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Abstract
This work continues the study of infinitely generated groups whose proper sub-
groups are solvable and in whose homomorphic images normal closures of finitely
generated subgroups are residually nilpotent. In [4], it has been shown that such a
group, if not solvable, is a perfect Fitting p-group for a prime p with additional re-
strictions. Therefore this work is a study of Fitting p-groups whose proper subgroups
are solvable. Here a condition is given for the imperfectness of a Fitting p-group sat-
isfying the normalizer condition, where p 6= 2. Hence it follows that if every proper
subgroup of the group in question is solvable, then the group itself is solvable.
Furthermore some conditions are given for a perfect Fitting p-group whose proper
subgroups are solvable in order for the subgroup generated by normal subgroups of
a given derived length to be proper, where p 6= 2.

Mathematics Subject Classification (2010): 20F19, 20F50, 20E25

Keywords: Fitting group; minimal non-solvable group

1 Introduction

In recent years infinitely generated minimal non-solvable groups
(MNS-group for short) have been the subject of several studies (for
example see [1],[2],[3],[4],[5]). But very little is known yet about these
groups. Let G be such a periodic group. In [4], it has been shown that
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if G is perfect and in every homomorphic image of G normal closures
of finitely generated subgroups are residually nilpotent, then G is
a Fitting p-group and has a homomorphic image in whose homomor-
phic images the (∗)-condition (see below) cannot be satisfied ([4], The-
orem 1.4 (b)). However if the (∗)-condition is satisfied, then G is solv-
able ([4], Theorem 1.1). Thus in [5], a perfect Fitting p-group G satis-
fying the normalizer condition is considered and it has been shown
that under an additional condition denoted by (∗∗), G cannot be gen-
erated by a subset of finite exponent ([5], Theorem 1.1 and Corolla-
ry 1.2) and if in addition G is an MNS-group, then St(G) 6= G for
every t > 1 ([5], Theorem 1.3).

The studies mentioned above are attempts towards understand-
ing perfect locally finite p-groups about whose structure nothing is
known yet. These groups may be divided into two basic types as
follows. Those that can be generated by a subset of finite exponent
and those that cannot. McLain’s group ([11], 12.1.9 (a)) belongs to the
first type. Also the group of [2], which is a minimal non-(finite expo-
nent) group belongs to the first type but the author has no knowl-
edge about the existence of such a group. However there exist per-
fect locally nilpotent groups of exponent p by [12], Theorem 4. On
the other hand a perfect totally imprimitive p-group satisfying the
cyclic-block-property cannot be generated by a subset of finite expo-
nent (see reference 3 in [5]). In the present work the Fitting MNS-p
groups of Theorem 1.3 cannot be generated by normal abelian sub-
groups but it is not known whether they belong to the first type.

At this point it will be convenient to introduce some definitions
and notations.

Let G be a group, w ∈ G \ Z(G) and V be a finitely generated
subgroup of G with w /∈ V . Then the ordered pair (w,V) is called
a Λ-pair for G. A subgroup E of G which is maximal with respect
to the condition that w /∈ E but V 6 E is called a (w,V)-maximal
subgroup of G. Let

E∗(w,V) = {E : E is an (w,V) − maximal subgroup of G}

and
W∗(w,V) = {CoreG(E) : E ∈ E∗(w,V)}

Again let (w,V) be a Λ-pair for G. If there exists a proper sub-
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group L (which need not be unique) of G such that

w /∈ V but w ∈ 〈V ,y〉 for every y ∈ G \ L

then (w,V , L) is called a (∗)- triple for G. Note that the statement

“(w,V , L) is a (∗)-triple”

implies that ⋂
y∈G\L

〈V ,y〉 6= V

and conversely if ⋂
y∈G\L

〈V ,y〉 6= V ,

then for each
u ∈

⋂
y∈G\L

〈V ,y〉 \ V

the triple (u,V , L) is a (∗)-triple.
Next suppose that every proper subgroup of G is solvable and

let (w,V) be a Λ-pair for G. Then (w,V) is called a distinguished pair
for G, if there exists no (∗)-triples (w,U, L) with V 6 U and if

d(〈V ,y〉) > d(V) implies that w ∈ 〈V ,y〉 for every y ∈ G

where d(V) denotes the derived length of V . Let (w,V) be a dis-
tinguished pair for G and let E ∈ E∗(w,V). Then d(〈V ,y〉) = d(V)
for y ∈ E, because if d(〈V ,y〉) > d(V), then w ∈ 〈V ,y〉 by the def-
inition of a distinguished pair, but w /∈ E by the definition of E.
We note also that if G is an MNS-group, then G has a homomor-
phic image H whose homomorphic images cannot have (∗)-triples
by [4], Theorem 1.4, but every homomorphic image of H has distin-
guished pairs. A distinguished pair (w,V) for the group G is called
a dominant pair if it satisfies the stronger condition that d(E) = d(V)
for every E ∈ E∗(w,V) (for the existence of distinguished pairs and
dominant pairs, see [4], Lemma 3.1 and Lemma 4.1). Note that in
an MNS-group G a distinguished (dominant) pair (w,V) is obtained
from a Λ-pair and the significance of a distinguished (dominant)
pair (w,V) is that E∗(w,V) is a smaller class than the class of maximal
subgroups of the Λ-pair from which it is obtained. Another point is
that if (w,V , L) is a (∗)-triple ((w,V) is a distinguished pair), then al-
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so (wv,V , L) is a (∗)-triple ((wv,V) a distinguished pair) and E∗(w,V)
= E∗(wv,V) for every v ∈ V .

Again let G be a group. A subgroup E of G is said to satisfy
the (∗∗)-property if

NG(E) = NG(E
′).

A Λ-pair (w,V) is said to satisfy the (∗∗)-property if every element
of E∗(w,V) satisfies it.

This work continues the work of [5] and contains new characteriza-
tions of perfect Fitting p-groups (whose proper subgroups solvable).
More precisely let G be a Fitting p-group satisfying the normalizer
condition. If the homomorphic images of G satisfy the additional
condition (∗∗) in certain subgroups and if p 6= 2, then G cannot be
perfect (Theorem 1.1). If the group G is anMNS-p-group and satisfies
the additional condition (∗∗) in certain subgroups, then G is solvable,
where p 6= 2. In Theorem 1.3 a perfect Fitting MNS-p-group G is con-
sidered such that in every homomorphic image of G dominant pairs
satisfy (∗∗) and it is shown that 〈St(G)〉 6= 1 for every t > 1, which
generalizes [5], Theorem 1.3.

The property that 〈St(G)〉 6= G for every t > 1 almost always comes
up in the study of perfect MNS-p-groups. For example an important
step in the proof of [4], Theorem 1.1, is the showing of

〈St(G)〉 6= G for every t > 1

under the existence of the (∗)-condition. Also it is the content of The-
orem 1.3 in the present work. Therefore the following appears to be
a basic question in this area.

Question 1 Let G be a locally finite perfect p-group whose proper sub-
groups are solvable. Is it true that 〈St(G)〉 6= G for every t > 1? What can
be said if every proper subgroup of G is nilpotent-by-abelian?

As usual in a groupG the derived length (class) of a solvable (nilpo-
tent) subgroup K is denoted by d(K) (c(K)). G is called metabelian
if d(G) = 2. Put

St(G) = {KCG : d(K) 6 t}

and if G is a p-group, put

St(G)
e = {K ∈ St(G) : exp(K) 6 pe}.

Theorem 1.1 Let G be a Fitting p-group satisfying the normalizer con-
dition, where p 6= 2. Suppose that in every homomorphic image H of G
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every Λ-pair (wH, VH) has a (wH, VH)-maximal subgroup satisfying
the (∗∗)-property. Then G cannot be perfect.

Corollary 1.2 Let G be a Fitting p-group satisfying the normalizer con-
dition in which every proper subgroup is solvable, where p 6= 2. Suppose
that in every homomorphic image H of G every dominant pair (wH,VH)
has a (wH,VH)-maximal subgroup satisfying the (∗∗)-property. Then G is
solvable.

We note that if G is a Fitting p-group whose proper subgroups are
solvable and exp(G) = p, then G is solvable without the hypothe-
ses of Corollary 1.2. This may be shown as follows. Assume that G
is perfect. We may suppose that G has a distinguished pair (w,V)
by [4], Theorem 1.4 (b) and Lemma 3.1. Also every proper subgroup
of G has exponent p. Then application of [10], Theorem 7.18, shows
that every proper subgroup of G is nilpotent. But this contradicts [3],
Theorem 1.3, and [4], Lemma 4.6 (b). Therefore the assumption is
false and so G is solvable.

Without the normalizer condition the following holds.

Theorem 1.3 1.3 Let G be a perfect Fitting p-group in which every proper
subgroup is solvable, where p 6= 2. Suppose that in every homomorphic
image H of G every dominant pair (wH,VH) satisfies the (∗∗)-property.
Then 〈St(G)〉 6= G for every t > 1.

The above results are special cases of Problems 16.5 and 16.6 in [9].

Notations and definitions are standard and may be found in [6],
[7],[10] and [11].

2 Proofs of Theorem 1.1 and Corollary 1.2

We begin with listing some of the properties of Λ-pairs/distingui-
shed pairs (see also [4] and [5] for some properties of distingui-
shed/dominant pairs).

Lemma 2.1 Let G be a locally finite p-group and let (w,V) be a Λ-pair
for G. Then the following hold.

(a) Let v ∈ V . Then E∗(w,V) = E∗(wv,V).

(b) W∗(w,V) contains maximal elements.
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(c) Suppose that G is perfect. Let M be a maximal element of W∗(w,V).
There exists a finite subgroup U of G containing V such that w is
not in U � M and if wM ∈ Z(G/M), then wuM /∈ Z(G/M)
for every u ∈ U \M. Thus (wuM,UM/M) is a Λ-pair for G/M.
Furthermore

E∗(wuM,UM/M) = E∗(wM,UM/M)

and if R/M ∈ E∗(wuM,UM/M), then R ∈ E∗(w,V). Thus

W∗(wuM,UM/M) = 1 and Z(G/M) 6= 1.

(d) Suppose that G is an MNS-group and let (w,V) be a distingui-
shed/dominant pair for G. Let LCG such that w /∈ VL. Then there
exists E ∈ E∗(w,V) such that L 6 E.

Proof — (a) This is obvious since E 6 G is (w,V)-maximal if and
only if it is (wv,V)-maximal.

(b) This follows from the proof of [4], Lemma 3.4.
(c) Suppose that G is perfect. There exists E ∈ E∗(w,V) such that

M < E by [4], Lemma 4.3. Hence there exists a finite subgroup U
of E satisfying V 6 U � M. Also w /∈ U since w /∈ E. Thus (w,U)
is a Λ-pair for G and E∗(w,U) ⊆ E∗(w,V) by the proof of [4], Lem-
ma 3.2. It is easy to see that ifwM belongs to Z(G/M) and if u∈U\M,
then wuM /∈ Z(G/M). For, in the contrary case, uM lies in Z(G/M)
and then 〈u,M〉CG but since 〈u,M〉 6 E this contradicts the maxi-
mality of M. Therefore (wuM,UM/M) is a Λ-pair for

G/M and E∗(wM,UM/M) = E∗(wuM,UM/M)

by (a). Furthermore if R/M ∈ E∗(wM,UM/M), then R ∈ E∗(w,V)
by the proof of [4], Lemma 4.2. Clearly then W∗(wM,UM/M)=1
since M is a maximal element of W∗(w,V). Finally Z(G/M) 6= 1
by [4], Lemma 3.5, since G is perfect and contains proper normal
subgroups 6= 1 by [10], 12.4.1.

(d) Let LCG and w /∈ VL and suppose that (w,V) is distinguished.
Then there exists a (w,V)-maximal subgroup R such that VL 6 R.
Also d(〈V ,y〉) = d(V) for every y ∈ R since d(〈V ,y〉) > d(V) im-
plies that w ∈ 〈y,V〉 for a distinguished pair. Therefore R ∈ E∗(w,V).
If (w,V) is a dominant pair, then since each (w,V)-maximal sub-
group E satisfies d(V) = d(E) it follows that R ∈ E∗(w,V). This com-
pletes the proof of the lemma. ut
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Lemma 2.2 Let G be a locally finite p-group, (w,V) be a Λ-pair for G
and A a normal abelian subgroup of G. Then the following hold.

(a) There exists an E ∈ E∗(w, v) with A∩ E is maximal.

(b) If G is an MNS-group and (w,V) is a distinguished pair/dominant
pair for G, then the conclusion (a) holds in E∗(w,V).

Proof — (a) Let

L = {A∩ E : E ∈ E∗(w,V)}

be partially ordered by set inclusion. It suffices to show that L con-
tains a maximal element. Let

A∩ E1 6 A∩ E2 6 . . .

be an ascending chain of elements of L and put

A∗ =
∞⋃
i=1

A∩ Ei.

Obviously A∗ is normalized by w and V since 〈w,V〉 6 NG(Ei) for
every i > 1. If w ∈ VA∗, then w = vai for an ai ∈ A ∩ Ei and i > 1.
But then w ∈ Ei, which is a contradiction. Therefore w /∈ VA∗ and
then there exists E ∈ E∗(w,V) with VA∗ 6 E. Thus A∩ E is an upper
bound for the given chain. Therefore L contains a maximal element
by Zorn’s Lemma.

(b) Suppose that G is an MNS-group and (w,V) is a distinguished
pair for G. By (a) there exists a (w,V)-maximal subgroup R of G
such that A ∩ R is maximal. Since (w, V) is a distinguished pair,
d(V)<d(〈V ,y〉) implies that w ∈ 〈V ,y〉 for every y ∈ G. Clearly this
implies that d(V) = d(〈V ,y〉) for every y ∈ R and so R ∈ E∗(w,V).
Since A∩R is maximal (b) follows in this case. If (w,V) is a dominant
pair, then the same property holds. ut

Lemma 2.3 Let G be a locally finite p-group, and let (w,V) be a Λ-pair
for G such that W∗(w,V) = 1. If there exists E ∈ E∗(w,V) satisfying (∗∗),
and Z(G) is infinite, then NG(E) is self-normalizing.

Proof — Put N = NG(E). Assume if possible that there exists g
inNG(N) \N. In this caseN/E, being infinite, is locally cyclic by Lem-
ma 2.2 of [5], and so N/E = Z(G)E/E and hence N = EZ(G). Thus g
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normalizes EZ(G). But then since g normalizes (EZ(G))′ = E′, it fol-
lows that g normalizes E and so g ∈ N, which is a contradiction.
Therefore N is self-normalizing. ut

Lemma 2.4 Let G be a perfect locally finite p-group, (w,V) a Λ-pair for
G with W∗(w,V) = 1 and E ∈ E∗(w,V) satisfying (∗∗). Put N = NG(E),
and let A be a normal abelian subgroup of G. Then A∩NG(N) 6 N. In
particular if G satisfies the normalizer condition and N/E is abelian, then
A 6 NG(E) and so G contains a unique maximal normal abelian subgroup.

Proof — Assume that there exists a ∈ A \N with Na = N. Put

R = N∩A, D = R∩ E and H = N〈a〉.

Then D,RCH. Also R/D is (locally) cyclic since every normal abelian
subgroup of N/E is (locally) cyclic by [5], Lemma 2.2. Next Z(G) is
non-trivial by Lemma 2.1 (c) since W∗(w,V) = 1 and cyclic by Lem-
ma 2.3. Thus Z(G) = 〈z〉 for some z ∈ Z(G). Replacing Awith A〈z〉we
may suppose that z ∈ A. Then z ∈ R. Put H = H/D. Then R is (locally)
cyclic and 〈z〉 contains the subgroup of order p of R since 〈z〉 ∩ E = 1
by the hypothesis. Moreover

[R,RE] = [R,E] 6 R∩ E = 1

since R is aelian and in addition H normalizes R and RE which im-
plies that [R,E] 6 D. Also we may suppose that ap ∈ N.

Now
1 = [ap,E] = [a,E]p

by [6], Lemma 2.2.2 (i), since ap ∈ R and [R,E] = 1. Thus [a,E] has
order p and so contained in 〈z〉E. In particular then [a,E] 6 〈z〉E and
so a normalizes 〈z〉E. Then since a normalizes (〈z〉E)′ and (〈z〉E)′ = E′
it follows that a normalizes E′. But then a ∈ N by (∗∗), which is a
contradiction.

Finally suppose that G satisfies the normalizer condition and N/E
is abelian. If A � N, then there exists a ∈ A \ N with Na = N.
But then a ∈ N by the first part of the proof which is a contra-
diction. Therefore the assumption is false and so A 6 N. Let C be
another normal abelian subgroup of G. Then also C 6 N since G sat-
isfies the normalizer condition. Since N/E is (locally) cyclic it follows
that (AC)′ 6 E. But since CoreG(E) = 1 it follows that (AC)′ = 1 and
so AC is abelian. This shows that any two normal abelian subgroups
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of G are contained in a normal abelian subgroup of G, which means
that G contains a unique maximal normal abelian subgroup. ut
Lemma 2.5 Let G be a perfect locally finite p-group, where p 6= 2, (w,V)
a Λ-pair for G with W∗(w,V) = 1, and let E be an element of E∗(w,V)
such that NG(E) = NG(E′). Moreover, let B be a normal metabelian sub-
group of G and A be a normal abelian subgroup of G contained in B such
that B/A is elementary abelian, A∩Z(G) 6= 1 and A 6 NG(E). Put

N = NG(E), R = N∩B, D = R∩ E,

and assume that there exists t ∈ B \ N with Nt = N and tp ∈ N.
If T = 〈t〉R, H = TN and D∗ = CoreH(D), the following statements hold.

(a) Z(T/D∗) is (locally) cyclic and Z(T/D∗)∩ E/D∗ = 1. Also

R/D∗ 6 Z(N/D∗) and CT/D∗(R/D
∗) = R/D∗

Furthermore (N/D∗)′ 6 CN/D∗(T) and, in particular, D∩N′ = 1.

(b) Suppose that A/D has finite exponent. Then

A = 〈a〉D, 〈a〉 ∩Z(G) 6= 1, 〈a〉 ∩D = 1, |a| = exp(A),

R =< b > D, < b > ∩D = 1, |b| 6 p|a|.

Also |b| > |Z(G)| and if exp([R, t]D∗/D∗) < |bD∗|, then

〈bD∗〉 ∩Z(G)D∗/D∗) 6= 1.

(c) Suppose R/D∗ is infinite and G is a Fitting group. Then R/D∗ is
Chernikov and R/D∗ = (R/D∗)o×D/D∗, where (R/D∗)o is locally
cyclic and D/D∗ is finite.

Proof — (a) Put H = H/D∗. Clearly Z(G) is finite by Lemma 2.3
since T � N and Z(G) 6= 1 by Lemma 2.1 (c) since W∗(w,V)=1.
Also Z(G) ∩ E = 1 since CoreG(E) = 1. Next Z(T) ∩ E = 1 since
CoreH(D) = D∗. Clearly then Z(T) ∩N is (locally) cyclic since N/E
is (locally) cyclic. Let z ∈ Z(G) with |z| = p. Then 1 6= z ∈ R \D. Now
since RCH it follows that [R,N]CH. Also [R,N] 6 R∩ E since N/E is
abelian. This implies that [R,N] = 1 and so R 6 Z(N). Next assume if
possible that [t,R] = 1. Then

1 = [t
p,N] = [t,N]p
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and so [t,N] is a subgroup of order 6 p of R. Clearly then [t,N]E/E
is contained in 〈z〉E/E since RE/R is (locally) cyclic. This implies
that [t,E] 6 〈z〉E and then t normalizes 〈z〉E. Then since t normal-
izes (〈z〉E)′ = E′ it follows that t ∈ N by the hypothesis, which is a
contradiction. Therefore CT (R) = R. Now since Z(T) 6 N it follows
that Z(T) is (locally) cyclic.

Since N/E is abelian, it follows that N′ 6 E (in fact inclusion is
proper since E 6 H). Hence [N

′, T ] 6 E ∩ T 6 D and then [N
′, T ] = 1

since [N
′, T ]CH. In particular D∩N′ = 1 by definition of D∗.

(b) Now suppose that exp(A/D) is finite. Also Z(G) is finite by the
hypothesis and by Lemma 2.3. So we may suppose that Z(G) 6 A.
Clearly A � E since CoreG(E) = 1. In particular Z(G) ∩ E = 1.
Also AE/E is cyclic by [5], Lemma 2.2. Let z ∈ Z(G) with |z| = p.
Then z has finite height, say h, in A since 〈z〉 ∩ E = 1 and exp(A/D)
is finite. Therefore there exists a ∈ A such that

ap
h
= z and A = 〈a〉 ×A1

for a subgroup A1 of A by [8], Lemma, p.180, or [11], 4.3.3. Then we
have also 〈a〉 ∩D = 1 since 〈z〉 ∩ E = 1. If |a| < exp(A), then

A∗ = 〈y|a| : y ∈ A〉

is a non-trivial normal subgroup of G with Z(G) ∩A∗ = 1. Then A∗

contains a normal subgroup L 6= 1 of G such that w /∈ VL by [4], Lem-
ma 3.5. But then L 6 E1 for an E1 ∈ E∗(w,V), which contradicts the
hypothesis W∗(w,V) = 1 (also holds if (w,V) is a distinguished pair
by Lemma 2.1 (d)). Therefore |a| = exp(A) and then A = 〈a〉 ×D
since A/D is cyclic and so |A/D| = exp(A). Also exp(B) 6 p · exp(A).
Hence R = 〈b〉D for a b ∈ R since RE/E is cyclic and |b| 6 p|a|. Next
we show that 〈b〉 ∩D) = 1. If |bD| = |aD|, then we may let b = a.
Then

R = 〈a〉D and 〈a〉 ∩D = 1.

So suppose that |bD| > |aD|. Then |bD| > |a| since |aD| = |a| which
implies that |bD| = b since exp(B) 6 p|a|. Clearly then 〈b〉 ∩D = 1.

Assume if possible that |b| = |Z(G)|. Then R = Z(G)D and hen-
ce RE=Z(G)E, which implies that t normalizes Z(G)E. Clearly then t
normalizes both Z(G)E and (Z(G)E)′ = E′. But then t ∈ N by (∗∗),
which is a contradiction. Therefore it follows that |b| > |Z(G)|. Next
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assume that exp([R, t]) = |b
ps
| for some s > 1. Then

[b
ps , t] = [b, t]p

s
= 1

since R is abelian and so bp
s

∈ Z(T) and then z ∈ 〈b〉 since Z(T) is
cyclic and contains Z(G).

(c) Suppose that R/D is infinite and G is a Fitting group. Then R/D
is locally cyclic by [5], Lemma 2.2. For each element x ∈ 〈t〉 we
have R/Dx ' R/D. Hence if

L =
⋂
x∈〈t〉

D
x,

then R/L is isomorphic to a subgroup of

R/D× · · · × R/Dt
p−1

and so R/L is Chernikov. Also since CoreH(D) =D∗ it follows that
L = 1 and so R is Chernikov. In this case R = (R)o × F by [11], 4.1.4,
where (R)o is the divisible part of R and F is finite. Put S = [(R)o, t].
Then since 〈t〉S is nilpotent due to the fact that G is Fitting, t com-
mutes with the divisible group S. Let |t| = m. Then

1 = [(R)o, tm] = [(R)o, t]m = [((R)o)m, t] = [(R)o, t]

and so [(R)o, t] = 1. Now since (R)o 6 Z(H) it follows that Ro ∩ E = 1
and so Ro is locally cyclic. Also N = R

o
E. Hence

R = R
o
(R∩ E) = RoD = R

o ×D

since z ∈ Ro. In particular D is finite. ut

Lemma 2.6 Let B be a nilpotent metabelian p-group with class c 6 p
and let A be a normal abelian subgroup of B such that B/A is elementary
abelian. Then exp([A,B]) 6 p and exp(B′) 6 p2.

Proof — Since [A,B] is abelian it suffices to show that exp([A, t])6p
for every t ∈ B \A. So let t∈B \A and a ∈ A. We claim that [a, t]p = 1.
Since tp ∈ A we have

1 = [a, tp] =
p∏
k=1

[a,k t](
p
k).
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For p = 2, this gives 1 = [a, t]2 since c = 2. So we may suppose
that p > 3. Clearly

p|

(
p

k

)
but p2 -

(
p

k

)
for 1 6 k < p

and [a,p t] = 1 by the hypothesis. Put(
p

k

)
= puk

for every 1 6 k < p. Then p - uk. Now since [a,p−1 t] ∈ Z(B) it
follows that

[a,p−1 t]p = [a,p−2 t, t]p = [a,p−2 t, tp] = 1.

Substituting these values above we get

1 = ([a, t]u1 · · · [a,p−2 t]up−2 ])p

Here if p = 3, then [a, t]3u1 = 1 and so we are done in this case.
Therefore we may suppose that p > 3 and use induction on c.
Put B = B/γc(B). Then [a, t]p = 1 by the induction hypothesis which
implies that [a, t]p ∈ Z(B). Now since

[a,k t]p = [[a, t]p,k−1 t] = 1

for every 1 < k 6 p − 2 it follows that [a, t]p = 1. Since a is any
element of A it follows that exp([A, t]) 6 p, which was to be shown.

Next let s, t ∈ B. Then

[t, sp] =
p∏
i=1

[t,i s](
p
i) = [t, s]p

since [t,a]p = 1 by the first pat of the proof and c(B) 6 p. Hence it
follows that

[t, s]p
2
= [t, sp]p = 1

by the first part of the proof. Therefore exp(B′) 6 p2. ut

Lemma 2.7 Let G be a perfect locally finite p-group, where p 6= 2, and
let (w,V) be a Λ-pair for G such that W∗(w,V) = 1 and there exists E
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in E∗(w,V) with NG(E) = NG(E′). Moreover, let B be a normal nilpotent
subgroup of G with c(B) = c < p and A a normal abelian subgroup of G
contained in B ∩NG(E) such that B/A is elementary abelian . Suppose
furthermore that B ∩NG(NG(E)) \NG(E) 6= 1 whenever B � NG(E).
Then B is abelian.

Proof — Assume that B is not abelian. First we show that B is not
contained in NG(E). Assume if possible that B 6 NG(E). Then B′ 6 E
since NG(E)/E is locally cyclic by [5], Lemma 2.2, due to the fact
that p 6= 2, which is impossible since CoreG(E) = 1 by the hypothesis.
Therefore B � NG(E).

Choose t ∈ B \NG(E) with NG(E)t = NG(E) and tp ∈ NG(E). Put

N = NG(E), R = N∩B, D = R∩ E, T = 〈t〉R

and H = TN. Then A 6 N by the hypothesis and T � N but tp ∈ A.
Also Z(G) 6= 1 and is cyclic by Lemma 2.3. Let Z(G) = 〈z〉. Then z 6= 1
by Lemma 2.1 (c) since W∗(w,V) = 1. Without loss of generality we
may suppose that z ∈ A. Next let D∗ = CoreH(D) and put H = H/D∗.
Then

R 6 Z(N) and CT (R) = R

by Lemma 2.5 (a). Let y ∈ N. Then

1 = [y, tp] =
p∏
k=1

[y,k t](
p
k)

since tp ∈ R and R 6 Z(N). Also 〈t〉R/R is elementary abelian and
hence exp([R, t]) 6 p by Lemma 2.6 since c < p. Using this in the
above equality we get

1 = [y, t]p[y,p t].

Moreover [y,p t] = 1 since c < p. Using this above we get finally

1 = [y, t]p.

Here since y is any element of N it follows that exp([N, t]) 6 p and
so

[N, t]E/E 6 〈z〉E/E.

This follows because N/E is locally cyclic and Z(G)∩ E = 1 owing to
the fact that CoreG(E) = 1. Clearly this implies that [E, t] 6 〈z〉E and
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hence it follows that t normalizes 〈z〉E. But then t normalizes E′ and
hence t ∈ N by the hypothesis, which is a contradiction and so the
proof of the lemma is complete. ut

Lemma 2.8 Let G be a perfect Fitting p-group satisfying the normalizer
condition, where p 6= 2, and suppose furthermore that in every homomor-
phic image of G the (∗∗) condition is satisfied exactly as in Theorem 1.1.
Then in every homomorphic image H of G the following holds: if H has
a Λ-pair (wH,VH) with W∗(wH,VH) = 1 and if BH is a nilpotent nor-
mal metabelian subgroup of H containing a normal abelian subgroup AH
of H such that BH/AH is elementary abelian, then [B′H,H] � γc(BH)(BH),
where c(BH) is the class of BH.

Proof — Assume that G has a Λ-pair (w,V) with W∗(w,V) = 1 and
a nilpotent normal abelian-by-elementary abelian subgroup B such
that [B′,G] 6 γc(B)(B). Furthermore suppose that for every homo-
morphic image H of G the following holds. If H satisfies the hypothe-
sis of the lemma but has a nilpotent normal abelian-by-elementary
abelian subgroup BH not satisfying the conclusion of the lemma,
then c(BH) > c(B).

Let A be a largest normal abelian subgroup of G such that B/A
is elementary abelian. We may also suppose that Z(G) 6 B. Note
that Z(G) is finite and cyclic by Lemma 2.3 and non-trivial by Lem-
ma 2.1 (c) since W∗(w,V) = 1. Put c = c(B). If c < 3, then B is
abelian by Lemma 2.7, which is a contradiction. Therefore c > 3.
Now [B′,G] 6 γc(B) by the assumption. This means that [B,B,B] is
contained in γc(B) and then c(B) = 3 since c(B) > 3. If p > 3, then
this gives a contradiction by Lemma 2.7. Therefore p = 3.

Now B′ is not contained in Z(B) since c = 3 and so there ex-
ists an element t ∈ B′ \ Z(B). Let F be a finite subgroup of Z(B)
with Z(G) 6 F and consider the Λ-pair (t, F). There exists E ∈ E∗(t, F)
such that Z(B) 6 E since t /∈ FZ(B). Also A 6 NG(E) by Lem-
ma 2.4. Furthermore there exists a maximal element M of W∗(t,R)
such that Z(B) 6M by Lemma 2.1 (b).

Put G = G/γ3(B). Then c(B) = 2. Also B/A is elementary abelian.
Hence if W∗(t, F) = 1, then B is abelian by Lemma 2.7, which is a
contradiction. Therefore M 6= 1.

Now consider G/M. Then there exists a finite subgroup U of G
containing F such that t /∈ U � M and tu /∈ Z(G) by Lemma 2.1 (c)
for some u ∈ U. Thus (tu,UM/M) is a Λ-pair for G/M. Also

W∗((tu)M,UM/M) = 1
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since, by Lemma 4.2 of [4], E∗((tu)M,UM/M) consists of all R/M
such that M 6 R ∈ E∗(t, F). Moreover (BM/M)/(AM/M) is elemen-
tary abelian. Therefore again BM/M is abelian by Lemma 2.7. But
this means that B′ 6 M, which is impossible since t ∈ B′ \M. Con-
sequently the assumption is false and the proof of the lemma is com-
plete. ut

Proof of Theorem 1.1 — Let G be Fitting p-group satisfying the
normalizer condition and p 6= 2. Suppose that in each homomorphic
image of G every Λ-pair has a maximal element satisfying the prop-
erty (∗∗). Assume that G is perfect. First we show the following. G
has a homomorphic image H with the following property. H has
a Λ-pair (wH,VH) satisfying (∗∗) and the condition W∗(wH,VH) = 1
such that every normal nilpotent subgroup of H which is abelian-
by-elementary abelian is abelian. Assume that there exists no such H.
For each homomorphic image X of G satisfying the above proper-
ties let n(X) be the minimum of the classes of all the normal nilpo-
tent abelian-by-elementary abelian subgroups of X which are not
abelian. Among all the homomorphic images X of G having a Λ-pair
(wX,VX), satisfying (∗∗) and the condition W∗(wX,VX) = 1 there is
a homomorphic image H such that n(H) 6 n(X) for all such X. With-
out loss of generality we may suppose that H = G. Thus G admits
a Λ-pair (w,V) such that (∗∗) and the condition W∗(w,V) = 1 are
satisfied. Also n(G) is minimal in the above sense and n(G) > 1 by
the assumption. Let B be a normal nilpotent abelian-by-elementary
abelian subgroup of G so that c(B) = n(G). Let A be the largest nor-
mal abelian subgroup of G contained in B such that exp(B/A) = p
and B′ 6 A. By the hypothesis there exists E ∈ E∗(w,V) satisfy-
ing (∗∗). Put N = NG(E). Then N/E is (locally) cyclic by [5], Lem-
ma 2.2, since p 6= 2. Also A 6 N by Lemma 2.4. Furthermore B � N
as in Lemma 2.7 since B is not abelian and thus there exists t ∈ B \N
such that Nt = N and tp ∈ N since G satisfies the normalizer condi-
tion.

If c(B) < 3, then B is abelian by Lemma 2.7 since p > 3. There-
fore c(B) > 3. Let c(B) = c and put G = G/γc(B), so that c(B) = c− 1.
Assume first if possible that B′6Z(G). Then [B

′,G]=1 and so [B′,G]
is contained in γc(B). Also (w,V) is a Λ-pair for GwithW∗(w,V) = 1.
But then B′ � Z(G) by Lemma 2.8, which is a contradiction. There-
fore there exits s ∈ B′ \Z(G).

Let T be a finite subgroup of G such that s /∈ T (for example T = 1).
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Then (s, T) is a Λ-pair for G. Let M be a maximal element of W∗(s, T).
If M = 1, then B is abelian by the induction hypothesis since c(B) < c.
But then c(B) = 2, which is impossible. Therefore M 6= 1. Now con-
sider G/M. By Lemma 2.1 (c) there exists a finite subgroup U of G
such that

s /∈ U, T 6 U �M

and there exists u ∈ U \M such that (suM,UM/M) is a Λ-pair
for G/M. Also (suM,UM/M) satisfies the hypothesis and

W∗(suM,UM/M) = 1.

In this case the group BM/M is abelian since c(B)<c and this implies
that B′6M. However since s ∈ B′ but s /∈M this gives another con-
tradiction. Therefore the assumption is false and so it follows that B
is abelian.

Thus we have shown that every normal nilpotent abelian-by-ele-
mentary abelian subgroup of G is in fact abelian. Now let A be a max-
imal normal abelian subgroup of G. Let g ∈ G\A and put H = 〈gG〉A.
Then H is nilpotent since G is a Fitting group. Then

B/A = Ω1(Z(H/A))

is elementary abelian and B 6= A since H is nilpotent. But since B
must be abelian by the first part of the proof this contradicts the
maximality of A. Therefore the assumption is false and so G is not
perfect. This completes the proof of the theorem. ut

Proof of Corollary 1.2 — Let G be a Fitting p-group satisfying the
hypothesis of the corollary but G is not solvable, where p 6= 2. Thus
every proper homomorphic image of G is an MNS-group and, in par-
ticular, is perfect. By [4], Theorem 1.4 (b), we may suppose that G has
no homomorphic images having (∗)-triples for non-central elements.
Then in every homomorphic image of G there exist distinguished
pairs and dominant pairs by [4], Lemmas 3.1 and 4.1 (b).

First we show that in every proper homomorphic of G every Λ-pair
has a maximal element satisfying (∗∗). Thus let H 6= 1 be a homomor-
phic image of G and let (wH,VH) be a Λ-pair for H. Clearly with-
out loss of generality we may let H = G and let (w,V) be a Λ-pair
for G. We must show that there exists E ∈ E∗(w,V) satisfying (∗∗).
Since w /∈ V , applying [4], Lemma 3.1, to (w,V) we obtain a finite
subgroup T of G containing V and excluding t such that (w, T) is a
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distinguished pair for G. Next applying [4], Lemma 4.1 (a), to (w, T)
we obtain a finite subgroup U of G containing T and excluding t such
that (w,U) is a dominant pair for G. Also

E∗(w,U) ⊆ E∗(w,V)

since V 6 U by [4], Lemma 3.2. Now by the hypothesis there exists
E ∈ E∗(w,U) satisfying (∗∗). Since E ∈ E∗(w,V), the assertion is ver-
ified. Thus we have shown that in every homomorphic image of G
every Λ-pair has a maximal element satisfying (∗∗). But then G can-
not be perfect by Theorem 1.1. Therefore the assumption is false and
so G must be solvable. ut

3 Proof of Theorem 1.3

Lemma 3.1 Let G be a locally finite p-group such that Z(G) 6= G. Then
there exists a proper normal subgroup M of G such that the set

{exp(AM/M) : A ∈ S1(G)}

is bounded.

Proof — If A 6 Z(G) for every A∈S1(G), then we may letM=Z(G).
Therefore we may suppose that there exists A1 ∈ S1(G) with the
property that A1 � Z(G). Choose a1 ∈ A1 \ Z(G) and let m = |a1|.
Then for every A ∈ S1(G)

1 = [am1 ,A] = [a1,A]m = [a1,Am]

by [6], Lemma 2.2.2, and hence Am 6 CG(a1). Hence it follows that

〈Am : A ∈ S1(G)〉 6 CG(a1).

Put
M = 〈Am : A ∈ S1(G)〉.

Then obviously M C G and M 6= G since a1 /∈ Z(G). Moreover
exp(AM/M) 6 m for every A ∈ S1(G). ut
Lemma 3.2 Let G be a locally finite p-group such that Z(G) 6= G, and
suppose that 〈S1(G)〉 = G. Then there exists a homomorphic image H of G
such that 〈S1(H)1〉 = H.
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Proof — By Lemma 3.1 there exists a proper subgroup M C G
and m > 1 such that

|{exp(AM/M) : A ∈ S1(G)}| 6 pm.

Thus
〈Ap

m
: A ∈ S1(G)〉 6M 6= G.

In this case there exists a smallest number 1 6 r 6 m such that

M∗ := 〈Ap
r
: A ∈ S1(G)〉

is a proper subgroup of G. Also M 6M∗. Clearly

〈AM∗/M∗ : A ∈ S1(G)〉 = G/M∗

by the hypothesis and exp(AM∗/M∗) 6 pr. If r = 1, we are done
since then each AM∗/M∗ is elementary abelian. So suppose r > 1. In
this case put

R = 〈Ap
r−1

: A ∈ S1(G)〉.

Then R = G by the minimality of r and so R/M∗ = G/M∗. Also sin-
ce Ap

r−1
M∗/M∗ is elementary abelian for every A ∈ S1(G) it follows

that
〈S1(G/M∗)1〉 = G/M∗

and so the proof is complete. ut

Lemma 3.3 If G = 〈A : A ∈ S1(G)〉 and g ∈ G, then

[g,G] =
∏

A∈S1(G)

[g,A].

Proof — Let y ∈ [g,G]. Then there are g1, . . . , gn ∈ G such that

y = [g, g1] · · · [g, gn].

Also there are A1, . . . ,Ar ∈ S1(G) such that

{g1, . . . , gr} ⊆ A1 · · ·Ar

by the hypothesis. Then y ∈ [g,A1 · · ·Ar]. Also an easy induction
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shows that
[g,A1 · · ·Ar] = [g,A1] · · · [g,Ar]

since each Ai is a normal abelian subgroup of G. Therefore

y ∈
∏

A∈S1(G)

[g,A].

Since y is any element of [g,G] it follows that

[g,G] 6
∏

A∈S1(G)

[g,A].

But the reverse inclusion is obvious. Hence the equality follows. ut

Lemma 3.4 Let G be a perfect locally finite p-group, where p > 3 and
suppose that 〈S1(G)〉 = G. Moreover, let (w,V) be a Λ-pair for G with
W∗(w,V) = 1 such that every element of E∗(w,V) satisfies (∗∗), and let A
be a normal abelian subgroup of G with Z(G) 6= A. If

Γ(w,V)(A) = {E ∈ E∗(w,V) : A 6 NG(E)},

then 〈Γ(w,V)(A)〉 = G. Furthermore if A1,A2 are two normal abelian sub-
groups of G with (A1A2)

′ 6= 1, then

Γ(w,V)(A1)∩ Γ(w,V)(A2) = ∅.

Proof — Note that E∈Γ(w,V)(A) means thatA6NG(E) andA/(A∩E)
is (locally) cyclic by [5], Lemma 2.2, since p 6= 2. First we show
that Γ(w,A)(A) 6= ∅. By Lemma 2.2 (a) there exists E ∈ E∗(w,V) such
that A∩ E is maximal and then A/(A∩N) is finite by [5], Lemma 2.3,
where N = NG(E). In this case if A � N, then there exists an e-
lement a of A ∩ NG(N) \ N with Na = N. However Lemma 2.4
implies that a ∈ N since E satisfies (∗∗). Therefore A 6 N and
so Γ(w,V)(A) 6= ∅. Assume if possible that 〈Γ(w,V)(A)〉 6= G. Then
without loss of generality we may assume that A is a maximal nor-
mal abelian subgroup of G. Now there exists C ∈ S1(G) such that
C � 〈Γ(w,V)(A)〉 by the hypothesis. Also [C,A] 6= 1 by the maximality
of A. Furthermore there exists E ∈ E∗(w,V) such that C 6 NG(E) as
in the case of A. Hence it follows that E � 〈Γ(w,V)(A)〉 since [C,A] 6= 1
and so there exists y ∈ E \ 〈Γ(w,V)(A)〉. Put V1 = 〈V ,y〉. Then (w,V1)
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is a Λ-pair for G since w /∈ V1. Also

E∗(w,V1) ⊆ E∗(w,V)

by [4], Lemma 3.2. If R ∈ E∗(w,V1), then R /∈ Γ(w,V)(A) since V1
is not contained in 〈Γ(w,V)(A)〉. However applying Lemma 2.2 (a)
to E∗(w,V1) we can find T ∈ E∗(w,V1) such that T ∩A is maximal and
then A/(A∩NG(T)) is finite by [5], Lemma 2.3. But then A 6 NG(T)
as above. This is a contradiction since T � 〈Γ(w,V)(A)〉. Therefore the
assumption is false and so 〈Γ(w,V)(A)〉 = G.

Next let A1,A2 be two normal abelian subgroups of G such that
A1A2 is not abelian. Assume if possible that there exists

E ∈ Γ(w,V)(A1)∩ Γ(w,V)(A2).

Then A1,A2 6 NG(E). In this case (A1A2)
′ 6 E since NG(E)/E

is (locally) cyclic by [5], Lemma 2.2. But then (A1A2)
′ = 1 since

CoreG(E) = 1, which is a contradiction. ut

Proof of Theorem 1.3 — Let G be a perfect locally finite p-group
whose proper subgroups are solvable, where p 6= 2. Suppose that in
every homomorphic image of G every dominant pair satisfies (∗∗).
First we show that 〈S1(G)〉 6= G. Assume that 〈S1(G)〉 = G. Then
there exists a homomorphic image H of G such that 〈S1(H)1〉 = H
by Lemma 3.2. Without loss of generality we may assume that G = H
and thus 〈S1(G)1〉 = G. By Theorem 1.4 (b) of [4] we may suppose
that G has no homomorphic images having (∗)-triples for non-central
elements. Then in every homomorphic image of G there exist domi-
nant pairs by [4], Lemmas 3.1 and 4.1 (a). Let (w,V) be a dominant
pair for G. Every element of E∗(w,V) satisfies (∗∗) by the hypothe-
sis. Now W∗(w,V) contains a maximal element, say M, by [4], Lem-
ma 3.4. Since

〈AM/M : A ∈ S1(G)1〉 = G/M

and G/M is not abelian, there are A1,A2 ∈ S1(G)1 such that the
group A1A2M/M is not abelian.

First suppose that M = 1. Then A1A2 is not abelian. Assume that
w /∈ [V ,G]V . Then [V ,G]V 6 E for an E ∈ E∗(w,V) by Lemma 2.1 (d).
But since CoreG(E)=1 this is impossible, and so w∈ [V ,G]V . Now

[V ,G] =
∏

A∈S1(G)1

[V ,A]
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since
[v,G] =

∏
A∈S1(G)1

[v,A]

for every v ∈ V by Lemma 3.3. Hence there are

A1, . . . ,Ar ∈ S1(G)1

for some r > 2 such that

w ∈ (

r∏
i=1

[V ,Ai])V .

In this case there exists a finite subset Y of

〈[V ,A2] · · · [V ,Ar]〉

such that w ∈ 〈[V ,A1], Y,V〉. Also there are finite subsets Yi 6= ∅
of [V ,Ai] for i = 2, . . . , r such that Y ⊆ 〈Yi : i = 2, . . . , r〉. Now define

Vi = 〈V , Y2, . . . , Yi〉

for i = 2, . . . , r. Then each (w,Vi) is a Λ-pair for G. To see this choose
E ∈ Γ(w,V)(A2). This is possible by Lemma 3.4. Then A2 = 〈z〉(A2∩E)
by Lemma 2.5 (b) since A2 is elementary abelian, where z ∈ Z(G)
with |z| = p. Hence [V ,A2] 6 E and so w /∈ 〈V , Y2〉 since Y2 ⊆ [V ,A2]
and V 6 E, which means that (w,V2) is a Λ-pair. Next consider
Γ(w,V2)(A3). In the same way w /∈ V3 = 〈V2, Y3〉, where Y3 ⊆ [V ,A3].
Continuing in this way we see that

w /∈ Vr = 〈V , Y2, . . . , Yr〉

and so it follows that (w,Vr) is a Λ-pair for G. By [4], Lemmas 3.1
and 4.1 (a), there exists a finite subgroup U of G containing Vr such
that (w,U) is a dominant pair for G and every element of E∗(w,U)
satisfies (∗∗).

Now there exists E ∈ Γ(w,U)(A1) since Γ(w,U)(A1) 6= ∅ by Lem-
ma 3.4. Then [U,A1] 6 E as above and hence w /∈ 〈[U,A1],U〉. But
also V , Y 6 Vr 6 U. Therefore w /∈ 〈[V ,A1], Y,V〉, which is a contra-
diction.

Next suppose that M 6= 1 and put G = G/M. By Lemma 2.1 (c)
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there exists a finite subgroup U of G containing V with w /∈ U � M
and u ∈ U scuh that (wu,U) is a Λ-pair for G and W∗(wu,U) = 1.
Then there exists a finite subgroup T of G containing U such that
(wu, T) is a dominant pair for G and W∗(wu, T) = 1. Also (wu, T)
satisfies (∗∗). Therefore 〈S1(G)1〉 6= G by the first part of the proof.
Obviously then also

〈A : A ∈ S1(G)1〉 6= G

and taking that inverse images it follows that 〈S1(G)1〉 6= G, which is
another contradiction. Therefore the assumption that 〈S1(G)1〉 = G
is false and so 〈S1(G)1〉 6= G. Clearly then also 〈S1(G)〉 6= G.

Finally assume if possible that 〈St(G)〉 = G for a t > 1. Then t > 1
by the first part of the proof. We may suppose that t is the least
integer with this property. Put M = 〈St−1(G)〉. Then M 6= G by the
induction assumption and

{AM/M : A ∈ St(G)} ⊆ S1(G/M).

Also 〈S1(G/M)〉 6= G/M by the first part of the proof since G/M
satisfies the hypothesis of the theorem. But then also

〈AM/M : A ∈ St(G)〉 6= G/M

and taking the inverse images gives 〈St(G)〉 6= G, which contradicts
the assumption that 〈St(G)〉 = G. Therefore 〈St(G)〉 6= G and so the
proof of the theorem is complete. ut
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