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Abstract

This work continues the study of infinitely generated groups whose proper sub-
groups are solvable and in whose homomorphic images normal closures of finitely
generated subgroups are residually nilpotent. In [4], it has been shown that such a
group, if not solvable, is a perfect Fitting p-group for a prime p with additional re-
strictions. Therefore this work is a study of Fitting p-groups whose proper subgroups
are solvable. Here a condition is given for the imperfectness of a Fitting p-group sat-
isfying the normalizer condition, where p # 2. Hence it follows that if every proper
subgroup of the group in question is solvable, then the group itself is solvable.
Furthermore some conditions are given for a perfect Fitting p-group whose proper
subgroups are solvable in order for the subgroup generated by normal subgroups of
a given derived length to be proper, where p # 2.

Mathematics Subject Classification (2010): 20F19, 20F50, 20E25
Keywords: Fitting group; minimal non-solvable group

1 Introduction

In recent years infinitely generated minimal non-solvable groups
(MNS-group for short) have been the subject of several studies (for
example see [1],[2],[3],[4],[5]). But very little is known yet about these
groups. Let G be such a periodic group. In [4], it has been shown that
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if G is perfect and in every homomorphic image of G normal closures
of finitely generated subgroups are residually nilpotent, then G is
a Fitting p-group and has a homomorphic image in whose homomor-
phic images the (x)-condition (see below) cannot be satisfied ([4], The-
orem 1.4 (b)). However if the (x)-condition is satisfied, then G is solv-
able ([4], Theorem 1.1). Thus in [5], a perfect Fitting p-group G satis-
fying the normalizer condition is considered and it has been shown
that under an additional condition denoted by (**), G cannot be gen-
erated by a subset of finite exponent ([5], Theorem 1.1 and Corolla-
ry 1.2) and if in addition G is an MNS-group, then S¢(G) # G for
every t > 1 ([5], Theorem 1.3).

The studies mentioned above are attempts towards understand-
ing perfect locally finite p-groups about whose structure nothing is
known yet. These groups may be divided into two basic types as
follows. Those that can be generated by a subset of finite exponent
and those that cannot. McLain’s group ([11], 12.1.9 (a)) belongs to the
first type. Also the group of [2], which is a minimal non-(finite expo-
nent) group belongs to the first type but the author has no knowl-
edge about the existence of such a group. However there exist per-
fect locally nilpotent groups of exponent p by [12], Theorem 4. On
the other hand a perfect totally imprimitive p-group satisfying the
cyclic-block-property cannot be generated by a subset of finite expo-
nent (see reference 3 in [5]). In the present work the Fitting MNS-p
groups of Theorem 1.3 cannot be generated by normal abelian sub-
groups but it is not known whether they belong to the first type.

At this point it will be convenient to introduce some definitions
and notations.

Let G be a group, w € G\ Z(G) and V be a finitely generated
subgroup of G with w ¢ V. Then the ordered pair (w,V) is called
a A-pair for G. A subgroup E of G which is maximal with respect
to the condition that w ¢ E but V < E is called a (w, V)-maximal
subgroup of G. Let

E*(w,V) ={E: Eis an (w, V) — maximal subgroup of G}

and
W*(w,V) ={Coreg(E) : E € E*(w, V)}

Again let (w,V) be a A-pair for G. If there exists a proper sub-
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group L (which need not be unique) of G such that
w¢& Vbutwe (V,y) foreveryy € G\ L

then (w,V, L) is called a (x)- triple for G. Note that the statement
“(w,V, L) is a (x)-triple”

implies that

(| Vo) #V

yeG\L

and conversely if

then for each

the triple (u,V, L) is a (x)-triple.

Next suppose that every proper subgroup of G is solvable and
let (w, V) be a A-pair for G. Then (w, V) is called a distinguished pair
for G, if there exists no (x)-triples (w, U, L) with V < U and if

d((V,y)) > d(V) implies that w € (V,y) for everyy € G

where d(V) denotes the derived length of V. Let (w,V) be a dis-
tinguished pair for G and let E € E*(w, V). Then d((V,y)) = d(V)
for y € E, because if d((V,y)) > d(V), then w € (V,y) by the def-
inition of a distinguished pair, but w ¢ E by the definition of E.
We note also that if G is an MNS-group, then G has a homomor-
phic image H whose homomorphic images cannot have (x)-triples
by [4], Theorem 1.4, but every homomorphic image of H has distin-
guished pairs. A distinguished pair (w, V) for the group G is called
a dominant pair if it satisfies the stronger condition that d(E) = d(V)
for every E € E*(w, V) (for the existence of distinguished pairs and
dominant pairs, see [4], Lemma 3.1 and Lemma 4.1). Note that in
an MNS-group G a distinguished (dominant) pair (w, V) is obtained
from a A-pair and the significance of a distinguished (dominant)
pair (w, V) is that E*(w, V) is a smaller class than the class of maximal
subgroups of the A-pair from which it is obtained. Another point is
that if (w, V, L) is a (x)-triple ((w, V) is a distinguished pair), then al-
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so (Wv,V, L) is a (x)-triple ((wv, V) a distinguished pair) and E*(w, V)
= E*(wv, V) for every v € V.
Again let G be a group. A subgroup E of G is said to satisfy
the (sx)-property if
Ng(E) = Ng(E".

A A-pair (w,V) is said to satisfy the (xx)-property if every element
of E*(w, V) satisfies it.

This work continues the work of [5] and contains new characteriza-
tions of perfect Fitting p-groups (whose proper subgroups solvable).
More precisely let G be a Fitting p-group satisfying the normalizer
condition. If the homomorphic images of G satisfy the additional
condition () in certain subgroups and if p # 2, then G cannot be
perfect (Theorem 1.1). If the group G is an MNS-p-group and satisfies
the additional condition () in certain subgroups, then G is solvable,
where p # 2. In Theorem 1.3 a perfect Fitting MNS-p-group G is con-
sidered such that in every homomorphic image of G dominant pairs
satisfy (**) and it is shown that (S¢(G)) # 1 for every t > 1, which
generalizes [5], Theorem 1.3.

The property that (S¢(G)) # G for every t > 1 almost always comes
up in the study of perfect MNS-p-groups. For example an important
step in the proof of [4], Theorem 1.1, is the showing of

(St(G)) # G for every t > 1

under the existence of the (x)-condition. Also it is the content of The-
orem 1.3 in the present work. Therefore the following appears to be
a basic question in this area.

Question 1 Let G be a locally finite perfect p-group whose proper sub-
groups are solvable. Is it true that (S¢(G)) # G for every t > 1?2 What can
be said if every proper subgroup of G is nilpotent-by-abelian?

As usual in a group G the derived length (class) of a solvable (nilpo-
tent) subgroup K is denoted by d(K) (c(K)). G is called metabelian
if d(G) = 2. Put

St(G) ={K<G:d(K) <t}

and if G is a p-group, put

St(G)¢ ={K € S¢(G) : exp(K) < p®}.

Theorem 1.1 Let G be a Fitting p-group satisfying the normalizer con-
dition, where p # 2. Suppose that in every homomorphic image H of G
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every A-pair (wy, Vu) has a (wy, Vy)-maximal subgroup satisfying
the (xx)-property. Then G cannot be perfect.

Corollary 1.2 Let G be a Fitting p-group satisfying the normalizer con-
dition in which every proper subgroup is solvable, where p # 2. Suppose
that in every homomorphic image H of G every dominant pair (Wy, Vi)
has a (wy, Vu )-maximal subgroup satisfying the (xx)-property. Then G is
solvable.

We note that if G is a Fitting p-group whose proper subgroups are
solvable and exp(G) = p, then G is solvable without the hypothe-
ses of Corollary 1.2. This may be shown as follows. Assume that G
is perfect. We may suppose that G has a distinguished pair (w, V)
by [4], Theorem 1.4 (b) and Lemma 3.1. Also every proper subgroup
of G has exponent p. Then application of [10], Theorem 7.18, shows
that every proper subgroup of G is nilpotent. But this contradicts [3],
Theorem 1.3, and [4], Lemma 4.6 (b). Therefore the assumption is
false and so G is solvable.

Without the normalizer condition the following holds.

Theorem 1.3 1.3 Let G be a perfect Fitting p-group in which every proper
subgroup is solvable, where p # 2. Suppose that in every homomorphic
image H of G every dominant pair (wy, Vi) satisfies the (xx)-property.
Then (S¢(G)) # G for every t > 1.

The above results are special cases of Problems 16.5 and 16.6 in [9].

Notations and definitions are standard and may be found in [6],
[7],[10] and [11].

2 Proofs of Theorem 1.1 and Corollary 1.2

We begin with listing some of the properties of A-pairs/distingui-
shed pairs (see also [4] and [5] for some properties of distingui-
shed /dominant pairs).

Lemma 2.1 Let G be a locally finite p-group and let (w, V) be a A-pair
for G. Then the following hold.

(a) Letv e V. Then E*(w,V) = E*(wv, V).

(b) W*(w, V) contains maximal elements.
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(c) Suppose that G is perfect. Let M be a maximal element of W*(w, V).
There exists a finite subgroup U of G containing V such that w is
not in W £ M and if wM € Z(G/M), then wuM ¢ Z(G/M)
for every uw € U\ M. Thus (wuM,UM/M) is a A-pair for G/M.
Furthermore

E*(wuM, UM/M) = E*(wM, UM/M)
and if R/M € E*(wuM, UM/M), then R € E*(w, V). Thus

W*(wuM, UM/M) = 1 and Z(G/M) # 1.

(d) Suppose that G is an MNS-group and let (w,V) be a distingui-
shed/dominant pair for G. Let L < G such that w ¢ VL. Then there
exists E € E*(w, V) such that L < E.

Proor — (a) This is obvious since E < G is (w, V)-maximal if and
only if it is (wv, V)-maximal.

(b) This follows from the proof of [4], Lemma 3.4.

(c) Suppose that G is perfect. There exists E € E*(w, V) such that
M < E by [4], Lemma 4.3. Hence there exists a finite subgroup U
of E satisfying V < U £ M. Also w ¢ U since w ¢ E. Thus (w, U)
is a A-pair for G and E*(w,U) C E*(w, V) by the proof of [4], Lem-
ma 3.2. It is easy to see that if wM belongs to Z(G/M) and if ue U\M,
then wuM ¢ Z(G/M). For, in the contrary case, uM lies in Z(G/M)
and then (u, M) < G but since (u, M) < E this contradicts the maxi-
mality of M. Therefore (wuM, UM/M) is a A-pair for

G/M and E*(wM, UM/M) = E* (wuM, UM /M)

by (a). Furthermore if R/M € E*(wM,UM/M), then R € E*(w, V)
by the proof of [4], Lemma 4.2. Clearly then W*(wM, UM/M)=1
since M is a maximal element of W*(w, V). Finally Z(G/M) # 1
by [4], Lemma 3.5, since G is perfect and contains proper normal
subgroups # 1 by [10], 12.4.1.

(d) Let L< G and w ¢ VL and suppose that (w, V) is distinguished.
Then there exists a (w, V)-maximal subgroup R such that VL < R.
Also d((V,y)) = d(V) for every y € R since d((V,y)) > d(V) im-
plies that w € (y, V) for a distinguished pair. Therefore R € E*(w, V).
If (w,V) is a dominant pair, then since each (w, V)-maximal sub-
group E satisfies d(V) = d(E) it follows that R € E*(w, V). This com-
pletes the proof of the lemma. 0
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Lemma 2.2 Let G be a locally finite p-group, (w, V) be a A-pair for G
and A a normal abelian subgroup of G. Then the following hold.

(a) There exists an E € E*(w,v) with AN E is maximal.

(b) If G is an MINS-group and (w, V) is a distinguished pair/dominant
pair for G, then the conclusion (a) holds in EX(w, V).

Proor — (a) Let
L={ANE:Ee€E"(w,V)}

be partially ordered by set inclusion. It suffices to show that L con-
tains a maximal element. Let

ANE; <ANE; ...

be an ascending chain of elements of L and put
o0
A*=JANE;.
i=1

Obviously A* is normalized by w and V since (w,V) < Ng(E;) for
everyi > 1. If w € VA*, thenw =va; forana; € ANEjand i > 1.
But then w € E;, which is a contradiction. Therefore w ¢ VA* and
then there exists E € E*(w, V) with VA* < E. Thus ANE is an upper
bound for the given chain. Therefore L contains a maximal element
by Zorn’s Lemma.

(b) Suppose that G is an MNS-group and (w, V) is a distinguished
pair for G. By (a) there exists a (w,V)-maximal subgroup R of G
such that A N R is maximal. Since (w, V) is a distinguished pair,
d(V)<d((V,y)) implies that w € (V,y) for every y € G. Clearly this
implies that d(V) = d((V,y)) for every y € R and so R € E*(w, V).
Since A NR is maximal (b) follows in this case. If (w, V) is a dominant
pair, then the same property holds. O

Lemma 2.3 Let G be a locally finite p-group, and let (w, V) be a A-pair
for G such that W*(w, V) = 1. If there exists E € E*(w, V) satisfying (xx),
and Z(G) is infinite, then Ng(E) is self-normalizing.

ProoF — Put N = Ng(E). Assume if possible that there exists g
in Ng(N) \ N. In this case N/E, being infinite, is locally cyclic by Lem-
ma 2.2 of [5], and so N/E = Z(G)E/E and hence N = EZ(G). Thus g
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normalizes EZ(G). But then since g normalizes (EZ(G))' = F/, it fol-
lows that g normalizes E and so g € N, which is a contradiction.
Therefore N is self-normalizing. 0

Lemma 2.4 Let G be a perfect locally finite p-group, (w, V) a A-pair for
G with W*(w, V) = 1and E € E*(w, V) satisfying (*x). Put N = Ng(E),
and let A be a normal abelian subgroup of G. Then ANNg(N) < N. In
particular if G satisfies the normalizer condition and N/E is abelian, then
A < Ng(E) and so G contains a unique maximal normal abelian subgroup.

Proor — Assume that there exists a € A\ N with N¢ = N. Put
R=NNA, D=RNE and H=N(a).

Then D, R < H. Also R/D is (locally) cyclic since every normal abelian
subgroup of N/E is (locally) cyclic by [5], Lemma 2.2. Next Z(G) is
non-trivial by Lemma 2.1 (c) since W*(w, V) =1 and cyclic by Lem-
ma 2.3. Thus Z(G) = (z) for some z € Z(G). Replacing A with A(z) we
may suppose that z € A. Then z € R. Put H = H/D. Then R is (locally)
cyclic and (z) contains the subgroup of order p of R since (z) NE =1
by the hypothesis. Moreover

[R,RE] =[R,E] < RNE=1

since R is aelian and in addition H normalizes R and RE which im-
plies that [R, E] < D. Also we may suppose that a? € N.
Now
1 =[aP,E] =[aEP

by [6], Lemma 2.2.2 (i), since @P € R and [R,E] = 1. Thus [q, E] has
order p and so contained in (z)E. In particular then [q, E] < (z)E and
so a normalizes (z)E. Then since a normalizes ((zZ)E)" and ((zZ)E)' = E’
it follows that a normalizes E’. But then a € N by (xx), which is a
contradiction.

Finally suppose that G satisfies the normalizer condition and N/E
is abelian. If A £ N, then there exists a € A\ N with N¢ = N.
But then a € N by the first part of the proof which is a contra-
diction. Therefore the assumption is false and so A < N. Let C be
another normal abelian subgroup of G. Then also C < N since G sat-
isfies the normalizer condition. Since N/E is (locally) cyclic it follows
that (AC)’ < E. But since Coreg(E) = 1 it follows that (AC)’ =1 and
so AC is abelian. This shows that any two normal abelian subgroups
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of G are contained in a normal abelian subgroup of G, which means
that G contains a unique maximal normal abelian subgroup. 0

Lemma 2.5 Let G be a perfect locally finite p-group, where p # 2, (w, V)
a A-pair for G with W*(w, V) = 1, and let E be an element of E*(w, V)
such that Ng(E) = Ng(E’). Moreover, let B be a normal metabelian sub-
group of G and A be a normal abelian subgroup of G contained in B such
that B/A is elementary abelian, AN Z(G) # 1 and A < Ng(E). Put

N =Ng(E), R=NnNB, D=RNE,

and assume that there exists t € B\ N with N* = N and tP € N.
IfT=(t)R, H=TN and D* = Corey (D), the following statements hold.

(a) Z(T/D*) is (locally) cyclic and Z(T/D*)NE/D* = 1. Also

R/D* < Z(N/D*) and Ct,p+(R/D*) = R/D*

Furthermore (N/D*) < Cnp+(T) and, in particular, DNN =1.
(b) Suppose that A/D has finite exponent. Then

A=(a)D,(a)NZ(G) #1,(a)ND =1,]a| = exp(A),

R=<b>D, <b>nD=1, |bl<pla|
Also |b| > |Z(G)| and if exp([R, tID*/D*) < [bD*|, then

(bD*) N Z(G)D*/D*) #£ 1.

(c) Suppose R/D* is infinite and G is a Fitting group. Then R/D* is
Chernikov and R/D* = (R/D*)° x D/D*, where (R/D*)° is locally
cyclic and D/D* is finite.

ProoF — (a) Put H = H/D*. Clearly Z(G) is finite by Lemma 2.3
since T £ N and Z(G) # 1 by Lemma 2.1 (c) since W*(w,V)=1.
Also Z(G)NE = 1 since Coreg(E)=1. Next Z(T)NE = 1 since
Core (D) = D*. Clearly then Z(T) NN is (locally) cyclic since N/E
is (locally) cyclic. Let z € Z(G) with |z| = p. Then 1 #Zz € R\ D. Now
since R < H it follows that [R, N] <t H. Also [R,N] < RN E since N/E is
abelian. This implies that [R,N] = T and so R < Z(N). Next assume if

possible that [t,R] = 1. Then

1=[1P,N] =[t,NJP
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and so [t,N] is a subgroup of order < p of R. Clearly then [t, N]E/E
is contained in (z)E/E since RE/R is (locally) cyclic. This implies
that [t,E] < (z)E and then t normalizes (z)E. Then since t normal-
izes ((z)E)' = E’ it follows that t € N by the hypothesis, which is a
contradiction. Therefore C+(R) = R. Now since Z(T) < N it follows
that Z(T) is (locally) cyclic.

Since N/E is abelian, it follows that N < E (in fact inclusion is
proper since E 4 H). Hence [N/,T < ENT < D and then [N/,T] =1
since [N', T < H. In particular D NN’ = 1 by definition of D*.

(b) Now suppose that exp(A/D) is finite. Also Z(G) is finite by the
hypothesis and by Lemma 2.3. So we may suppose that Z(G) < A.
Clearly A £ E since Coreg(E) = 1. In particular Z(G)NE = 1.
Also AE/E is cyclic by [5], Lemma 2.2. Let z € Z(G) with |z| = p.
Then z has finite height, say h, in A since (z) NE =1 and exp(A/D)
is finite. Therefore there exists a € A such that

a?" =z and A= {(a)x Aq

for a subgroup A7 of A by [8], Lemma, p.180, or [11], 4.3.3. Then we
have also (a) "D =1 since (z) NE = 1. If |a| < exp(A), then

AT = (ylel iy e A)

is a non-trivial normal subgroup of G with Z(G) N A* = 1. Then A*
contains a normal subgroup L # 1 of G such that w ¢ VL by [4], Lem-
ma 3.5. But then L < Eq for an Ey € E*(w, V), which contradicts the
hypothesis W*(w, V) =1 (also holds if (w, V) is a distinguished pair
by Lemma 2.1 (d)). Therefore |a] = exp(A) and then A = (a) x D
since A/D is cyclic and so |A/D| = exp(A). Also exp(B) < p - exp(A).
Hence R = (b)D for a b € R since RE/E is cyclic and |b| < plal. Next
we show that (b) N D) = 1. If [bD| = |aD|, then we may let b = a.
Then
R=(a)D and (a)nD=1.

So suppose that [bD| > [aD|. Then |[bD| > |a| since |aD| = |a| which
implies that [bD| = b since exp(B) < plal. Clearly then (b) "D =1.

Assume if possible that [b| = |Z(G)|. Then R = Z(G)D and hen-

ce RE=Z(G) E, which implies that t normalizes Z(G) E. Clearly then t
normalizes both Z(G)E and (Z(G)E)’ = E’. But then t € N by (xx),
which is a contradiction. Therefore it follows that |b| > |Z(G)|. Next
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assume that exp([R, t]) = Ib]D | for some s > 1. Then

BT = b, =
since R is abelian and so b¥ € Z(T) and then z € (b) since Z(T) is
cyclic and contains Z(G).
(c) Suppose that R/D is infinite and G is a Fitting group. Then R/D
is locally cyclic by [5], Lemma 2.2. For each element X € (t) we
have R/D* ~ R/D. Hence if

L= D7,
xe(t)

then R/L is isomorphic to a subgroup of
- — P~
R/D x ---x R/D
and so R/L is Chernikov. Also since Coren (D) =D~ it follows that

L =1 and so R is Chernikov. In this case R = (R)° x F by [11], 4.1.4,
where (R)° is the divisible part of R and F is finite. Put S = [(R)°, t.
Then since (t)S is nilpotent due to the fact that G is Fitting, t com-

mutes with the divisible group S. Let [t| = m. Then

1=[R)°,t" =[R)°,U™ =[((R)°)™ 1 = [(R)°,1]
it follows that RO NE =1

and so [(R)°,t] = 1. Now since (R)° < Z(H)
R°E. Hence

and so R° is locally cyclic. Also N =

R=R°(RNE)=R°D=R° x D

since Z € R°. In particular D is finite. O

Lemma 2.6 Let B be a nilpotent metabelian p-group with class ¢ < p
and let A be a normal abelian subgroup of B such that B/A is elementary
abelian. Then exp([A,B]) < p and exp(B’) < p?.

t)

Proor — Since [A, B] is abelian it suffices to show that exp([A, t]
foreveryt € B\ A.SoletteB\ A and a € A. We claim that [a, t|P
Since tP € A we have

P
1=[a,t"]=]]la a t

k=1

[/

P
1
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For p = 2, this gives 1 = [a,t]? since ¢ = 2. So we may suppose
that p > 3. Clearly

p 2, (P
<
p<k> but p-t <k> for 1<k<p

and [a,p t] = 1 by the hypothesis. Put

(0)-m

for every 1 < k < p. Then p { uy. Now since [a,, 1t] € Z(B) it
follows that

[a/pf1 t]p = [a/pfz t, t]P = [a/pfz t, tp] =1
Substituting these values above we get
1= (fa, 1% - [a,p_p 14p-2])P

Here if p = 3, then [a, t]3%1 = 1 and so we are done in this case.
Therefore we may suppose that p > 3 and use induction on c.
Put B = B/y.(B). Then [q, t]P = 1 by the induction hypothesis which
implies that [a, t]P € Z(B). Now since

A, tlP = [la,t]P 1t =1

for every 1 < k < p—2 it follows that [a, t|]P = 1. Since a is any
element of A it follows that exp([A, t]) < p, which was to be shown.
Next let s,t € B. Then

P
t Sp == H tn_ S ]p
i=1

since [t, alP = 1 by the first pat of the proof and c(B) < p. Hence it
follows that )
[t,s]P" =1[t,sPIP =1

by the first part of the proof. Therefore exp(B’) < pZ. 0

Lemma 2.7 Let G be a perfect locally finite p-group, where p # 2, and
let (w,V) be a A-pair for G such that W*(w, V) = 1 and there exists E



Fitting p-groups whose proper subgroups are solvable 43

in E*(w, V) with Ng(E) = Ng(E'). Moreover, let B be a normal nilpotent
subgroup of G with ¢(B) = ¢ < p and A a normal abelian subgroup of G
contained in BN Ng(E) such that B/A is elementary abelian . Suppose
furthermore that BN Ng(Ng(E)) \ Ng(E) # 1 whenever B £ Ng(E).
Then B is abelian.

Proor — Assume that B is not abelian. First we show that B is not
contained in N (E). Assume if possible that B < Ng(E). Then B’ < E
since Ng(E)/E is locally cyclic by [5], Lemma 2.2, due to the fact
that p # 2, which is impossible since Coreg(E) = 1 by the hypothesis.
Therefore B £ Ng(E)

Choose t € B\ Ng(E) with Ng(E)* = Ng(E) and tP € Ng(E). Put

N=Ng(E), R=NNB, D=RNE, T=(R

and H = TN. Then A < N by the hypothesis and T £ N but tP € A.
Also Z(G) # 1 and is cyclic by Lemma 2.3. Let Z(G) = (z). Then z # 1
by Lemma 2.1 (c) since W*(w, V) = 1. Without loss of generality we
may suppose that z € A. Next let D* = Coreyy(D) and put H = H/D*.
Then

R<Z(N) and Cs(R)=R

by Lemma 2.5 (a). Let y € N. Then

P
1—y, H/ktE

k=1

since t¥ € R and R < Z(N). Also ()R/R is elementary abelian and
hence exp([R,t]) < p by Lemma 2.6 since ¢ < p. Using this in the
above equality we get

1= tPy,ptl
Moreover [y, t] = 1 since ¢ < p. Using this above we get finally
1=y, tP.

Here since y is any element of N it follows that exp([N,t]) < p and
S0

[N,t]E/E < (z)E/E.
This follows because N/E is locally cyclic and Z(G) NE = 1 owing to
the fact that Coreg(E) = 1. Clearly this implies that [E, t] < (Z)E and
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hence it follows that t normalizes (z)E. But then t normalizes E’ and
hence t € N by the hypothesis, which is a contradiction and so the
proof of the lemma is complete. 0

Lemma 2.8 Let G be a perfect Fitting p-group satisfying the normalizer
condition, where p # 2, and suppose furthermore that in every homomor-
phic image of G the (xx) condition is satisfied exactly as in Theorem 1.1.
Then in every homomorphic image H of G the following holds: if H has
a A-pair (wy, Vi) with W*(wy, Vi) = 1 and if By is a nilpotent nor-
mal metabelian subgroup of H containing a normal abelian subgroup Ay
of H such that By /Ay is elementary abelian, then [By,, H] £ v¢(g,,)(Br),
where c(Byy) is the class of Byy.

ProoF — Assume that G has a A-pair (w, V) with W*(w, V) =1 and
a nilpotent normal abelian-by-elementary abelian subgroup B such
that [B/,G] < Y¢(B)(B). Furthermore suppose that for every homo-
morphic image H of G the following holds. If H satisfies the hypothe-
sis of the lemma but has a nilpotent normal abelian-by-elementary
abelian subgroup By not satisfying the conclusion of the lemma,
then c(By) > c(B).

Let A be a largest normal abelian subgroup of G such that B/A
is elementary abelian. We may also suppose that Z(G) < B. Note
that Z(G) is finite and cyclic by Lemma 2.3 and non-trivial by Lem-
ma 2.1 (¢) since W*(w,V) = 1. Put ¢ = ¢(B). If ¢ < 3, then B is
abelian by Lemma 2.7, which is a contradiction. Therefore ¢ > 3.
Now [B’, G] < vc(B) by the assumption. This means that [B, B, B] is
contained in y.(B) and then ¢(B) = 3 since ¢(B) > 3. If p > 3, then
this gives a contradiction by Lemma 2.7. Therefore p = 3.

Now B’ is not contained in Z(B) since ¢ = 3 and so there ex-
ists an element t € B’ \ Z(B). Let F be a finite subgroup of Z(B)
with Z(G) < F and consider the A-pair (t, F). There exists E € E*(t, F)
such that Z(B) < E since t ¢ FZ(B). Also A < Ng(E) by Lem-
ma 2.4. Furthermore there exists a maximal element M of W*(t,R)
such that Z(B) < M by Lemma 2.1 (b).

Put G = G/y3(B). Then ¢(B) = 2. Also B/A is elementary abelian.
Hence if W*(t,F) = 1, then B is abelian by Lemma 2.7, which is a
contradiction. Therefore M # 1.

Now consider G/M. Then there exists a finite subgroup U of G
containing F such that t ¢ U £ M and tu ¢ Z(G) by Lemma 2.1 (c)
for some u € U. Thus (tw, UM/M) is a A-pair for G/M. Also

W*((tu)M, UM/M) =1
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since, by Lemma 4.2 of [4], E*((tu)M, UM/M) consists of all R/M
such that M < R € E*(%, F). Moreover (BM/M)/(AM/M) is elemen-
tary abelian. Therefore again BM/M is abelian by Lemma 2.7. But
this means that B < M, which is impossible since t € B’ \ M. Con-
sequently the assumption is false and the proof of the lemma is com-
plete. 0

Proor oF THEOREM 1.1 — Let G be Fitting p-group satisfying the
normalizer condition and p # 2. Suppose that in each homomorphic
image of G every A-pair has a maximal element satisfying the prop-
erty (xx). Assume that G is perfect. First we show the following. G
has a homomorphic image H with the following property. H has
a A-pair (wy, V) satisfying (sx) and the condition W*(wyy, Viy) =1
such that every normal nilpotent subgroup of H which is abelian-
by-elementary abelian is abelian. Assume that there exists no such H.
For each homomorphic image X of G satisfying the above proper-
ties let n(X) be the minimum of the classes of all the normal nilpo-
tent abelian-by-elementary abelian subgroups of X which are not
abelian. Among all the homomorphic images X of G having a A-pair
(wx, Vx), satisfying (x*) and the condition W*(wx, Vx) = 1 there is
a homomorphic image H such that n(H) < n(X) for all such X. With-
out loss of generality we may suppose that H = G. Thus G admits
a A-pair (w, V) such that () and the condition W*(w,V) = 1 are
satisfied. Also n(G) is minimal in the above sense and n(G) > 1 by
the assumption. Let B be a normal nilpotent abelian-by-elementary
abelian subgroup of G so that ¢(B) = n(G). Let A be the largest nor-
mal abelian subgroup of G contained in B such that exp(B/A) = p
and B’ < A. By the hypothesis there exists E € E*(w, V) satisfy-
ing (). Put N =Ng(E). Then N/E is (locally) cyclic by [5], Lem-
ma 2.2, since p # 2. Also A < N by Lemma 2.4. Furthermore B £« N
as in Lemma 2.7 since B is not abelian and thus there exists t € B\ N
such that N* = N and tP € N since G satisfies the normalizer condi-
tion.

If c(B) < 3, then B is abelian by Lemma 2.7 since p > 3. There-
fore c(B) > 3. Let ¢(B) = c and put G = G/v.(B), so that ¢(B) =c— 1.
Assume first if possible that B’ <Z(G). Then [B',G]=1 and so [B/, G]
is contained in y(B). Also (w, V) is a A-pair for G with W*(w, V) = 1.
But then B’ % Z(G) by Lemma 2.8, which is a contradiction. There-
fore there exits s € B’ \ Z(G).

Let T be a finite subgroup of G such thats ¢ T (for example T = 1).
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Then (s, T) is a A-pair for G. Let M be a maximal element of W*(s, T).
If M = 1, then B is abelian by the induction hypothesis since ¢(B) < c.
But then ¢(B) = 2, which is impossible. Therefore M # 1. Now con-
sider G/M. By Lemma 2.1 (c) there exists a finite subgroup U of G
such that
sgU, T<ULM

and there exists u € U\ M such that (suM,UM/M) is a A-pair
for G/M. Also (suM, UM/M) satisfies the hypothesis and

W*(suM, UM/M) = 1.

In this case the group BM/M is abelian since ¢(B) < ¢ and this implies
that B’ <M. However since s € B’ but 5 ¢ M this gives another con-
tradiction. Therefore the assumption is false and so it follows that B
is abelian.

Thus we have shown that every normal nilpotent abelian-by-ele-
mentary abelian subgroup of G is in fact abelian. Now let A be a max-
imal normal abelian subgroup of G. Let g € G\ A and put H = (g©)A.
Then H is nilpotent since G is a Fitting group. Then

B/A = O1(Z(H/A))

is elementary abelian and B # A since H is nilpotent. But since B
must be abelian by the first part of the proof this contradicts the
maximality of A. Therefore the assumption is false and so G is not
perfect. This completes the proof of the theorem. O

ProoF oF COROLLARY 1.2 — Let G be a Fitting p-group satisfying the
hypothesis of the corollary but G is not solvable, where p # 2. Thus
every proper homomorphic image of G is an MNS-group and, in par-
ticular, is perfect. By [4], Theorem 1.4 (b), we may suppose that G has
no homomorphic images having (x)-triples for non-central elements.
Then in every homomorphic image of G there exist distinguished
pairs and dominant pairs by [4], Lemmas 3.1 and 4.1 (b).

First we show that in every proper homomorphic of G every A-pair
has a maximal element satisfying (*x). Thus let H # 1 be a homomor-
phic image of G and let (wy, Viy) be a A-pair for H. Clearly with-
out loss of generality we may let H = G and let (w,V) be a A-pair
for G. We must show that there exists E € E*(w, V) satisfying (xx).
Since w ¢ V, applying [4], Lemma 3.1, to (w,V) we obtain a finite
subgroup T of G containing V and excluding t such that (w,T) is a
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distinguished pair for G. Next applying [4], Lemma 4.1 (a), to (w, T)
we obtain a finite subgroup U of G containing T and excluding t such
that (w, U) is a dominant pair for G. Also

E*(w,U) C E*(w,V)

since V < U by [4], Lemma 3.2. Now by the hypothesis there exists
E € E*(w, U) satisfying (*x). Since E € E*(w, V), the assertion is ver-
ified. Thus we have shown that in every homomorphic image of G
every A-pair has a maximal element satisfying (x). But then G can-
not be perfect by Theorem 1.1. Therefore the assumption is false and
so G must be solvable. 0

3 Proof of Theorem 1.3

Lemma 3.1 Let G be a locally finite p-group such that Z(G) # G. Then
there exists a proper normal subgroup M of G such that the set

{exp(AM/M) : A € $1(G)}

is bounded.

ProorF — If A < Z(G) for every A€ S1(G), then we may let M=Z(G).
Therefore we may suppose that there exists A; € S;(G) with the
property that A; £ Z(G). Choose a; € A\ Z(G) and let m = |a].
Then for every A € $1(G)

1=[al" Al =la, A]™ = [ag,A™]
by [6], Lemma 2.2.2, and hence A™ < Cg(aj). Hence it follows that
(A™:A € 51(G)) < Cglar).

Put
M= (A™:A € S$1(G)).

Then obviously M <G and M # G since a; ¢ Z(G). Moreover
exp(AM/M) < m for every A € S1(G). O

Lemma 3.2 Let G be a locally finite p-group such that Z(G) # G, and
suppose that (S1(G)) = G. Then there exists a homomorphic image H of G
such that (S;(H)!) = H.



48 A.O. Asar

Proor — By Lemma 3.1 there exists a proper subgroup M < G
and m > 1 such that

{exp(AM/M): A € $; (G}l <p™.

Thus
(AP 1A € S1(G)) <M #£G.

In this case there exists a smallest number 1 < r < m such that
M* .= (AP : A € $1(G))
is a proper subgroup of G. Also M < M*. Clearly
(AM*/M*: A € $1(G)) = G/M*

by the hypothesis and exp(AM*/M*) < p". If r = 1, we are done
since then each AM*/M* is elementary abelian. So suppose r > 1. In
this case put

r—1

R= (AP :A€S$(G)).

Then R = G by the minimality of r and so R/M* = G/M*. Also sin-

ce AP 'M* /M* is elementary abelian for every A € S;(G) it follows
that
(S1(6/M")") = G/M*

and so the proof is complete. 0

Lemma3.3 IfG=(A:A€S/(G))andge G, then

l9.Gl= ] lgAlL

Ae€S1(G)
Proor — Lety € [g, G]. Then there are g1,...,gn € G such that

y=1Ig,91]---[g, gnl.

Also there are A1,...,A; € §1(G) such that

{91/-"19T}QA] AT‘

by the hypothesis. Then y € [g,A7---A;]. Also an easy induction
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shows that
g, A1---Ar] =1[g,A1]---[g, Asl

since each A; is a normal abelian subgroup of G. Therefore

y € H (g, Al.

A€EeS1(G)

Since y is any element of [g, G] it follows that

g.G1< J] IlgAlL

A€ES1(G)

But the reverse inclusion is obvious. Hence the equality follows. 0O

Lemma 3.4 Let G be a perfect locally finite p-group, where p > 3 and
suppose that (S1(G)) = G. Moreover, let (w,V) be a A-pair for G with
W*(w, V) = 1 such that every element of E*(w, V) satisfies (xx), and let A
be a normal abelian subgroup of G with Z(G) # A. If

Fw,vy(A) ={E€ E*(w,V): A < Ng(B)},

then (I, v)(A)) = G. Furthermore if A1, Az are two normal abelian sub-
groups of G with (A1Az) # 1, then

Fow, vy (A1) N T vy (A2) = 0.

Proor — Note that E€l,,\/)(A) means that A<Ng(E) and A/(ANE)
is (locally) cyclic by [5], Lemma 2.2, since p # 2. First we show
that T, A)(A) # 0. By Lemma 2.2 (a) there exists E € E*(w, V) such
that ANE is maximal and then A/(A N N) is finite by [5], Lemma 2.3,
where N = Ng(E). In this case if A £ N, then there exists an e-
lement a of ANNg(N)\ N with N® = N. However Lemma 2.4
implies that a € N since E satisfies (#x). Therefore A < N and
s0 Tw,v)(A) # 0. Assume if possible that (I, v)(A)) # G. Then
without loss of generality we may assume that A is a maximal nor-
mal abelian subgroup of G. Now there exists C € S1(G) such that
C£ (I )) by the hypothesis. Also [C, A] # 1 by the maxrmahty
of A. Furthermore there exists E € E*(w, V) such that C < Ng(E) a

in the case of A. Hence it follows that E £ (I'(,,,v)(A)) since [C, A] # 1
and so there exists y € E\ (T'y,,v)(A)). Put Vi = (V,y). Then (w, V1)
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is a A-pair for G since w ¢ V7. Also
E*(w, Vi) CE*(w, V)

by [4], Lemma 3.2. If R € E*(w, V7), then R ¢ T(,, y/(A) since V;
is not contained in (I, v)(A)). However applying Lemma 2.2 (a)
to E*(w, Vi) we can find T € E*(w, V7) such that TN A is maximal and
then A/(ANNg(T)) is finite by [5], Lemma 2.3. But then A < Ng(T)
as above. This is a contradiction since T £ (T, v)(A)). Therefore the
assumption is false and so (I, v)(A)) = G.

Next let A1, A be two normal abelian subgroups of G such that
A1Aj is not abelian. Assume if possible that there exists

E € T vy (A1) NT vy (A2).

Then A7,A; < Ng(E). In this case (A7A3) < E since Ng(E)/E
is (locally) cyclic by [5], Lemma 2.2. But then (AjA;) = 1 since
Coreg(E) = 1, which is a contradiction. O

Proor oF THEOREM 1.3 — Let G be a perfect locally finite p-group
whose proper subgroups are solvable, where p # 2. Suppose that in
every homomorphic image of G every dominant pair satisfies (*x).
First we show that (S1(G)) # G. Assume that (S;(G)) = G. Then
there exists a homomorphic image H of G such that (S;(H)') = H
by Lemma 3.2. Without loss of generality we may assume that G = H
and thus (S7(G)') = G. By Theorem 1.4 (b) of [4] we may suppose
that G has no homomorphic images having (*)-triples for non-central
elements. Then in every homomorphic image of G there exist domi-
nant pairs by [4], Lemmas 3.1 and 4.1 (a). Let (w, V) be a dominant
pair for G. Every element of E*(w, V) satisfies (xx) by the hypothe-
sis. Now W*(w, V) contains a maximal element, say M, by [4], Lem-
ma 3.4. Since
(AM/M:A €$:1(G)"Y=G/M

and G/M is not abelian, there are Aj,A> € S1(G)' such that the
group A1jA;M/M is not abelian.

First suppose that M = 1. Then AA; is not abelian. Assume that
w ¢ [V,G]V. Then [V,G]V < E for an E € E*(w, V) by Lemma 2.1 (d).
But since Coreg(E)=1 this is impossible, and so we [V, G]V. Now

v,Gl= ] VA

AGS](G)]
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since
v,G] = [v, A]
AES, (G)]

for every v € V by Lemma 3.3. Hence there are
At,...,Ar € S1(G)]

for some r > 2 such that

T

we ([Tv, Adv.

i=1
In this case there exists a finite subset Y of

such that w € ([V,A4],Y,V). Also there are finite subsets Y; # ()
of [V,Ailfori=2,...,rsuch that Y C (Y;:1=2,...,1). Now define

Vi=(V,Y2,...,Yi)

fori=2,...,r. Then each (w, Vi) is a A-pair for G. To see this choose
E € Iy, v)(A2). This is possible by Lemma 3.4. Then A; = (z)(A2NE)
by Lemma 2.5 (b) since A; is elementary abelian, where z € Z(G)
with |z| = p. Hence [V, A;] < Eand sow ¢ (V,Y;) since Y, C [V, A;]
and V < E, which means that (w,V,) is a A-pair. Next consider
Fw,v,)(A3). In the same way w ¢ V3 = (V2,Y3), where Y3 C [V, A3].
Continuing in this way we see that

w ¢ V‘r — <V,Y2,...,Y'r>

and so it follows that (w, V;) is a A-pair for G. By [4], Lemmas 3.1
and 4.1 (a), there exists a finite subgroup U of G containing V; such
that (w,U) is a dominant pair for G and every element of E*(w, U)
satisfies ().

Now there exists E € T\, 1)(A1) since Iy, y)(A1) # 0 by Lem-
ma 3.4. Then [U,A;] < E as above and hence w ¢ ([U, A;],U). But
also V,Y < V; < U. Therefore w ¢ ([V,A1],Y,V), which is a contra-
diction.

Next suppose that M # 1 and put G = G/M. By Lemma 2.1 (c)
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there exists a finite subgroup U of G containing V withw ¢ U £« M
and u € U scuh that (Wu, U) is a A-pair for G and W*(wu, U) = 1.
Then there exists a finite subgroup T of G containing U such that
(wi, T) is a dominant pair for G and W*(wu, T) = 1. Also (wu, T)
satisfies (+*). Therefore (S1(G)') # G by the first part of the proof.
Obviously then also

A:Ae$(G)Y#G

and taking that inverse images it follows that (S1(G)") # G, which is
another contradiction. Therefore the assumption that (S; (G)1> =G
is false and so (S7(G)') # G. Clearly then also (S1(G)) # G.

Finally assume if possible that (S¢(G)) = G forat > 1. Thent > 1
by the first part of the proof. We may suppose that t is the least
integer with this property. Put M = (S;_1(G)). Then M # G by the
induction assumption and

{AM/M: A € $¢(G)} C S1(G/M).

Also (S1(G/M)) # G/M by the first part of the proof since G/M
satisfies the hypothesis of the theorem. But then also

(AM/M: A € 5¢(G)) # G/M
and taking the inverse images gives (S¢(G)) # G, which contradicts

the assumption that (S¢(G)) = G. Therefore (S¢(G)) # G and so the
proof of the theorem is complete. 0
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