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Abstract
We investigate the behaviour of the Weil character of the symplectic group on restric-
tion to subgroups arising from commutative nilpotent algebras of class 2. We give
explicit descriptions of the decomposition of the Weil character when restricted to
the unipotent radical of the stabilizer of a maximal totally isotropic subspace and to
its centralizer. Moreover, we show how these decompositions can be used to obtain
alternative proofs for certain results concerning quadratic forms or Gauss sums.
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1 Introduction

Because of their significant properties, Weil representations play an
important role in the study of the representation theory of classical
groups. The characters of Weil representations have been computed
by various authors; see for example [1], [5], [6], [11]. We will be mak-
ing use of some explicit results concerning the Weil characters of the
symplectic group as these are obtained in [14] via the ‘theta form’
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(see also [11]). The approach in [14] is to follow the treatment for
the Weil representation given in [13].

One of the aims of the present work is to follow up in the direction
of some of the investigations in [9] and [10] concerning the restriction
of the Weil characters of symplectic and unitary groups to certain
subgroups, in particular to certain self-centralizing subgroups, with
the question of multiplicity freeness. We remark here that the study
of the behaviour of element centralizers in Weil representations al-
ready began in [4]. Our second aim is to make use of the explicit
decompositions of the restricted Weil character we obtain in order to
provide links with certain results in related areas such as quadratic
forms over finite fields or Gauss sums. Perhaps it could be interest-
ing to investigate further whether the study of such decompositions
in this direction can actually lead to useful applications.

At this point we introduce some notation. Fix q a power of an
odd prime and consider the Weil representation and its character ω
for Sp(2n,q), regarded as a matrix group on V = GF(q)2n defined
via the symplectic form ϕ having matrix[

0 I
−I 0

]
.

The subgroup G of Sp(2n,q) to be considered is G=〈−I〉×B, where B
is the set of matrices

gQ =

[
I 0
Q I

]
,

with Q a symmetric matrix. So B is the unipotent radical of the stabi-
lizer in Sp(2n,q) of a maximal totally isotropic subspace of V , and G,
which is the centralizer of B in Sp(2n,q), is a maximal Abelian sub-
group of Sp(2n,q). Also note that the matrices gQ − I with gQ ∈ B
belong to a nilpotent subalgebra of the full matrix algebra of 2n× 2n
matrices over GF(q) of class 2 (compare with the discussion in [9]).

The restriction ω|G is known to be multiplicity free. In Sections 5

and 6 we give the details of an elementary self-contained proof of
Theorem 6 in which we describe explicitly the irreducible charac-
ters of G (respectively, B) appearing in the decomposition of ω|G
(respectively, ω|B). Corresponding decompositions for the restriction
of the Weil character to the centralizer of a regular unipotent element
were studied in [10]. In Section 9 we give a quick proof of the fact
that a subgroup H of G with a multiplicity free restriction ω|H sati-
sfies |H| > 2qn and show that this bound is actually attained. More-
over, we give a construction of such a subgroup H with |H| = 2qn
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and ω|H multiplicity free.
In Sections 7, 8 and 9 we give some connections of the explicit

decompositions for ω|B and ω|G with certain results in related areas.
In Section 7 we use the expression for the decompositionω|B in order
to obtain alternative derivations for the number of solutions of the
equation Q(x) = α with α ∈ GF(q), x ∈ GF(q)n and Q a quadratic
form of GF(q)n. It is interesting that the expressions we obtain for
rankQ even or odd are uniform, which perhaps is not obvious in
traditional derivations. In Section 8 we use part of the decomposi-
tion ω|G in order to obtain a q-binomial identity. Finally, in Section 9

we show how specializing the expression for ω|B further to elements
of the subgroup H described above provides a link with the Daven-
port-Hasse theorem on lifted Gauss sums.

The decompositions in Theorem 6 corroborate results in the pre-
print by Gurevich and Howe [3] (which appeared after we finished
our manuscript), especially those in Section 2.

2 Preliminaries

We consider the Weil representation and its character ω for Sp(2n,q),
where q is a power of an odd prime, as a matrix group on V=GF(q)2n

(with right action). We refer the reader to [1] for the construction of
the Weil representation of various linear groups by means of repre-
sentations of Heisenberg groups. That paper also presents the com-
putation of the character of the Weil representations. On the other
hand, the paper [13] produces the Weil representation through a nat-
ural action of a symplectic group on a twisted group algebra. The
underlying group of that algebra is the additive group of the vector
space on which the symplectic group is defined. In the present paper
we will be following the notation about ω in [13], [14] and use some
explicit results in [14] about its values. Note that in [5, Proposition 2]
it is already shown that for g ∈ Sp(2n,q) we have

|ω(g)|2 = qdimVg ,

where Vg = {v ∈ V : vg = v}.
The symplectic form ϕ has matrix[

0 I
−I 0

]
.
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Writing members of V as pairs (x,y), with x,y ∈ GF(q)n, one has

ϕ((x1,y1), (x2,y2)) = x1yT2 − y1x
T
2 ,

the superscript T standing for transpose.
The subgroup G of Sp(2n,q) to be considered is G = 〈−I〉 × B,

where B is the set of matrices

gQ =

[
I 0
Q I

]
.

Such a matrix is in Sp(2n,q) just when QT = Q; that is, Q is sym-
metric (“Q” emphasizes the associated quadratic form Q(v) = vQvT

on GF(q)n). Let Sn be the space of n× n symmetric matrices over
GF(q). There are qn(n+1)/2 such matrices.

We will be restricting the Weil character ω to various subgroups
of Sp(2n,q). We call a subgroup H of Sp(2n,q) Weil-free if the irre-
ducible constituents of ω|H appear with multiplicity 1. The follow-
ing theorem follows from results in [2], but we present a proof done
in the spirit of [9].

Theorem 1 G is Weil-free.

Proof — We use the orbit criterion: an Abelian subgroup H of
Sp(2n,q) is Weil-free exactly when the number of orbits of H on V
is qn (see [9]). To count the orbits of G, recall that

(# orbits) = |G|−1
∑
v∈V

|Gv|,

Gv the stabilizer of v. Notice that the matrices

−gQ =

[
−I 0
−Q −I

]
in −B fix only 0. Since

(x,y)gQ = (x,y)
[
I 0
Q I

]
= (x+ yQ,y),

v = (x,y) is fixed exactly when yQ = 0. We look at three cases:

v = (0, 0): then |G(0,0)| = |G| = 2qn(n+1)/2.
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v = (x, 0), x 6= 0: all members of B fix v and |G(x,0)| = q
n(n+1)/2.

There are qn − 1 such v.

v = (x,y),y 6= 0: v is fixed by the elements gQ with yQ = 0. We
can set up such Q by thinking of it as a quadratic form with y
in the radical. Write GF(q)n = 〈y〉 ⊕W. Then Q can be given
by taking a form on W and extending it by 0 on 〈y〉. That gives
|G(x,y)| = q

n(n−1)/2, the number of choices for the form on W.
There are qn(qn − 1) of these v.

Thus for
∑
v∈V

|Gv| we get

∑
v∈V

|Gv| = 2qn(n+1)/2 + (qn − 1)× qn(n+1)/2

+qn(qn − 1)× qn(n−1)/2

= qn(n+1)/2 {2+ qn − 1+ qn − 1} = qn × 2qn(n+1)/2.

So |G|−1
∑
v∈V

|Gv| = q
n, as needed. ut

3 Irreducible characters of G
To describe the characters of G, let ψ be the canonical additive character
of GF(q), as used in [13] (the terminology is that of [7, p.190]):

ψ(α) = e(2πi/p)tr(α),

where tr is the trace function GF(q) → GF(p), p the prime divi-
ding q. Each linear character of the additive group of GF(q) is given
by α → ψ(βα), β ∈ GF(q) [7, Theorem 5.7] (this is equivalent to
the nondegeneracy of the trace form (α,β) → tr(αβ)). In what fol-
lows, χ is the quadratic character on GF(q)# (the nonzero elements)
and δ = χ(−1). In [13], ρ was defined as∑

α∈GF(q)
ψ(α2);

we also have
ρ =

∑
β 6=0

χ(β)ψ(β), (1)
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a Gaussian sum [7, Chapter 5, Section 2]; ρ2 = δq. If Q ∈ Sn, diago-
nalize Q and let

∆(Q) = χ(product of nonzero diagonal entries of Q).

That is, if we write GF(q)n as rad(Q)⊕W, ∆(Q) is χ(det(Q|W)); Q|W
is the nonsingular part of Q. If Q has even rank 2k, we call Q hyper-
bolic or elliptic according as Q|W is hyperbolic or elliptic. If Q|W is
hyperbolic, then W is the orthogonal sum of hyperbolic planes, and
detQ|W = (−1)k. Thus ∆(Q) = δk. IfQ|W is elliptic, then ∆(Q)=−δk.

Lemma 2 The irreducible characters of B are the functions λS given by

λS
(
gQ
)
= ψ(Tr(SQ)),

where S∈Sn and Tr is the matrix trace. Each λS extends to two irreducible
characters λ±S of G by the formula

λ±S
(
gQ
)

= ψ(Tr(SQ)) (2)

λ±S
(
−gQ

)
= ±ψ(Tr(SQ)),

with the signs in the last equation matching on the two sides.

Proof — That this formula does give all the linear characters of B
follows from the fact that the trace form (S,Q) → Tr(SQ) on Sn
is nondegenerate. That, in turn, can be seen as follows: suppose
that Tr(SQ) = 0 for all Q ∈ Sn. Take a basis for GF(q)n that makes S
diagonal. Suppose that ζ is a nonzero diagonal entry of S. Choose Q
to have 1 at that position and 0 elsewhere. Then Tr(SQ) = ζ; so ζ = 0
after all. Thus S = 0. So these characters λS are all distinct; and since
there is the correct number of them, they give all the characters of B.
Then for the characters of G, we use the direct product decomposi-
tion G = 〈−I〉 ×B to write them as claimed. ut

4 Values of ω on G
For the values of ω, we use results from [14]. A member −gQ of −B
has −gQ− 1 invertible, with diagonal entries −2, and [14, Section 6.5]
gives

ω
(
−gQ

)
= δnχ(det(−gQ − 1)) = δnχ((−2)2n) = δn. (3)
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As for gQ, [14, Theorem 6.7] implies that

ω(g) = qnρ−dimVg−1χ(detΘg).

Here Θg is given in [14, Definition 3.3]: it is the form defined on Vg−1

by
Θg(u

g−1, vg−1) = ϕ(ug−1, v).

We have (x,y)g−1 = (yQ, 0). So

Θg((x1,y1)g−1, (x2,y2)g−1) = ϕ((x1,y1)g−1, (x2,y2))
= ϕ((y1Q, 0), (x2,y2))
= y1Qy

T
2 .

It follows that χ(detΘg) = ∆(Q). Thus

Proposition 3 The values of ω on G are given by

ω
(
gQ
)

= qnρ−rankQ∆(Q) (4)
ω
(
−gQ

)
= δn. (5)

If Q = 0, ∆(Q) is defined to be 1.

5 Character multiplicities in ω|G

The multiplicity (which is 0 or 1) of a linear character λ in ω|G is

|G|−1
∑
g∈G

ω(g)λ(g).

With λ = λ±S , we get∑
g∈G

ω(g)λ±S (g) =
∑
Q∈Sn

qnρ−rankQ∆(Q)ψ(−Tr(SQ))±
∑
Q∈Sn

δnψ(−Tr(SQ))

(again, the sign on the right matches the sign in λ±S ). The second
summation is 0 if S 6= 0, and δnqn(n+1)/2 if S = 0.

For further computations, we need some standard group-order for-
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mulas. They are taken from [12].

Group Order

GL(l,q) ql(l−1)/2
l∏
i=1

(qi − 1)

O+(2k,q) 2qk(k−1)(qk − 1)
k−1∏
i=1

(q2i − 1)

O−(2k,q) 2qk(k−1)(qk + 1)
k−1∏
i=1

(q2i − 1)

O(2k+ 1,q) 2qk
2
k∏
i=1

(q2i − 1)

Sp(2k,q) qk
2
k∏
i=1

(q2i − 1).

(6)

We also need the q-binomial coefficient
[
n
r

]
q

that gives the number
of r-dimensional subspaces of GF(q)n. By duality,

[
n
r

]
q
=
[
n
n−r

]
q

.

5.1 S = 0

When S = 0,

(ω, λ±0 )G =
1

2qn(n−1)/2

∑
Q∈Sn

ρ−rankQ∆(Q)± δ
n

2
,

since |G| = 2qn(n+1)/2. We conclude that the first term must be 1/2:∑
Q∈Sn

ρ−rankQ∆(Q) = qn(n−1)/2. (7)

We shall elaborate on this in Section 8. Thus we have

Proposition 4 The multiplicity of λ±0 in ω is

(ω, λ±0 )G =
1± δn

2
.

5.2 S 6= 0

Here ∑
g∈G

ω(g)λ±S (g) =
∑
Q∈Sn

qnρ−rankQ∆(Q)ψ(−Tr(SQ)).
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It follows that λ+S and λ−S appear with the same multiplicity in ω|G.
Now note that

Tr(MTSMQ) = Tr(SMQMT ).

So with M nonsingular, λ±S and λ±
MTSM

also have the same multi-
plicity in ω|G. Suppose that rankS = r. The number of members
of Sn congruent to S (that is, of the form MTSM) is[

n

n− r

]
q

×
|GL(r,q)|
|O(S)|

=

[
n

r

]
q

×
|GL(r,q)|
|O(S)|

,

where O(S) is the orthogonal group for S. We want to show that
if r > 1, then this number is more than (qn − 1)/2. That will imply
that the only S 6= 0 that can appear in the characters in ω|G are the
ones of rank 1; there are qn − 1 of these [8, Theorem 13.2.47]. Again
we separate by parity.

• r = 2k: Then

|O(S)| 6
∣∣O−(2k,q)

∣∣ = 2qk(k−1)(qk + 1) k−1∏
i=1

(q2i − 1),

from (6). So[
n

r

]
q

×
|GL(r,q)|
|O(S)|

>

[
n

2k

]
q

×
|GL(2k,q)|
|O−(2k,q)|

=

n∏
j=n−2k+1

(qj − 1)

2k∏
j=1

(qj − 1)

×
qk(2k−1)

2k∏
j=1

(qj − 1)

2qk(k−1)(qk + 1)
k−1∏
i=1

(q2i − 1)

=

n∏
j=n−2k+1

(qj − 1)

2(qk + 1)
k−1∏
i=1

(q2i − 1)

× qk
2

>

n∏
j=n−2k+1

(qj − 1)

2(qk + 1)
k−1∏
i=1

q2i
× qk

2
=

n∏
j=n−2k+1

(qj − 1)

2(qk + 1)
× qk.
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Since n− 1 > n− 2k+ 1, from k > 1, and n− 2k+ 1 > 1, the
product

n−1∏
j=n−2k+1

(qj − 1)

is nonempty and its smallest factor is at least 2.

Thus
n−1∏

j=n−2k+1

(qj − 1) > 1+
1

qk
.

We conclude that

[
n

r

]
q

×
|GL(r,q)|
|O(S)|

>

n∏
j=n−2k+1

(qj − 1)

2(qk + 1)
× qk > qn − 1

2
.

• r=2k+1: This time, again with the appropriate formula from (6)
filled in,

[
n

r

]
q

×
|GL(r,q)|
|O(S)|

=

n∏
j=n−2k

(qj − 1)

2k+1∏
j=1

(qj − 1)

×
qk(2k+1)

2k+1∏
j=1

(qj − 1)

2qk
2
k∏
j=1

(q2j − 1)

=

n∏
j=n−2k

(qj − 1)

2
k∏
j=1

(q2j − 1)

× qk
2+k >

n∏
j=n−2k

(qj − 1)

2
k∏
j=1

q2j
× qk

2+k

=

n∏
j=n−2k

(qj − 1)

2
>
qn − 1

2
,

as long as k > 0.

In the following result we sum up the discussion of this subsection.

Proposition 5 Let S 6= 0. The multiplicity of λ±S in ω is

(ω, λ±S )G =


1

2qn(n−1)/2

∑
Q∈Sn

ρ−rankQ∆(Q)ψ(−Tr(SQ)) if rankS = 1

0 otherwise.
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6 The decomposition of ω|G

Collecting the results of the preceding section gives

ω|G =
1+ δn

2
λ+0 +

1− δn

2
λ−0

+
∑

rankS=1

 1

2qn(n−1)/2

∑
Q∈Sn

ρ−rankQ∆(Q)ψ(−Tr(SQ))

 (λ+S + λ−S ).

We still need to determine which congruence class of symmetric ma-
trices S of rank 1 actually appears in the decomposition. (There are
two such classes, corresponding to ∆(S) = 1 and ∆(S) = −1. Each
class has (qn − 1)/2 members.) To do so, we examine the characters
on a small subgroup of G.

Let M be the n× n symmetric matrix with M11 = 1 and all other
entries 0; ∆(M) = 1. Let H be the subgroup consisting of the matrices

hα =

[
I 0
αM I

]
, α ∈ GF(q).

Then ω(hα) = qn if α = 0, and ω(hα) = qnρ−1χ(α) if α 6= 0, by (4).
Moreover, λ±βM(hα) = ψ(αβ), for β 6= 0. It follows that

(ω, λ±βM)H = q−1

qn +
∑
α6=0

qnρ−1χ(α)ψ(−αβ)


= qn−1

1+ δρ−1χ(β)∑
α6=0

χ(−βα)ψ(−βα)


= qn−1(1+ χ(β)δ),

by (1). So λ±βM appears in ω|H just when χ(β) = δ. This implies the
following:

Theorem 6

ω|G =
1+ δn

2
λ+0 +

1− δn

2
λ−0 +

∑
rankS=1
∆(S)=δ

(λ+S + λ−S ). (8)
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In particular,
ω|B = λ0 + 2

∑
rankS=1
∆(S)=δ

λS. (9)

The Weil character is the sum of two irreducible characters, ω+,
of degree (qn + 1)/2, and ω−, of degree (qn − 1)/2. Their values
at −I are ω±(−I) = ±δn(qn ± 1)/2 (see [14, Section 6]), the signs
all matching. Observing the eigenvalues of −I in the corresponding
representations, we can write that

ω+|G =
1+ δn

2
λ+0 +

1− δn

2
λ−0 +

∑
rankS=1
∆(S)=δ

λδ
n

S

ω−|G =
∑

rankS=1
∆(S)=δ

λ−δ
n

S .

As an immediate consequence we get that both ω+|B and ω−|B are
multiplicity free.

7 Computations with the ω|B decomposition

In this section we use the expression for the decomposition ω|B in
order to obtain alternative derivations for the number of solutions of
the equation Q(x) = α with α ∈ GF(q), x ∈ GF(q)n for the quadratic
form Q on GF(q)n. For this we first confirm, using a different ap-
proach, the above decomposition.

7.1 Confirmation of the ω|B decomposition

Recall that

gQ =

[
I 0
Q I

]
.

By (4), ω(gQ) = qnρ−rankQ∆(Q). Let rankQ = r. Then (9) gives

ω(gQ) = qnρ−r∆(Q) = 1+ 2
∑

rankS=1
∆(S)=δ

ψ(Tr(SQ)). (10)
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If x∈GF(q)n, x 6= 0, then xTx is a rank 1 symmetric matrix. Two such
products xTx and yTy are equal just when y=±x. For x=(ξ1, . . . , ξn),
the diagonal entries of xTx are the ξ2i . Thus since at least one is
nonzero, ∆(xTx) = 1. So all symmetric n × n rank 1 matrices can
be written as xTx (x 6= 0) or νxTx, where ν is a fixed nonsquare
in GF(q) (as mentioned above, there are (qn − 1)/2 matrices of each
type). We can rewrite (10) as follows:

ω(gQ) = qnρ−r∆(Q)

=
∑
x

{
1+ δ

2
ψ(Tr(xTxQ)) +

1− δ

2
ψ(Tr(νxTxQ))

}
.

(11)

The factors (1 ± δ)/2 pick out the S with ∆(S) = δ and adjust for
the fact that each S appears twice; the 1 on the right in (10) comes
from x = 0 (recall also that we have set ∆(0) = 1).

Now
Tr(xTxQ) = Tr(xQxT ) = Tr(Q(x)) = Q(x),

so the preceding formula becomes

qnρ−r∆(Q) =
∑
x

{
1+ δ

2
ψ(Q(x)) +

1− δ

2
ψ(νQ(x))

}
. (12)

Let σ denote the sum. To evaluate σ we need the number of
times Q(x) = α for α ∈ GF(q). These counts for nonzero α depend
only on whether α is a square or not, since Q(βx) = β2Q(x). Let 0
be taken on Z times (including Q(0) = 0); a given nonzero square S
times; and a given nonsquare N times. Then

Z+ (S+N)(q− 1)/2 = qn.

We also need the character sums∑
α6=0 square

ψ(α) =
ρ− 1

2
and

∑
α nonsquare

ψ(α) =
−ρ− 1

2
, (13)

which follow from∑
α6=0

ψ(α) = −1,
∑

α6=0 square

ψ(α) −
∑

α nonsquare
ψ(α) = ρ.

Collecting terms in σ according to whether Q(x) is zero, a nonzero
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square or a nonsquare we get

σ = Z

{
1+ δ

2
+
1− δ

2

}
+ S

{
1+ δ

2

ρ− 1

2
+
1− δ

2

−ρ− 1

2

}
+N

{
1+ δ

2

−ρ− 1

2
+
1− δ

2

ρ− 1

2

}
= Z−

S+N

2
+ δρ

S−N

2
.

Then put Z = qn − (S+N)(q− 1)/2 to obtain

σ = qn −
q(S+N)

2
+ δρ

S−N

2
. (14)

Now we need S and N. If Q0 is the nonsingular part of Q, the
counts for Q are those for Q0 multiplied by qn−r. Here are these
numbers for Q, obtained from [7, Theorems 6.26 and 6.27] for Q0:

r even

S N

qn−1 − δr/2∆(Q)qn−r/2−1 qn−1 − δr/2∆(Q)qn−r/2−1 = S

(15)

r odd

S N

qn−1 + δ(r−1)/2qn−(r+1)/2∆(Q) qn−1 − δ(r−1)/2qn−(r+1)/2∆(Q)

Substituting into (14), we obtain simplifications corresponding to the
parity of r.

• r even: then S = N and

σ = qn −
q

2
(2qn−1 − 2δr/2∆(Q)qn−r/2−1)

= δr/2∆(Q)qn−r/2.

Since qr/2 = δr/2ρr, this is correctly qnρ−r∆(Q).
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• r odd: then

σ = qn −
q

2
2qn−1 + δ(r−1)/2qn−(r+1)/2∆(Q)δρ

= δ(r+1)/2qnq−(r+1)/2ρ∆(Q)

= δ(r+1)/2qnδ(r+1)/2ρ−r−1ρ∆(Q)

= qnρ−r∆(Q),

again correct.

7.2 The S,N formulas

In point of fact, the formulas for S and N follow from those for ω|B.
Combining (10) and (12) gives

qnρ−r∆(Q) = qn −
q(S+N)

2
+ δρ

S−N

2
. (16)

For a needed second equation, let Q′ be Q scaled by a nonsquare and
let S′ and N′ be the number of solutions of the equation Q′(x) = α
for α a nonzero square and α a nonsquare respectively (with x
in GF(q)n). Then S′ = N and N′ = S, and ∆(Q′) = (−1)r∆(Q). For-
mula (16) for Q′ reads

qnρ−r(−1)r∆(Q) = qn −
q(S+N)

2
+ δρ

N− S

2
. (17)

Solving (16) and (17) for S and N produces

S = qn−1 −
1+ (−1)r

2
qn−1ρ−r∆(Q) +

1− (−1)r

2
qnρ−r−1δ∆(Q)

N = qn−1 −
1+ (−1)r

2
qn−1ρ−r∆(Q) −

1− (−1)r

2
qnρ−r−1δ∆(Q),

and then

Z = qn − (S+N)
q− 1

2

= qn−1 +
1+ (−1)r

2
qn−1(q− 1)ρ−r∆(Q).

These are uniform expressions (perhaps not obvious in traditional
derivations!) which give (15) on taking r even or odd.
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Incidentally, when δ = −1 or q is not a square, ρ is not rational. In
that case, the formulas follow from equating coefficients in (16) for
the quadratic field Q(ρ) = Q + Qρ and again solving for S and N.

8 A q-binomial identity

Recall equation (7):∑
Q∈Sn

ρ−rankQ∆(Q) = qn(n−1)/2.

If rankQ is odd, then with ν a nonsquare in GF(q), ∆(νQ) = −∆(Q),
and the terms for Q and νQ in the sum cancel. Thus sin-
ce ρ−2k = δkq−k,

qn(n−1)/2 =
∑
Q∈Sn

ρ−rankQ∆(Q)

(18)

=

bn/2c∑
k=0

∑
Q∈Sn

rankQ=2k

δkq−k∆(Q).

Let rankQ = 2k. As pointed out in Section 3, if Q is hyperbolic,
then ∆(Q) = δk; and if Q is elliptic, then ∆(Q) = −δk.

Now we can give a specific formula for∑
Q∈Sn

rankQ=2k

δkq−k∆(Q).

The number of terms with Q hyperbolic is[
n

2k

]
q

×
|GL(2k,q)|
|O+(2k,q)|

,

and the number with Q elliptic is[
n

2k

]
q

×
|GL(2k,q)|
|O−(2k,q)|

.
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Thus ∑
Q∈Sn

rankQ=2k

δkq−k∆(Q) =

δkq−k
[
n

2k

]
q

× |GL(2k,q)|× δk
(

1

|O+(2k,q)|
−

1

|O−(2k,q)|

)
;

the second δk is the factor needed for ∆(Q). By (6),

1

|O+(2k,q)|
−

1

|O−(2k,q)|
=

1

qk(k−1)
k∏
i=1

(q2i − 1)

(note the addition of one more factor in the product). So, again by (6),

bn/2c∑
k=0

∑
Q∈Sn

rankQ=2k

δkq−k∆(Q) =

bn/2c∑
k=0

δkq−k
[
n

2k

]
q

× δk
qk(2k−1)

2k∏
i=1

(qi − 1)

qk(k−1)
k∏
i=1

(q2i − 1)

=

bn/2c∑
k=0

[
n

2k

]
q

qk
2−k

k−1∏
i=0

(q2i+1 − 1).

Thus from (18),

qn(n−1)/2 =

bn/2c∑
k=0

[
n

2k

]
q

qk
2−k

k−1∏
i=0

(q2i+1 − 1).

We may see why this identity holds by counting the number of skew-
symmetric n×n matrices over GF(q). The number of skew-symme-
tric n×n matrices of rank 2k is

[
n

2k

]
q

×
|GL(2k,q)|
|Sp(2k,q)|

=

[
n

2k

]
q

qk(2k−1)
2k∏
i=1

(qi − 1)

qk
2
k∏
i=1

(q2i − 1)

=

[
n

2k

]
q

qk
2−k

k−1∏
i=0

(q2i+1 − 1)

(see [8, Theorem 13.2.48]), and that is to be summed from k = 0
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to bn/2c (giving 1 at k = 0). But the total number of skew-symme-
tric n×n matrices is simply qn(n−1)/2.

9 Minimum Weil-free subgroups of G

Suppose that H is a subgroup of G. If ω|H is also Weil-free,
then |H| > qn. It cannot be that |H| = qn, because then ω|H would
just be the sum of all qn linear characters of H. But that sum is qn

at I and 0 at h 6= I, whereasω(h) 6= 0, by (4). Thus |H| > 2qn. We shall
show that there are Weil-free subgroups of order 2qn. If |H| = 2qn,
then

H = 〈−I〉 × (H∩B)

(for this last point observe first that the assumption q is odd ensures
that −I is the unique element of order 2 in G, so −I ∈ H as H has
even order).

Adapting the orbit count in the proof of Theorem 1, we find
that 2qn×(number of orbits) of such an H is

2qn + (qn − 1)qn +
∑
x

∑
y6=0

∣∣∣H(x,y)

∣∣∣ >
2qn + (qn − 1)qn + qn(qn − 1) = 2q2n.

So if H is to be Weil-free, each H(x,y) with y 6= 0 must be just {I}.
Again as in the proof of Theorem 1, this means that if gQ ∈ H,
with Q 6= 0, then Q must have full rank n. So what would work is
an n-dimensional subspace W of Sn whose nonzero members are all
nonsingular. Then H∩B would be

{
gQ|Q ∈W

}
.

To construct W, realize GF(q)n as GF(qn) and let tr be the trace
function GF(qn) → GF(q). Then for α ∈ GF(qn), the function Qα
given by Qα(ζ) = tr(αζ2) is a quadratic form on GF(qn). The corre-
sponding bilinear form is Bα(ξ, η) = tr(αξη). This is nondegenerate
when α 6= 0, making Qα nonsingular then. Now let

W = {Qα|α ∈ GF(qn)} .

The rest of this section is devoted to an evaluation concerning sub-
group H.
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Formula (12) for Qa reads

qnρ−n∆(Qα) =
∑

ζ∈GF(qn)

{
1+ δ

2
ψ(Qα(ζ)) +

1− δ

2
ψ(νQα(ζ))

}
.

Because ν ∈ GF(q) and ρ2 = δq, this becomes

δnρn∆(Qα)=
∑

ζ∈GF(qn)

{
1+ δ

2
ψ(tr(αζ2)) +

1− δ

2
ψ(tr(ναζ2))

}
. (19)

One has to be careful with the matrix interpretation. Let ζ1, . . . , ζn be
a GF(q)-basis of GF(qn). Then the matrix for Bα is

[
tr(αζiζj)

]
which

can be written as the product

ABC

where

A =


ζ1 ζ

q
1 . . . ζ

qn−1

1

ζ2 ζ
q
2 . . . ζ

qn−1

2
...

... . . .
...

ζn ζ
q
n . . . ζ

qn−1

n

 , B =


α 0 . . . 0
0 αq . . . 0
...

... . . .
...

0 0 . . . αq
n−1


and

C =


ζ1 ζ2 . . . ζn
ζ
q
1 ζ

q
2 . . . ζ

q
n

...
... . . .

...

ζ
qn−1

1 ζ
qn−1

2 . . . ζ
qn−1

n

 ,

giving an expression for
[
tr(αζiζj)

]
in the form

D× diag(α,αq, . . . ,αq
n−1

)×DT .

Taking determinants gives

det
[
tr(αζiζj)

]
= (detD)2

∏n−1

i=0
αq

i
= (detD)2N(α),

in which (detD)2 is the discriminant of the extension GF(qn)/GF(q)
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and
∏n−1
i=0 α

qi is the norm N(α) of α. Then

∆(Qa) = χ((detD)2)χ(N(α)).

Applying the automorphism ξ → ξq to D cycles its columns;
so (detD)q = (−1)n−1 detD, the sign being that of an n-cycle.
Thus χ((detD)2) = (−1)n−1: (detD)2 is a square in GF(q) only when
its square-root detD is in GF(q). For χ(N(α)) we have

χ(N(α)) = N(α)
q−1
2 =

(
α
qn−1
q−1

)q−1
2

= α
qn−1
2 = X(α),

where X(α) is the quadratic character of α for the field GF(qn) (we
can determine any χ(z) by reading it in GF(q)). All together,

∆(Qα) = (−1)n−1X(α).

For the right side of (19), we have that
∑
ζψ(tr(βζ

2)) = X(β)P,
where P is the “ρ” for GF(qn), by the formulas in (13) for GF(qn).
Moreover, since ν is a nonsquare in GF(q), X(ν) = (−1)n. There-
fore (19) becomes

δnρn(−1)n−1X(α) =

{
1+ δ

2
X(α)P+

1− δ

2
(−1)nX(α)P

}
= X(α)P

{
1+ (−1)n

2
+ δ

1− (−1)n

2

}
,

or

δnρn(−1)n−1 = P

{
1+ (−1)n

2
+ δ

1− (−1)n

2

}
.

This simplifies to
P = (−1)n−1ρn,

on sorting by the parity of n. That is a particular instance of the Da-
venport-Hasse theorem on lifted Gauss sums [7, Theorem 5.14].
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