G)$, so that there is an element $x \in G$ such that $P_0 = P^x$.

Let N be a minimal normal subgroup of G with N \leq M. Hence HN \leq M and by a result due to Wielandt (Lemma 2.2) N normalizes H. Notice by the minimality of G, HN/N permutes with PN/N and hence P permutes with HN in G. Assume that P(HN) = X is a proper subgroup of G. Then H $\triangleleft \triangleleft X$ and H is S-semipermutable in $\langle H, t \rangle$ for all $t \in X$. By choice of G, we have HP = PH, a contradiction and so P(HN) = X = G.

Let $x = x_1x_2$ where $x_1 \in P$ and $x_2 \in HN$. It follows that

 $P_0 = P^x = P^{x_2}$ and $H^{x_2^{-1}} = H$.

This means that HP = PH or H permutes with P. This is a contradiction, so that $H \leq M \leq M_1$.

Now $HN \leq M$ and |G:M| is a power of p. Hence all the maximal subgroups of G/M are normal. This means that M is a maximal subgroup of G containing H. Therefore, if $t \in G \setminus M$, it follows that $G = \langle M, t \rangle$. From the hypothesis, H is S-semipermutable in $\langle M, t \rangle = G$, a final contradiction.

2. Assume that G is a group of minimal order such that H is seminormal in $\langle H, g \rangle$ for each $g \in G$ but H is not seminormal

in G. Let M be a maximal normal subgroup of G such that $H \leq M$. There is a prime p and a Sylow p-subgroup P of G such that gcd(p, |H|) = 1 and P does not normalize H.

Let M_1 be a maximal subgroup of G such that $H \leq M_1$ but M is not contained in M_1 . Then $G = M_1M$ and H is S-seminormal in both M and M_1 . Hence there exists a Sylow p-subgroup Q of M and a Sylow p-subgroup Q_1 of M_1 such that QQ_1 is a Sylow p-subgroup of G and QQ_1 normalizes H. Let $P_0 = QQ_1$ and note there is an element $x \in G$ such that $P_0 = P^x$.

For the next part of the proof consider the last part of the proof of 1. $\hfill \Box$

Ркооf of Theorem B — Let G be a group and K a p-subgroup of G.

1. Assume that $G \in Y_p$ and let H be a subgroup of the p-subgroup K of G and consider $H \leq K \leq N_G(K)$. Suppose that H is S-permutable in $\langle H, H^g \rangle$ where $g \in N_G(K)$. Since $G \in Y_p$, H is S-permutable in $N_G(K)$. But $\langle H, g \rangle \leq N_G(K)$ and hence H is S-permutable in $\langle H, g \rangle$, by part 1 of Lemma 2.1, for all $g \in N_G(K)$. Note that H is subnormal in $N_G(K)$ and H is weakly S-permutable in $N_G(K)$. Therefore $G \in \underline{Y}_p$.

Conversely, assume that $\dot{G} \in \underline{Y}_p$ and let H be a subgroup of the p-subgroup K of G and note $H \leq K \leq N_G(K)$. We are to show that H is S-permutable under the assumption that H is weakly S-permutable in $N_G(K)$. Let $g \in N_G(K)$ and assume that H is S-permutable in $\langle H, H^g \rangle$. Then

$$\langle \mathbf{H}, \mathbf{H}^{\mathbf{g}} \rangle \leqslant \langle \mathbf{H}, \mathbf{g} \rangle \leqslant \mathbf{N}_{\mathbf{G}}(\mathbf{K})$$

and H is S-permutable in $\langle H, g \rangle$ for all $g \in N_G(K)$ and by Theorem 1.6 H is S-permutable in $N_G(K)$. Thus $G \in Y_p$.

2. Assume first that G is a \widetilde{Y}_p -group and let H be a subgroup of the p-subgroup K of G such that $H \leq K \leq N_G(K)$. Since $G \in \widetilde{Y}_p$, H is S-semipermutable in $N_G(K)$. Assume that H is S-semipermutable in $\langle H, H^g \rangle$ where $g \in N_G(K)$. Now $\langle H, g \rangle \leq N_G(K)$ so that H is S-semipermutable in $\langle H, g \rangle$, for all $g \in G$, by part 3 of Lemma 2.1. Therefore, H is weakly S-semipermutable in $N_G(K)$ and so $G \in \widetilde{Y}_p$.

Conversely, assume that G is a $\underline{\widetilde{Y}}_p$ -group and assume H is a subgroup of the p-subgroup K of G such that $H \leq K \leq N_G(K)$.

Also let H be weakly S-semipermutable in $N_G(K)$. We are to show that H is S-semipermutable in $N_G(K)$. Let g be an element in $N_G(K)$ such that H is S-semipermutable in $\langle H, H^g \rangle$. Then H is S-semipermutable in $\langle H, g \rangle$ and we note that this is true for all $g \in N_G(K)$. By part 1 of Theorem A G is S-semipermutable in $N_G(K)$. It follows that $G \in \widetilde{Y}_p$.

3. Assume that G is in \widetilde{Y}_p and let H be a subgroup of the p-subgroup K of G such that $H \leq K \leq N_G(K)$. Let g be an element of $N_G(K)$ and assume H is seminormal in $\langle H, H^g \rangle$. Note, since G is seminormal in $N_G(K)$, H is seminormal in $\langle H, g \rangle \leq N_G(K)$, by part 4 of Lemma 2.1. This is true for all $g \in N_G(K)$ so that H is weakly seminormal in $N_G(K)$ and $G \in \widetilde{\underline{Y}}_p$.

Conversely, assume that G is contained in $\underline{\widetilde{Y}}_p$ and let H be a subgroup of G such that $H \leq K \leq N_G(K)$ where K is a p-subgroup of G. Let g be an arbitrary element of $N_G(K)$. Note that H is weakly seminormal in $N_G(K)$ so that H is seminormal in $\langle H, H^g \rangle$ and hence in $\langle H, g \rangle$. But this is true for all $g \in N_G(K)$ so that H is seminormal in $N_G(K)$ by part (2) of Theorem A. Thus $G \in \widetilde{\widetilde{Y}}_p$.

This completes the proof of Theorem B.

PROOF OF THEOREM C — The proof of Theorem C follows from Theorems 1.8, 1.9 and B. \Box

REFERENCES

- R.K. AGRAWAL: "Finite groups whose subnormal subgroups permute with all Sylow subgroups", Proc. Amer. Math. Soc. 47 (1975), 77–83.
- [2] K.A. AL-SHARO J.C. BEIDLEMAN H. HEINEKEN M.F. RAGLAND: "Some characterizations of finite groups in which semipermutability is a transitive relation", *Forum Math.* 22 (2010), 855–862.

- [3] A. BALLESTER-BOLINCHES R. ESTEBAN-ROMERO: "Sylow permutable subnormal subgroups of finite groups II", Bull. Austr. Math. Soc. 64 (2001), 479–486.
- [4] A. BALLESTER-BOLINCHES R. ESTEBAN-ROMERO: "Sylow permutable subnormal subgroups of finite groups", J. Algebra, 251 (2002), 727–738.
- [5] A. BALLESTER-BOLINCHES R. ESTEBAN-ROMERO: "On finite soluble groups in which Sylow permutability is a transitive relation", *Acta. Math. Hungar.* 101 (2007), 193–202.
- [6] A. BALLESTER-BOLINCHES R. ESTEBAN-ROMERO M. ASAAD: "Products of Finite Groups", *de Gruyter*, Berlin (2010).
- [7] J.C. BEIDLEMAN H. HEINEKEN: "Finite soluble groups whose subnormal subgroups permute with certain classes of subgroups", J. Group Theory 6 (2003), 139–158.
- [8] J.C. BEIDLEMAN H. HEINEKEN: "Pronormal and subnormal subgroups and permutability", Boll. Un. Mat. Ital. 6 B (2003), 605– 615.
- [9] J.C. BEIDLEMAN H. HEINEKEN M.F. RAGLAND: "Solvable PST-groups, strong Sylow bases and mutually permutable products", J. Algebra 321 (2009), 2022–2027.
- [10] J.C. BEIDLEMAN M.F. RAGLAND: "Subnormal, permutable, and embedded subgroups in finite groups", *Central Eur. J. Math.* 9 (2011), 915–921.
- [11] W. GASCHÜTZ: "Gruppen, in denen das Normalteilersein transitiv ist", J. Reine Angew. Math. 198 (1957), 87–92.
- [12] O.H. KEGEL: "Sylow-Gruppen und Subnormalteiler endlicher Gruppen", Math. Z. 78 (1962), 205–221.
- [13] J.C. LENNOX S.E. STONEHEWER: "Subnormal Subgroups of Groups", Oxford Mathematical Monographs, Oxford (1987).
- [14] D.J.S. ROBINSON: "A Course in the Theory of Groups", *Springer*, Berlin (1996).
- [15] D.J.S. ROBINSON: "A note on finite groups in which normality is transitive", Proc. Amer. Math. Soc. 19 (1968), 933–937.
- [16] P. SCHMID: "Subgroups permutable with all Sylow subgroups", J. Algebra 207 (1998), 285–293.

- [17] L. WANG, Y. WANG: "Finite groups in which S-semipermutability is a transitive relation", *Int. J. Algebra* 2 (2008), 143–152.
- [18] G. ZACHER: "I gruppi risolubili finiti in cui i sottogruppi di composizione coincidono con i sottogruppi quasinormali", Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur. 37 (1964), 150–154.
- [19] Q. ZHANG: "s-semipermutability and abnormality in finite groups", *Comm. Algebra* 27 (1999), 4515–4524.
- [20] Q.H. ZHANG, L.F. WANG: "The influence of s-semipermutable subgroups on finite groups", Acta. Math. Sinica (Chin. Ser.) 48 (2005), 81–88.

J.C. Beidleman Department of Mathematics University of Kentucky 715 Patterson Office Tower Lexington, KY (USA) e-mail: james.beidleman@uky.edu