

Advances in Group Theory and Applications c 2016 AGTA - www.advgrouptheory.com/journal 2 (2016), pp. [79](#page-0-0)–[111](#page-32-0) ISSN: 2499-1287

DOI: 10.4399/97888548970146

G-Groups and Biuniform Abelian Normal Subgroups [1](#page-0-1)

María José Arroyo Paniagua — Alberto Facchini

(*Received Jul. 12, 2016; Accepted Sep. 30, 2016 — Communicated by F. de Giovanni*)

Abstract

We prove a weak form of the Krull-Schmidt Theorem concerning the behavior of direct-product decompositions of G-groups, biuniform abelian G-groups, G-semidirect products and the G-set Hom(H,A). Here G and A are groups and H is a G-group. Our main result is the following. Let P be any group. Let H_1, \ldots, H_n , H'_1, \ldots, H'_t be $n + t$ biuniform abelian normal subgroups of P. Suppose that the products $H_1 ... H_n$, $H'_1 ... H'_t$ are direct, that is, $H_1 ... H_n = H_1 \times ... \times H_n$ and $H'_1 \dots H'_t = H'_1 \times \dots \times H'_t$. Then the normal subgroups $H_1 \times \dots \times H_n$ and $H'_1 \times \dots \times H'_t$ of P are P-isomorphic if and only if $n = t$ and there exist two permutations σ and τ of $\{1, 2, ..., n\}$ such that $[H_i]_m = [H'_{\sigma(i)}]_m$ and $[H_i]_e = [H'_{\tau(i)}]_e$ for eve $ry i = 1, 2, ..., n.$

Mathematics Subject Classification (2010): 20K25

Keywords: G-group; direct-product decomposition; Krull-Schmidt theorem; semidirect product

1 Introduction

In some previous papers [[1](#page-31-0), [5](#page-31-1), [8](#page-31-2)], the second author studied a phenomenon concerning direct-sum decompositions in some classes of

¹ The research of the second author was supported in part by Università di Padova (Progetto ex 60% "Anelli e categorie di moduli") and Fondazione Cassa di Risparmio di Padova e Rovigo (Progetto di Eccellenza "Algebraic structures and their applications". The authors would like to thank Giuseppe Metere for some useful explanations and suggestions.

modules, consisting essentially in the validity of a weak form of the Krull-Schmidt Theorem. Here is an example. A right module U over a ring R is said to be a *biuniform* module if it is non-zero, the intersection of any two non-zero submodules of U is non-zero and the sum of any two proper submodules of U is a proper submodule of U. For instance, *uniserial* non-zero R-modules, that is, the modules whose lattice of submodules is linearly ordered under inclusion, are biuniform modules.

Two right R modules U and V are said to belong to

- 1. *the same monogeny class,* denoted $[U]_{m} = [V]_{m}$, if there exist a monomorphism $U \rightarrow V$ and a monomorphism $V \rightarrow U$;
- 2. *the same epigeny class, denoted* $[U]_e = [V]_e$, if there exist an epimorphism $U \rightarrow V$ and an epimorphism $V \rightarrow U$.

The weak form of the Krull-Schmidt Theorem we refer to above is the following.

Theorem A ([[5](#page-31-1), Theorem 1.9]) Let $U_1, \ldots, U_n, V_1, \ldots, V_t$ be $n + t$ bi*uniform right modules over a ring* R. Then the direct sums $U_1 \oplus \ldots \oplus U_n$ *and* $V_1 \oplus ... \oplus V_t$ *are isomorphic* R-modules if and only if $n = t$ and there *exist two permutations σ and τof* $\{1, 2, \ldots, n\}$ *such that* $[\mathsf{U_i}]_{\mathfrak{m}} \! = \! [\mathsf{V_{\sigma(i)}}]_{\mathfrak{m}}$ and $[\mathsf{U}_\mathfrak{i}]_e = [\mathsf{V}_{\tau(\mathfrak{i})}]_e$ for every $\mathfrak{i} = 1, 2, \ldots, \mathfrak{n}$.

In the previous two papers [[9](#page-31-3), [2](#page-31-4)], we looked for a similar result in the setting of groups. In this paper we continue in this investigation. Our main result is the following Theorem B:

Theorem B Let P be any group. Let $H_1, \ldots, H_n, H'_1, \ldots, H'_t$ be $n + t$ *biuniform abelian normal subgroups of* P*. Suppose that the products*

$$
H_1 \dots H_n, H'_1 \dots H'_t
$$

are direct, that is, $H_1 \dots H_n = H_1 \times \dots \times H_n$ and $H'_1 \dots H'_t = H'_1 \times \dots \times H'_t$. Then the normal subgroups $H_1 \times \ldots \times H_n$ and $H'_1 \times \ldots \times H'_t$ of P are P-iso*morphic if and only if* n = t *and there exist two permutations* σ *and* τ *of* $\{1, 2, ..., n\}$ *such that* $[H_i]_m = [H'_{\sigma(i)}]_m$ *and* $[H_i]_e = [H'_{\tau(i)}]_e$ for eve*ry* i = 1, 2, . . . , n*.*

Here, by a biuniform abelian normal subgroup H of P, we mean an abelian group H belonging to the modular lattice $N(P)$ of all normal subgroups of P for which the interval [1, H] is a modular lattice of Goldie dimension 1 and dual Goldie dimension 1. For the other exact definitions, see Section [5](#page--1-0). Notice that the automorphisms

of the G-group G in the category of G-groups are exactly the central automorphisms of G. Coherently, the classical Krull-Schmidt-Remak Theorem concerns the existence of a *central* automorphism of the group G of which we study the direct-product decompositions. In Theorem B, in a similar way, we get a P*-isomorphism*, which is an isomorphism in the category of P-groups (see Proposition [5](#page-17-0).2).

In this paper, we also present further results related to Theorem A concerning the behaviour of direct-product decompositions of G-groups, biuniform abelian G-groups, G-semidirect products and the G-set Hom(H, A). Here G and A are groups and H is a G-group.

We denote by $\mathbb Z$ the ring of integers and by $J(R)$ the Jacobson radical of a ring R.

2 Basic notions on G-groups

Let G be a group. A G-*group* is a pair (H, φ) , where H is a group and $\varphi: G \to Aut(H)$ is a group homomorphism. Equivalently, it is a group H endowed with a mapping

$$
\cdot\colon G\times H\to H, \quad (g,h)\mapsto gh
$$

such that

- (a) $g(hh') = (gh)(gh')$
- (b) $(gg')h = g(g'h)$
- (c) $1_G h = h$

for every $g, g' \in G$ and every $h, h' \in H$.

A G-group morphism $f: (H, \varphi) \rightarrow (H', \varphi')$ is a group homomorphism $f: H \to H'$ such that $f(gh) = gf(h)$ for every $g \in G$, $h \in H$. We will denote by G -**Grp** the category of G-groups.

The symbol H $'\leqslant_{\mathsf{G}}$ H will denote that H $'$ is a G-subgroup of H. We say that H is an *abelian* G*-group* if H is a G-group and H is abelian. For such an H, the set $Sub_G(H)$ of all G-subgroups of H coincides with the set $\mathcal{N}_G(H)$ of all normal subgroups H' of H with H' $\leq_G H$. Thus $\text{Sub}_{G}(H) = \mathcal{N}_{G}(H)$ is a complete bounded lattice with respect to inclusion. The full subcategory of G -**Grp** whose objects are all abelian G-groups will be denoted by Ab(G -**Grp**). It is an abelian subcategory of G -**Grp**. We say that a G-group H is *uniserial* if the set $\text{Sub}_G(H)$ of G-subgroups of H is linearly ordered under inclusion.

In this paper, we will deal with monomorphisms and epimorphisms in the category G -**Grp**. The monomorphisms in G-**Grp** are exactly the G-group morphisms that are injective mappings, the isomorphisms are precisely the bijective G-group morphisms, and the epimorphisms in G -**Grp** are exactly the surjective mappings. These facts appear in [[2](#page-31-4)]. Since the proof for the epimorphisms in [[2](#page-31-4), Theorem 2.2] is rather technical, we give here a more direct proof. It is similar to the proof of the analogous result for the category of groups due to Linderholm $\lceil 13 \rceil$ $\lceil 13 \rceil$ $\lceil 13 \rceil$ (also see $\lceil 14 \rceil$ $\lceil 14 \rceil$ $\lceil 14 \rceil$, Exercise 5, p. 21]).

Theorem 2.1 Let G be a group and (H, φ) , (H', φ') be G-groups. *A* G-group morphism $f: H' \to H$ *is an epimorphism in the category* G-Grp *if and only if it is a surjective mapping.*

PROOF — Clearly, any surjective G-group morphism is an epimorphism in hboxG-Grp. Conversely, let $f: H' \rightarrow H$ be an epimorphism in G-**Grp**. Set $A := f(H')$, so that $A \leq G$ H.

Step 1: there are G-sets X (via a group morphism $\sigma: G \rightarrow S_X$, where S_X denotes the symmetric group on X), which are also H-sets (via σ' : H \rightarrow S_X), such that the two actions are compatible in the sense that $\sigma'(gh) = \sigma(g) \circ \sigma'(h) \circ \sigma(g^{-1})$ for every $g \in \mathsf{G}, h \in \mathsf{H}.$

For instance, this is the case of the set $X' = \{*\}$ with one element $*$. A less trivial example is the set $X'' = {hA | h \in H}$ of all left cosets of A in H. In this case, the (well defined!) action of G on X'' is defined by $g(hA) = (gh)A$ and the action of H on X'' is defined by $h_1(hA) = (h_1h)A$ for every $g \in G$, h , $h_1 \in H$. Let us show that the two actions are compatible. We must show that

$$
\sigma'(gh)(h_1A)=(\sigma(g)\circ\sigma'(h)\circ\sigma(g^{-1}))(h_1A)
$$

for every $g \in G$, $h, h_1 \in H$. Now $\sigma'(gh)(h_1A) = ((gh)h_1)A$ and

$$
(\sigma(g)\circ\sigma'(h)\circ\sigma(g^{-1}))(h_1A)=(g(h(g^{-1}h_1)))A.
$$

These two left cosets are equal, because

$$
(gh)h_1 = gh \cdot g(g^{-1}(h_1)) = g(h(g^{-1}h_1)).
$$

In the rest of this proof, we will need as $X := \{*\} \cup X''$, the disjoint union of X' and X'' , which has the properties in the statement of Step 1.

Step 2: there is a permutation $\tau: X \rightarrow X$ of X such that

$$
\tau \circ \sigma(g) = \sigma(g) \circ \tau
$$

for every $q \in G$.

In fact, let τ be the transposition $(* A)$ (the elements $*$ and the coset $A \in X''$ are swapped and all the other elements of X, that is, all cosets $hA \neq A$, are fixed by τ). In order to prove that

$$
(\tau \circ \sigma(g))(x) = (\sigma(g) \circ \tau)(x)
$$

for every $g \in G$ and $x \in X$, we must distinguish the three cases $x = hA \neq A$, $x = A$ and $x = *$.

In the first case, we have that $x = hA$ for some $h \in H \setminus A$. The automorphism $\varphi(g) \in Aut(H)$ induces an endomorphism on the G-subgroup A of H, so that gA \subseteq A. Similarly for \mathfrak{g}^{-1} , so gA $=$ A. It follows that if $h \in H \setminus A$, then $gh \in H \setminus A$, so $(gh)A \neq A$. Thus

$$
(\tau \circ \sigma(g))(x) = \tau(\sigma(g)(hA)) = \tau((gh)A) = (gh)A
$$

and

$$
(\sigma(g)\circ\tau)(x)=\sigma(g)(\tau(hA))=g(hA),
$$

and we are done.

In the second case $x = A$, we have that

$$
(\tau \circ \sigma(g))(x) = \tau(\sigma(g)(A)) = \tau(A) = *
$$

and

$$
(\sigma(g)\circ\tau)(x)=\sigma(g)(\tau(A))=g(*)=*,
$$

as we wanted.

In the third case, we have $x = *$, so that

$$
(\tau \circ \sigma(g))(x) = \tau(\sigma(g)(*)) = \tau(*) = A
$$

is equal to

$$
(\sigma(g)\circ\tau)(x)=\sigma(g)(\tau(*))=g(A)=A.
$$

Step 3: for every $h \in H$, one has $\tau \circ \sigma'(h) = \sigma'(h) \circ \tau$ if and only if $h \in A$.

In fact, suppose $h \in A$. We must prove that

$$
(\tau\circ\sigma'(h))(x)=(\sigma'(h)\circ\tau)(x)
$$

for every $x \in X$. As in Step 2, we have the three cases

$$
x=h_1A \neq A
$$
, $x = A$ and $x = *$.

If $x = h_1A$ for some $h_1 \in H \setminus A$, then

$$
(\tau \circ \sigma'(h))(x) = \tau(\sigma'(h)(h_1 A)) = \tau(h h_1 A).
$$

Then $h \in A$ implies $hh_1 \notin A$, so

$$
(\tau\circ\sigma'(h))(x)=\tau(hh_1A)=hh_1A.
$$

Moreover,

$$
(\sigma'(h)\circ\tau)(x)=\sigma'(h)(h_1A)=hh_1A,
$$

as we wanted to prove.

In the second case $x = A$, we have that

$$
(\tau \circ \sigma'(h))(x) = \tau(\sigma'(h)(A)) = \tau(A) = *
$$

and

$$
(\sigma'(h)\circ\tau)(x)=\sigma'(h)(\tau(A))=h(*)=*,
$$

as we wanted.

In the third case, we have $x = *,$ so that

$$
(\tau \circ \sigma'(h))(x) = \tau(\sigma'(h)(*)) = \tau(*) = A
$$

is equal to

$$
(\sigma'(h)\circ\tau)(x)=\sigma'(h)(\tau(*))=hA=A.
$$

Finally, suppose $h \in H \setminus A$. We must prove that

$$
(\tau\circ\sigma'(h))(x)\neq(\sigma'(h)\circ\tau)(x)
$$

for some $x \in X$. In fact, set $x := h^{-1}A$. Then

$$
(\tau \circ \sigma'(h))(x) = \tau(\sigma'(h)(h^{-1}A)) = \tau(A) = *
$$

and

$$
(\sigma'(h) \circ \tau)(x) = \sigma'(h)(\tau(h^{-1}A)) = h(h^{-1}A) = A \neq *.
$$

This concludes Step 3.

Now let F_X be the free group on the set X. Thus every bijection $X \rightarrow X$ extends to a unique group automorphism $F_X \rightarrow F_X$, so that we can view S_X as a subgroup of $K := Aut(F_X)$. Consider the G-set structure on X given by

$$
\sigma\colon G\to S_X\subseteq Aut(F_X)=K.
$$

There is a group morphism φ ": G \rightarrow Aut(K) defined by

$$
\phi''(g)(a)=\sigma(g)\circ a\circ \sigma(g^{-1})
$$

for every $g \in G$ and every $a \in K = Aut(F_X)$. Also, the H-set structure on X induces a group homomorphism $\sigma' \colon H \to S_X \subseteq K$.

Step 4: because of the compatibility between the action of G on X and the action of H on X (Step 1), the mapping σ' : H \rightarrow K is a G-group morphism.

We must show that $\sigma'(gh) = g\sigma'(h)$ for every $g \in G$, $h \in H$. $\text{Now } \mathfrak{g}\sigma'(\mathfrak{h}) = \varphi''(\mathfrak{g})(\sigma'(\mathfrak{h})) = \sigma(\mathfrak{g}) \circ \sigma'(\mathfrak{h}) \circ \sigma(\mathfrak{g}^{-1}) = \sigma'(\mathfrak{g}\mathfrak{h}).$

Now consider the permutation $τ: X \rightarrow X$ of Step 2. We have that $\tau \in S_X \subseteq K = Aut(F_X)$, so that conjugation by τ is a group morphism τ' : K \rightarrow K, defined by

$$
\tau'(k)=\tau\circ k\circ\tau^{-1}
$$

for every $k \in K = Aut(F_X)$.

Step 5: the group morphism τ' : $K \to K$ is a G-group morphism.

By Step 2, we have that $\tau \circ \sigma(g) = \sigma(g) \circ \tau$ for every $g \in G$, so that $\tau \circ \sigma(g) \circ \mathsf{k} \circ \sigma(g^{-1}) \circ \tau^{-1} \ = \ \sigma(g) \circ \tau \circ \mathsf{k} \circ \tau^{-1} \circ \sigma(g^{-1}) \ \text{ for every } \tau \in \mathbb{C}.$ ry $k \in K = Aut(F_X)$. Equivalently, $\tau'(gk) = g\tau'(k)$.

Step 6: for the two G-group morphisms

$$
\sigma'\colon H\to K \text{ and } \tau'\circ\sigma'\colon H\to K,
$$

we have that $\sigma' \circ f = \tau' \circ \sigma' \circ f$.

We must prove that $\sigma'(f(h')) = \tau'(\sigma'(f(h')))$ for every $h' \in H'.$ Equivalently, we must show that $\sigma'(\mathfrak{a}) = \tau'(\sigma'(\mathfrak{a}))$ for every $\mathfrak{a} \in A$, or, equivalently, that $\sigma'(\mathfrak{a}) = \tau \circ \sigma'(\mathfrak{a}) \circ \tau^{-1}$. But we have seen in Step 3 that $a \in A$ implies $\tau \circ \sigma'(a) = \sigma'(a) \circ \tau$.

Step 7: proof of the theorem.

Since f is an epimorphism, from what we have verified in Step 6, it follows that $\sigma' = \tau' \circ \sigma'$, that is, $\sigma'(h) = \tau'(\sigma'(h))$ for every $h \in H$. Equivalently, we have that

$$
\sigma'(h) = \tau \circ \sigma'(h) \circ \tau^{-1},
$$

that is, $\tau \circ \sigma'(h) = \sigma'(h) \circ \tau$ for every $h \in H$. But we have seen in Step 3 that this implies $h \in A$. In other words, $H \subseteq A = f(H')$, which proves that f is a surjective mapping. \Box

3 The Weak Krull-Schmidt Theorem for biuniform abelian G-groups

Let G be a group and H, H' be two G-groups. We say that H and H' belong to the same *monogeny class*, and write $[H]_{m}=[H']_{m}$, if there exist a monomorphism $H \rightarrow H'$ and a monomorphism $H' \rightarrow H$. Dually, we say that H and H⁰ belong to the same *epigeny class*, and write $[H]_e = [H']_e$, if there exist an epimorphism $H \rightarrow H'$ and an epimorphism $H' \rightarrow H$.

Let G be a group and H an abelian G-group. We say that H is *uniform* if $H \neq 1$ and the intersection of any two non-trivial G-subgroups of H is non-trivial. Dually, we say that H is *couniform* if $H \neq 1$ and the product of any two proper G-subgroups of H is a proper subgroup of H. Finally, we say that H is *biuniform* if it is both uniform and couniform. Clearly, any abelian uniserial G-group H \neq 1 is biuniform.

Theorem 3.1 Let G be a group and $H_1, \ldots, H_n, H'_1, \ldots, H'_t$ be $n + t$ *biuniform abelian* G*-groups. Then the direct products*

 $H_1 \times \ldots \times H_n$ and $H'_1 \times \ldots \times H'_t$

are isomorphic G*-groups if and only if* n = t *and there exist two permutations* σ *and* τ *of* $\{1, 2, ..., n\}$ *such that* $[H_i]_m = [H'_{\sigma(i)}]_m$ *and* $[H_i]_e = [H'_{\tau(i)}]_e$ for every $i = 1, 2, \ldots, n$.

PROOF \sim Let $\mathbb{Z}G$ denote the group ring of G. Recall that there is a functor F: \mathbb{Z} G-Mod \rightarrow G-Grp, which associates to every left \mathbb{Z} Gmodule (M, λ) , where $\lambda: \mathbb{Z}G \rightarrow End(M)$ is a ring morphism into the endomorphism ring of the abelian group M, the G-group $(M, \lambda|_G)$, where $\lambda|_G: G \to Aut(M)$ is the restriction of λ and M is viewed in G -**Grp** as a multiplicative group. The corestriction

$$
F|^{Ab(G\text{-}\mathbf{Grp})}\colon \mathbb{Z}G\text{-}\mathbf{Mod}\to \mathbf{Ab}(G\text{-}\mathbf{Grp})
$$

turns out to be a category equivalence [[2](#page-31-4), before Remark 2.3]. A subgroup of the abelian group M is a $\mathbb{Z}G$ -submodule of (M, λ) if and only if it is a G-subgroup of $(M, \lambda|_G)$, so that $Sub_G(M)$ is the lattice of all **Z**G-submodules of M. It follows that, in the category equivalence F| Ab(G -**Grp**) , biuniform **Z**G-modules correspond exactly to biuniform abelian G-groups. The functor F| Ab(G -**Grp**) is the identity on morphisms and, in both categories **Z**G-Mod and Ab(G -**Grp**), monomorphisms (epimorphisms, resp.) are the injective (surjective, resp.) morphisms respectively. It follows that F| Ab(^G -**Grp**) preserves both monogeny classes and epigeny classes. Finally, notice that F| Ab(G -**Grp**) transforms finite direct sums (= products in the additive category **Z**G-Mod) into finite direct products in the additive category Ab(G -**Grp**). The conclusion now follows from [[6](#page-31-5), Theorem 9.13 .

Let $n \geq 2$ be an integer. We claim that there exists a group G with n^2 pairwise non-isomorphic biuniform abelian G-groups

$$
U_{i,j} \quad (i,j=1,2,\ldots,n)
$$

with the following properties:

- (a) for every i, j, k, $\ell = 1, 2, ..., n$, $[U_{i,j}]_m = [U_{k,\ell}]_m$ if and only if $i = k$;
- (b) for every i, j, k, $\ell = 1, 2, ..., n$, $[U_{i,j}]_e = [U_{k,\ell}]_e$ if and only if $j = \ell$.

From Theorem [3](#page--1-1).1, it follows that

$$
u_{1,1} \times u_{2,2} \times \ldots \times u_{n,n} \simeq u_{\sigma(1),\tau(1)} \times u_{\sigma(2),\tau(2)} \times \ldots \times u_{\sigma(n),\tau(n)}
$$

for every pair of permutations σ , τ of $\{1, 2, \ldots, n\}$.

Our example will be constructed adapting an example that appears in [[5](#page-31-1), Example 2.1] (also see [[6](#page-31-5), Example 9.20]). In that example, the

following ring R was considered. Let **Q** be the field of rational numbers and $M_n(Q)$ be the ring of all $n \times n$ -matrices with entries in Q. Let \mathbb{Z}_p , \mathbb{Z}_q be the localizations of the ring \mathbb{Z} at two distinct maximal ideals (p) and (q) of **Z** (here p, $q \in \mathbb{Z}$ denote two distinct primes ≥ 3). Let Λ_p be the subring of $M_n(Q)$ whose elements are the $n \times n$ -matrices with entries in \mathbb{Z}_p in and below the diagonal and entries in p**Z**^p above the diagonal, that is,

$$
\Lambda_{p} := \left(\begin{array}{cccc} \mathbb{Z}_{p} & p\mathbb{Z}_{p} & \dots & p\mathbb{Z}_{p} \\ \mathbb{Z}_{p} & \mathbb{Z}_{p} & \dots & p\mathbb{Z}_{p} \\ \vdots & & \ddots & \\ \mathbb{Z}_{p} & \mathbb{Z}_{p} & \dots & \mathbb{Z}_{p} \end{array} \right) \subseteq \mathbf{M}_{n}(\mathbb{Q}).
$$

Similarly, set

$$
\Lambda_q := \left(\begin{array}{cccc} \mathbb{Z}_q & q\mathbb{Z}_q & \dots & q\mathbb{Z}_q \\ \mathbb{Z}_q & \mathbb{Z}_q & \dots & q\mathbb{Z}_q \\ \vdots & & \ddots & \\ \mathbb{Z}_q & \mathbb{Z}_q & \dots & \mathbb{Z}_p \end{array} \right) \subseteq \mathbf{M}_n(\mathbb{Q}).
$$

If

$$
R = \left(\begin{array}{cc} \Lambda_p & M_n(Q) \\ 0 & \Lambda_q \end{array}\right),
$$

then R turns out to be a subring of the ring $M_{2n}(Q)$ of all $2n \times 2n$ -matrices with rational entries.

Let $G := U(R)$ be the group of the invertible elements of R. First of all, we will determine the elements of G. Let $U(\mathbb{Z}_p)$, $U(\mathbb{Z}_q)$ be the groups of invertible elements of the rings \mathbb{Z}_p , \mathbb{Z}_q , respectively. Observe that $U(\mathbb{Z}_p) = \mathbb{Z}_p \setminus p\mathbb{Z}_p$, and that $U(\mathbb{Z}_p)$ is the free abelian group with free set of generators the set of all primes distinct from p . Let G_p be the subgroup of $GL_n(Q)$ whose elements are the $n \times n$ -matrices with entries in $U(\mathbb{Z}_p)$ in the diagonal, entries in $p\mathbb{Z}_p$ above the diagonal, and entries in \mathbb{Z}_p below the diagonal, so that

$$
G_p := \left(\begin{array}{cccc} U(\mathbb{Z}_p) & p\mathbb{Z}_p & \dots & p\mathbb{Z}_p \\ \mathbb{Z}_p & U(\mathbb{Z}_p) & \dots & p\mathbb{Z}_p \\ \vdots & & \ddots & \\ \mathbb{Z}_p & \mathbb{Z}_p & \dots & U(\mathbb{Z}_p) \end{array} \right) \subseteq GL_n(\mathbb{Q}).
$$

Similarly, let G_q be the subgroup of $GL_n(Q)$ whose elements are

the $n \times n$ -matrices with entries in $U(\mathbb{Z}_q)$ in the diagonal, entries in $q\mathbb{Z}_q$ above the diagonal, and entries in \mathbb{Z}_q below the diagonal, so that

$$
G_q := \left(\begin{array}{cccc} U(\mathbb{Z}_q) & q\mathbb{Z}_q & \dots & q\mathbb{Z}_q \\ \mathbb{Z}_q & U(\mathbb{Z}_q) & \dots & q\mathbb{Z}_q \\ \vdots & & \ddots & \\ \mathbb{Z}_q & \mathbb{Z}_q & \dots & U(\mathbb{Z}_q) \end{array} \right) \subseteq GL_n(\mathbb{Q}).
$$

It is easy to see that

$$
G = \begin{pmatrix} G_p & M_n(Q) \\ 0 & G_q \end{pmatrix}.
$$
 (1)

To see it, recall that the Jacobson radicals of Λ_p and R are

$$
J(\Lambda_p) = \left(\begin{array}{cccc} p\mathbb{Z}_p & p\mathbb{Z}_p & \dots & p\mathbb{Z}_p \\ \mathbb{Z}_p & p\mathbb{Z}_p & \dots & p\mathbb{Z}_p \\ \vdots & & \ddots & \\ \mathbb{Z}_p & \mathbb{Z}_p & \dots & p\mathbb{Z}_p \end{array} \right)
$$

and

$$
J(R) = \begin{pmatrix} J(\Lambda_p) & \mathbf{M}_n(Q) \\ 0 & J(\Lambda_q) \end{pmatrix}
$$

respectively [[5](#page-31-1), Example 2.1], so that $R/[R]$ is isomorphic to the direct product $(\mathbb{Z}/p\mathbb{Z})^{\bar{n}} \times (\mathbb{Z}/q\mathbb{Z})^{\bar{n}}$ of $2n$ fields. The canonical projection π: R → R/J(R) is a local morphism, i.e., an element of R is invertible in R if and only if its image in $R/J(R)$ is invertible in $R/J(R)$. Thus we have a local morphism

$$
R\to (\mathbb{Z}/p\mathbb{Z})^n\times (\mathbb{Z}/q\mathbb{Z})^n,
$$

which associates to each matrix in R the residues of its elements in the diagonal. Hence a matrix in R belongs to G if and only if its first n elements in the diagonal are in $U(\mathbb{Z}_p)$ and the last n elements in the diagonal are in $U(\mathbb{Z}_q)$.

Let e_{n+1} be the idempotent matrix with 1 in the $(n+1,n+1)$ -entry

and 0 in the other entries. The left ideal

$$
\text{Re}_{n+1} = \left(\begin{array}{cccccc} 0 & \dots & 0 & \mathbb{Q} & 0 & \dots & 0 \\ \vdots & & \vdots & \vdots & & \vdots & & \vdots \\ 0 & \dots & 0 & \mathbb{Q} & 0 & \dots & 0 \\ 0 & \dots & 0 & \mathbb{Z}_q & 0 & \dots & 0 \\ \vdots & & \vdots & \vdots & & \vdots & & \vdots \\ 0 & \dots & 0 & \mathbb{Z}_q & 0 & \dots & 0 \end{array} \right)
$$

of R is uniserial.

The modules $U_{i,j}$ constructed in [[5](#page-31-1), Example 2.1] are submodules of homomorphic images of the left ideal Re_{n+1} of R. Thus, in order to show that the G-groups $U_{i,j}$ are biuniform as G-groups, it suffices to show that Re_{n+1} is uniserial as a G-group. To this end, it is sufficient to show that the G-subgroups of Re_{n+1} coincide with the R-submodules of Re_{n+1} , and for this it is enough to show that the canonical mapping $\mathbb{Z}G \rightarrow R$ is onto, that is, that every element of R is a finite sum of invertible elements of R. Because of ([1](#page-10-0)), it suffices to show that in the ring direct product $(\mathbb{Z}/p\mathbb{Z})^n \times (\mathbb{Z}/q\mathbb{Z})^n$ of 2n rings, every element is a finite sum of invertible elements. In fact, every element of $(\mathbb{Z}/p\mathbb{Z})^n \times (\mathbb{Z}/q\mathbb{Z})^n$ is a sum of two invertible elements, because, for every element

$$
(a_1,\ldots,a_n,b_1,\ldots,b_n)
$$

of $(\mathbb{Z}/p\mathbb{Z})^n \times (\mathbb{Z}/q\mathbb{Z})^n$, we have that

$$
(a_1,\ldots,a_n,b_1,\ldots,b_n) =
$$

 $(a_1 \pm 1, \ldots, a_n \pm 1, b_1 \pm 1, \ldots, b_n \pm 1) - (\pm 1, \ldots, \pm 1, \pm 1, \ldots, \pm 1),$

where ± 1 is $+1$ if a_i is $\equiv 0, 1, 2, \ldots, p-2$ (mod $p\mathbb{Z}_p$), and ± 1 is -1 if $a_i \equiv p - 1 \pmod{p\mathbb{Z}_p}$, and similarly for the b_i 's (here we are using the fact that $p, q \ge 3$, so that every element in \mathbb{Z}_p , \mathbb{Z}_q is a sum of two invertible elements). Thus we have proved that Re_{n+1} is a uniserial G-group, so that all the n^2 G-groups $U_{i,j}$ are uniserial, hence biuniform.

Thus the G-groups $U_{i,j}$, $i,j = 1, 2, ..., n$, have the required properties. In fact, morphisms, monomorphisms and epimorphisms in the two categories Ab(G -**Grp**) and R-Mod coincide, so that two R-modules are in the same monogeny class as R-modules if and only if

they are in the same monogeny class as G-groups, and similarly for epigeny classes. This concludes the proof of our claim.

4 The category G-**Sdp of all** G**-semidirect products**

The notion of suddirect product was introduced by Birkhoff in 1944, and is particularly convenient in the study of G-groups. Let us be more precise. We will now consider semidirect product of two groups. The construction of semidirect product can also be carried out for any pair of monoids. If M and M' are monoids and $\varphi: M' \to End(M)$ is a monoid morphism, the *semidirect product* of M and M' via φ , denoted M $\rtimes_{\phi} M'$, is the cartesian product $M \times M'$ with the multiplication defined by

$$
(a,a')(b,b')=(a\phi(a')(b),a'b'),
$$

where $a, b \in M$ and $a', b' \in M'$ [[12](#page-32-3), p. 425]. In this paper, we will be concerned only about semidirect product of groups.

Recall that a group P is a semidirect product of its normal subgroup H and its subgroup G, written $P = H \times G$, if and only if there exists a group morphism $P \rightarrow G$ with kernel H which is the identity on G. For a fixed group G, we will consider the category G-**Sdp** of G*-semidirect products* (G-**Sdp** is sometimes also called the *category of pointed objects over the* G*-group* G). Its objects are the triples (P, α, β), where P is a group and $\alpha: G \to P$, $\beta: P \to G$ are group morphisms such that the composite mapping $\beta \alpha$ is the identity automorphism id_G of the group G. The morphisms from $(P, α, β)$ to $(P', α', β')$ in G-Sdp are the group morphisms $a: P \rightarrow P'$ for which the diagram

$$
\begin{array}{ccc}\nG & \xrightarrow{\alpha} & P & \xrightarrow{\beta} & G \\
\parallel & & \downarrow{a} & & \parallel \\
G & \xrightarrow{\alpha'} & P' & \xrightarrow{\beta'} & G\n\end{array}
$$

commute, that is, such that $a\alpha = \alpha'$ and $\beta' \alpha = \beta$.

There is a category equivalence F: G - $Grp \rightarrow G-Sdp$ [[2](#page-31-4), 4.1]. It assigns to any object (H, φ) of G-Grp the object (P, α, β) of G-Sdp, where P is the semidirect product $H \times G$, which we had denoted by H \rtimes G above, that is, the cartesian product H \times G with the operation defined by

$$
(h_1, g_1)(h_2, g_2) = (h_1 \varphi(g_1)(h_2), g_1 g_2),
$$

 $\alpha: G \rightarrow P$ is defined by $\alpha(q) = (1, q)$ and $\beta: P \rightarrow G$ is defined by $\beta(h, q) = q$.

If $(H, φ)$ and $(H', φ')$ are G-groups and $(P, α, β)$, $(P', α', β')$ are the corresponding objects of G-**Sdp**, the functor

$$
F\colon G\operatorname{-}{\mathbf{Grp}}\to G\operatorname{-}{\mathbf{Sdp}}
$$

associates to any G-group morphism

$$
f\colon (H,\phi)\to (H',\phi')
$$

the group morphism \tilde{f} : $P = H \times G \rightarrow P' = H' \times G$ defined by

$$
f(h,g)=(f(h),g)
$$

for every $(h, g) \in P = H \rtimes G$.

If we restrict the category equivalence $F: G$ **-Grp** \rightarrow G**-Sdp** to the abelian objects, we get a category equivalence between the category Ab(G -**Grp**) and the category Ab(G-**Sdp**). But we have see in the proof of Theorem [3](#page--1-1).1 that the category Ab(G -**Grp**) is equivalent to the category **Z**G-Mod. Thus the category Ab(G-**Sdp**) is abelian. Its objects are the semidirect products $P = H \times G$ with H an abelian group. In particular, if (P, α, β), (P', α', β') are two objects of G-Sdp with H,H' abelian, then

$$
\text{Hom}_{G\text{-}\textbf{Sdp}}(\text{P,P}')
$$

is an abelian additive group. The addition $\,$ in $\,$ Hom $_{\rm G\text{-}Sdp}^{}$ (P, P $^\prime)\,$ is defined as follows. If $a, b \in Hom_G\text{-}\mathbf{Sdp}(\mathsf{P}, \mathsf{P}'),$ then

$$
(a+b)(p) = a(p)b(p)(\alpha'\beta(p))^{-1}
$$

for every $p \in P$. The zero element of the additive group

$$
\mathrm{Hom}_{\mathsf{G}\text{-}\mathbf{Sdp}}(\mathsf{P},\mathsf{P}')
$$

is α' β. The opposite of a is $-a$ defined by

$$
(-a)(p) = (a(p))^{-1} (\alpha' \beta(p))^2
$$

for every $p \in P$.

As we have already said at the beginning of this section, products in the category G-**Sdp** are very nice examples of subdirect products in the sense of Birkhoff. Let $(P_{\lambda}, \alpha_{\lambda}, \beta_{\lambda})$, $\lambda \in \Lambda$, be a family of objects in the category G-**Sdp**, and construct the pullback of the group morphisms β $_\lambda$: P $_\lambda$ → G. We denote it by $\prod_{\lambda \in \Lambda}^G$ P $_\lambda$. It is the subgroup of the direct product $\prod_{\lambda \in \Lambda} P_{\lambda}$ consisting of all the λ -tuples

$$
(p_\lambda)_{\lambda\in\Lambda}\in\prod_{\lambda\in\Lambda}P_\lambda
$$

such that

$$
\beta_{\lambda}(p_{\lambda}) = \beta_{\mu}(p_{\mu})
$$

for every $\lambda, \mu \in \Lambda$. Let $\alpha \colon G \to \prod_{\lambda \in \Lambda}^G P_\lambda$ be the mapping defined by $\alpha(g) = (\alpha_{\lambda}(g))_{\lambda \in \Lambda}$ for every $g \in G$ and $\beta: \prod_{\lambda \in \Lambda}^G P_{\lambda} \to G$ be the mapping defined by $\beta(p_\lambda)_{\lambda \in \Lambda} = \beta_{\lambda_0}(p_{\lambda_0})$, where λ_0 is any element of Λ. Then $(\prod_{\lambda \in \Lambda} G_{\lambda}, \alpha, \beta)$ is the product in G-**Sdp** of the family $(P_\lambda, \alpha_\lambda, \beta_\lambda)$, $\lambda \in \Lambda$. The projections $\pi_\mu \colon \prod_{\lambda \in \Lambda}^G P_\lambda \to P_\mu$ are the restrictions of the canonical projections $\prod_{\lambda \in \Lambda} P_{\lambda} \to P_{\mu}$.

For a finite family $(P_{\lambda}, \alpha_{\lambda}, \beta_{\lambda})$, $\lambda \in \Lambda$, of G-semidirect products

$$
P_\lambda = H_\lambda \rtimes G
$$

with the groups H_{λ} abelian groups (Λ finite), product and coproduct coincide, because the category Ab(G-**Sdp**) is additive. In this case, if we consider the mappings $\,\varepsilon_\mu\colon {\mathsf P}_\mu\to \prod_{{\lambda}\in\Lambda}^{\mathsf G} \mathsf P_{\lambda}$, defined by

$$
\epsilon_{\mu}(p_{\mu}) = (q_{\lambda})_{\lambda \in \Lambda},
$$

where $q_{\mu} = p_{\mu}$ and $q_{\lambda} = \alpha_{\lambda} \beta_{\mu} (p_{\mu})$ for $\lambda \neq \mu$, then $\pi_{\mu} \varepsilon_{\mu} = id_{P_{\mu}}$ and $\sum_{\lambda \in \Lambda} \varepsilon_{\lambda} \pi_{\lambda} = id_{\prod_{\lambda \in \Lambda}^G P_{\lambda}}$.

Let us pay specific attention to the abelian category Ab(G-**Sdp**). The monomorphisms (epimorphisms) in this abelian category are the injective (surjective) morphisms. Thus, for any two semidirect products P = $H \rtimes G$ and P' = $H' \rtimes G$ with H, H' abelian groups,

we say that P and P' belong to the same *monogeny class*, and write $[P]_m = [P']_m$, if there exist injective morphism $P \to P'$ and $P' \to P$ in the category G-Sdp. Dually, we say that P and P' belong to the same *epigeny class,* and write $[P]_e = [P']_e$, if there exist surjective morphisms $P \rightarrow P'$ and $P' \rightarrow P$ in G-**Sdp**.

Let $P = H \times G$ be a semidirect product with H an abelian group. We say that P is *biuniform* if H is a biuniform G-group with respect to the G-action defined by conjugation. From Theorem [3](#page--1-1).1, we immediately obtain that:

Theorem 4.1 *Let* G *be a group and*

 $P_i = H_i \rtimes G$ $(i = 1, 2, ..., n), P'_j = H'_j \rtimes G$ $(j = 1, 2, ..., t)$

be $n+t$ biuniform semidirect products with all the groups H_i , H'_j abelian *groups. Then the subdirect products*

$$
\prod_i^G P_i \text{ and } \prod_j^G P'_j
$$

are isomorphic (in the category $G-Sdp$) if and only if $n = t$ and there *exist two permutations* σ *and* τ *of* $\{1, 2, ..., n\}$ *such that* $[P_t]_m = [P'_c]$ $_{\sigma(i)}^{\prime}]_{\mathfrak{m}}$ and $[P_i]_e = [P'_i]$ $\mathcal{L}_{\tau(i)}^{\prime}]$ e for every i = 1,2,..., n.

5 Biuniform abelian normal subgroups of a group

We are now ready to generalize the results in Section [3](#page--1-2) to abelian biuniform normal subgroups of an arbitrary group P. Consider the following problem. Let P be any group and H an abelian normal subgroup of P. Then H is a P-group via conjugation, so that it is an abelian P-group. Thus H turns out to be a left **Z**P-module via the left scalar multiplication $p \cdot h = php^{-1}$ for every $p \in P$, $h \in H$. If H, H' are abelian normal subgroups of P, the set $\operatorname{Hom}_P(H, H')$ of all P-normal morphisms from H to H' , that is, the set of all group morphisms f: H \rightarrow H' such that f(php⁻¹) = pf(h)p⁻¹) ([[9](#page-31-3), Section 4] and [[2](#page-31-4), Introduction]), is an additive group. We say that two normal subgroups H, H' of P are P-isomorphic if there exists a P-normal group isomorphism $H \rightarrow H'$. The set End_P(H) of all P-normal endomorphisms of H is a ring. If the ring $End_P(H)$ is local, then H is indecomposable as a P-group, that is, it cannot be written as a direct product

of two non-trival normal subgroups of P. If $\text{End}_P(H)$ is semiperfect, then H is a direct product of finitely many indecomposable normal subgroups of P [[6](#page-31-5), Proposition 3.14], and the Krull-Schmidt Theorem applies, so that any two direct-product decompositions of H into indecomposable normal subgroups of P are P*-isomorphic,* that is, such a direct-product decomposition is unique up to bijective P-normal morphisms.

Thus let P be a group and $N(P)$ the set of all normal subgroups of P, so that $N(P)$ is a bounded complete modular lattice under inclusion. Let $\mathcal{N}_{ab}(P) \subseteq \mathcal{N}(P)$ be the set of all abelian normal subgroups of P. Then $\mathcal{N}_{ab}(P)$ is a partially ordered subset of $\mathcal{N}(P)$, and $\mathcal{N}_{ab}(P)$ is a union of intervals [1, H] of $\mathcal{N}(P)$, $H \in \mathcal{N}_{ab}(P)$. Here by the interval [1, H] we mean the set of all $H' \in N(P)$ with $H' \subseteq H$. Thus $N_{ab}(P)$ is a union of modular lattices, but is not a sublattice of $N(P)$, because if H, L \in N_{ab}(P), then H \vee L = HL is not necessarily abelian. Thus H ∨ L does not necessarily exist in $N_{ab}(P)$, but it does exist when $H \wedge L = H \cap L = 1$. More generally, if {H_i | i ∈ I} is a set of joinindependent abelian groups in the modular lattice $N(P)$ [[6](#page-31-5), p. 51], then $\bigvee_{i\in I} H_i$ (the upper bound in the complete lattice $\mathcal{N}(P)$) belongs to $N_{ab}(P)$. Notice that, applying Zorn's Lemma, every element of $\mathcal{N}_{ab}(P)$ is contained in a maximal element of $\mathcal{N}_{ab}(P)$.

When the group P is finite, the situation is very simple. For any abelian normal subgroup H of P, H is a finite left **Z**P-module, hence a left **Z**P-module of finite composition length. Thus Fitting's Lemma applies, so that, by the Krull-Schmidt Theorem [[6](#page-31-5), Corollary 2.23], any two direct-product decompositions of H into indecomposable normal subgroups of P are P-isomorphic.

Among the elements $H \in N_{ab}(P)$, we are particularly interested in the abelian normal subgroups H of P for which the interval [1, H] has Goldie dimension 1 and dual Goldie dimension 1. We will say that these abelian normal subgroups H of P are *biuniform*. Thus an abelian normal subgroup H of P is biuniform if and only if $H \neq 1$, the intersection of any two non-trivial normal subgroups of P contained in H is non-trivial and the product of any two normal subgroups of P properly contained in H is a proper subgroup of H.

For every biuniform abelian normal subgroup H of P, the endomorphism ring $\text{End}_P(H)$ has at most two maximal right ideals [[6](#page-31-5), Theorem 9.1]. If $\{H_1, \ldots, H_n\}$ is a join-independent set of abelian biuniform normal subgroups of P, we can apply the results in Section [3](#page--1-2) about the Weak Krull-Schmidt Theorem for P-groups (Theorem [3](#page--1-1).1) and describe the direct-product decompositions of the abelian normal subgroup

$$
H := H_1 \vee \ldots \vee H_n = H_1 \times \ldots \times H_n
$$

of P.

We say that two normal subgroups H , H' of P belong to the same *monogeny class,* and write $[H]_{m} = [H']_{m}$, if there exist a P-normal injective group morphism $H \rightarrow H'$ and a P-normal injective group morphism $H' \rightarrow H$. Dually, we say that H and H' belong to the same *epigeny class,* and write $[H]_e = [H']_e$, if there exist a P-normal surjective group morphism $H \rightarrow H'$ and a P-normal surjective group morphism $H' \rightarrow H$. From Theorem [3](#page--1-1).1, we immediately get that:

Theorem B *Let* P *be any group. Let*

 $H_1, \ldots, H_n, H'_1, \ldots, H'_t$

be n + t *biuniform abelian normal subgroups of* P*. Suppose that the products* $H_1 \dots H_n$, $H'_1 \dots H'_t$ are direct, that is, $H_1 \dots H_n = H_1 \times \dots \times H_n$ and $H'_1 \dots H'_t = H'_1 \times \dots \times H'_t$. Then the normal subgroups $H_1 \times \dots \times H_n$ and $H'_1 \times \ldots \times H'_t$ of P are P-isomorphic if and only if $n = t$ and there ex*ist two permutations* σ *and* τ *of* $\{1, 2, ..., n\}$ *such that* $[H_i]_m = [H'_{\sigma(i)}]_m$ *and* $[H_i]_e = [H'_{\tau(i)}]_e$ for every $i = 1, 2, ..., n$.

Remark 5.1 Notice that the automorphisms of the G-group G in the category of G-groups are exactly the central automorphisms of G [[2](#page-31-4), paragraph after Remark 3.2]. Coherently, the classical Theorem of Krull-Schmidt-Remak concerns the existence of a *central* automorphism of the group G of which we study the direct-product decompositions. In Theorem B, in a similar way, we get a P*-isomorphism*, that is, an isomorphism in the category of P-groups. More precisely:

Proposition 5.2 Let $G = H_1 \times ... \times H_n = H'_1 \times ... \times H'_n$ be two direct*product decompositions of a group* G*. The following conditions are equivalent:*

- (a) *There exists a central automorphism* φ *of* G *such that* $\varphi(H_i) = H_i'$ *for every* $i = 1, 2, ..., n$.
- (b) *There exists a* G-isomorphisms φ_i : $H_i \to H'_i$ for every $i = 1, 2, ..., n$.

Proof — If there is a central automorphism φ of G such that $\varphi(H_i) = H'_i$ for every $i = 1, 2, ..., n$, the matrix representation of φ

with respect to the two direct-product decompositions

$$
G = H_1 \times \ldots \times H_n = H'_1 \times \ldots \times H'_n
$$

of G [[9](#page-31-3), at the end of Section 4] is diagonal:

$$
\left(\begin{array}{ccc} \psi_{H_1',H_1} & \ldots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \ldots & \psi_{H_n',H_n} \end{array}\right).
$$

Since φ is a central automorphism, it is a normal automorphism [[19](#page-32-4), 3.3.6], namely, a G-group automorphism of the G-group G. It follows now easily that all the morphisms

$$
\phi_i:=\psi_{H_n',H_n}\colon H_i\to H_i'
$$

are G-isomorphisms. The converse is now easy. \Box

As an example of the situation studied in this section, we can take as our group P the semidirect product

$$
(U_{1,1}\oplus\ldots\oplus U_{n,n})\rtimes G,
$$

where the multiplicative group G and the additive groups

$$
U_{i,j}\ (i,j=1,2,\ldots,n)
$$

are those of the example constructed in Section [2](#page--1-3). The group G acts on the groups $U_{i,j}$ via left multiplication. Thus in

$$
P:=(U_{1,1}\oplus\ldots\oplus U_{n,n})\rtimes G
$$

the operation is defined by

$$
(h_1, \ldots, h_n, g)(h'_1, \ldots, h'_n, g') = (h_1 + gh'_1, \ldots, h_n + gh'_n, gg').
$$

The normal P-subgroup $U_{1,1} \oplus \ldots \oplus U_{n,n}$ of P decomposes in exactly n! non-isomorphic ways as a direct product (direct sum) of normal subgroups of P.

Notice that any indecomposable direct summand of a finite direct sum of uniserial left R-modules is a uniserial submodule [[18](#page-32-5)]. It follows that, in the previous example, if H is any normal indecomposable subgroup of P that is a direct summand of the normal subgroup

$$
U_{1,1}\oplus\ldots\oplus U_{n,n}
$$

of P, then H is uniserial as a P-group.

6 The G-set Hom(H,A)

We use the standard additive notation for the mappings between the multiplicative groups H and A. Thus if $f, f': H \rightarrow A$ are any two mappings, then $f + f' : H \to A$ is the mapping defined by

$$
(f+f^\prime)(x)=f(x)f^\prime(x)
$$

for every $x \in H$. If f and f' are group homomorphisms, then f+f' is a group homomorphism if and only if $f(x)$ commutes with $f'(y)$ for all $x, y \in H$, that is, if and only if the subgroups $f(H)$ and $f'(H)$ of A centralize each other. The identity endomorphisms and the trivial homomorphisms will be denoted by id and 0, respectively, so that id $f = f$ id $= f$ and $f + 0 = 0 + f = f$. Thus, on the set Hom(H, A), there is a partially defined operation $+$, as follows. Set

$$
S := \{ (f, f') \in Hom(H, A) \times Hom(H, A) \mid [f(H), f'(H)] = 1 \}
$$

and, for every $(f, f') \in S$, set

$$
(f+f')(h)=f(h)f'(h)\\
$$

for every $h \in H$. Then we have a mapping $+: S \to Hom(H, A)$.

Let G and A be groups and let H be a G-group. Let

$$
\lambda_g\colon H\to H
$$

denote left multiplication by g for every $g \in G$. Consider the set $Hom(H, A)$ of all group morphisms of H into A. Then $Hom(H, A)$ becomes a G-set if we define as left scalar multiplication the mapping

$$
\cdot\colon G\times Hom(H,A)\to Hom(H,A)
$$

defined by $gf = f \circ \lambda_{q^{-1}}$ for every $g \in G$, $f \in Hom(H, A)$.

For every $f \in Hom(H, A)$, the subgroup $f(H)$ of A is a G-group in a natural way, and we say that the morphism f is G*-uniserial* if f(H) is a uniserial G-group. Thus a morphism $f: H \rightarrow A$ is G-uniserial if and only if for every $h, h' \in H$ there exists $g \in G$ such that either $f(gh) = f(h')$ or $f(gh') = f(h)$.

Recall that if $N_1,..., N_n$ are normal proper subgroups of a group H, then N_1, \ldots, N_n are said to be *coindependent* if

$$
N_i\bigg(\bigcap_{j\neq i}N_j\bigg)=H
$$

for every $i = 1, 2, \dots, n$. Equivalently, if the canonical mapping

 $H \to H/N_1 \times ... \times H/N_n$, $h \mapsto (hN_1,...,hN_n)$,

is an onto mapping [[9](#page-31-3), Lemma 3.7].

We say that a finite family $f_1, \ldots, f_n : H \to A$ of group morphisms is *independent* if:

- (1) $f_i \neq 0$ for every $i = 1, 2, \ldots, n;$
- (2) the finite family of subgroups $f_i(H)$ of A is independent (that is, if the subgroup of A generated by

$$
f_1(H) \cup \ldots \cup f_n(H)
$$

is the direct product $f_1(H) \times ... \times f_n(H)$;

(3) the normal subgroups ker f_1, \ldots , ker f_n of H are coindependent.

Notice the analogy between this notion of independent finite family of morphisms $H \rightarrow A$ and the notion of complete family of orthogonal idempotents in End(H). For any group H, there is a bijection between the set of all n-tuples (H_1, \ldots, H_n) of normal subgroups of H with H = H₁ \times ... \times H_n and the set of all n-tuples (e_1, \ldots, e_n) of normal endomorphisms of H with $e_1 + ... + e_n = id_H$ and $e_i e_i = 0$ for $i \neq j$ [[19](#page-32-4), 3.3.3]. Any family e_1, \ldots, e_n of non-zero normal endomorphisms of H with $e_1 + ... + e_n = id_H$ and $e_i e_i = 0$ for $i \neq j$ is clearly independent. Conversely, it follows from the next Lemma that if e_1, \ldots, e_n is an independent family of endomorphisms of H with $e_1 + \ldots + e_n = id_H$, then $H = e_1(H) \times \ldots \times e_n(H)$.

Lemma 6.1 If $f_1, \ldots, f_n : H \to A$ *is an independent family of group morphisms, then:*

- (a) The sum $f_1 + ... + f_n$: $H \rightarrow A$ *is a group morphism.*
- (b) The image of $f_1 + ... + f_n$ is $f_1(H) \times ... \times f_n(H)$.

PROOF — Statement (a) easily follows from condition (2) of the definition of independent family. For (b), the image of the morphism

$$
f_1+\ldots+f_n
$$

is contained in the subgroup of A generated by the union

$$
f_1(H) \cup \ldots \cup f_n(H),
$$

which is equal to $f_1(H) \times ... \times f_n(H)$.

Conversely, let a be an element in $f_1(H) \times ... \times f_n(H)$, so that

$$
\mathfrak{a} = \mathfrak{f}_1(\mathfrak{h}_1) \dots \mathfrak{f}_n(\mathfrak{h}_n)
$$

for suitable $h_1, \ldots, h_n \in H$. Since the kernels are coindependent, there exists $h \in H$ such that $h \equiv h_i \pmod{ker f_i}$ for every $i = 1, \ldots, n$. Thus $f_i(h) = f_i(h_i)$ for all indices i. Therefore

$$
a = f_1(h_1) \dots f_n(h_n) = f_1(h) \dots f_n(h) =
$$

(f₁ + ... + f_n)(h) ∈ (f₁ + ... + f_n)(H).

Remark 6.2 In our previous paper [[2](#page-31-4)], we stressed the several analogies and the differences between the categories R-Mod and G -**Grp**, for instance the analogies between the regular objects $_RR$ and $_GG$. One of the differences concernes idempotents endomorphisms. Namely, if RM is a left module and $E := End(RM)$ is its endomorphism ring, then there is a one-to-one correspondence φ between the set I of all idempotent elements of E and the set

$$
\{(A,B)\mid A,B\leqslant {_RM},\ _RM=A\oplus B\}
$$

of all pairs (A, B) of submodules of RM whose sum is direct and equal to _RM. If $e \in I$, the corresponding pair is

$$
\varphi(e) = (\ker e, e({}_R M)).
$$

The analogous result in the category **Grp** of groups is the following. Let H be a group and I be the set of all idempotent endomorphisms of H. There is a one-to-one correspondence φ between I and the set

$$
\{(A,B)\mid A,B\leqslant H,\ H=A\rtimes B\}
$$

of all pairs (A, B) of subgroups of H such that H is the semidirect product of its normal subgroup A and its subgroup B. If $e \in I$, the corresponding pair is $\varphi(e) = (\ker e, e(H)).$

If I' is the set of all idempotent normal endomorphisms of H, then the one-to-one correspondence φ of the previous paragraph restricts to a one-to-one correspondence between I' and the set

$$
\{\,(A,B)\mid A,B\leqslant H,\;H=A\times B\,\}
$$

of all pairs (A, B) of normal subgroups of H such that H is the direct product of its normal subgroups A and B.

Now let G be a group and H be a G-group. If $e: H \rightarrow H$ is an idempotent G-group endomorphism, then both the kernel and the image of e are G-subgroups of H and $H = \text{ker } e \rtimes e(H)$. Thus the correspondence ϕ restricts to a one-to-one correspondence between the set of all idempotent endomorphisms of H in G -**Grp** and the set of all pairs (A, B) of G-subgroups of H such that H is a semidirect product (as a group) of its normal subgroup A and its subgroup B.

In the particular case of a group P and a normal subgroup H of P, if $e: H \rightarrow H$ is an idempotent P-normal endomorphism, then both the kernel and the image of e are normal subgroups of P and H = ker $e \times e(H)$. Thus the correspondence φ restricts to a oneto-one correspondence between the set of all idempotent P-normal endomorphisms of H and the set of all pairs (A, B) of normal subgroups of P such that H is a direct product $H = A \times B$ (direct product as a group).

Let G and A be groups and let H be a G-group. We say that

$$
f,f'\in Hom(\mathsf{H},\mathsf{A})
$$

belong to the same *monogeny class*, and write $[f]_{m} = [f']_{m}$, if the G-groups $f(H)$ and $f'(H)$ belong to the same monogeny class. Equivalently, if there exist an injective group morphism

$$
\alpha\colon f(H)\to f'(H)
$$

and an injective group morphism β : f'(H) \rightarrow f(H) such that the diagrams

commute. Dually for $f, f' \in Hom(H, A)$ in the same *epigeny class*.

Finally, we say that $f, f' \in Hom(H, A)$ are *equivalent*, and write $f \sim f'$, if the G-groups $f(H)$ and $f'(H)$ are isomorphic, that is, if there exists a group isomorphism γ : f(H) \rightarrow f'(H) which makes the diagram

commute.

Theorem 6.3 *Let* G *and* A *be groups and let* H *be a* G*-group. Suppose* ϵ *ither* A abelian or H abelian. Let f_1, \ldots, f_n and f'_1, \ldots, f'_t be two indepen*dent families of* G*-uniserial morphisms in* Hom(H, A)*. Then*

$$
f_1+\ldots+f_n\sim f_1'+\ldots+f_t'
$$

if and only if $n = t$ *and there exist two permutations* σ *and* τ *of* {1, 2, ..., n } *such that* $[f_i]_m = [f'_i]$ $\binom{1}{\sigma(i)}$ _m and $[f_i]_e = [f'_i]$ $\mathcal{F}_{\tau(i)}]$ e for every i = 1,2,...,n.

PROOF — Set $f := f_1 + ... + f_n$ and $f' := f'_1 + ... + f'_t$. We have that $f \sim f'$ if and only if the G-groups $f(H)$ and $f'(H)$ are isomorphic. Since the families are independent, we know that

$$
f(H) = f_1(H) \times \ldots \times f_n(H)
$$

and $f'(H) = f'_1(H) \times ... \times f'_t(H)$ (Lemma [6](#page-21-0).1), where these directproduct decompositions are direct-product decompositions in the abelian category Ab(G -**Grp**). Thus f ∼ f 0 if and only if the direct products $f_1(H) \times ... \times f_n(H)$ and $f'(H) = f'_1(H) \times ... \times f'_t(H)$ of uniserial abelian G-groups are isomorphic. It is now easy to conclude from Theorem [3](#page--1-1).1. \Box

The most interesting case of G-set Hom (H,A) is when H=G bA, as follows. The construction of the G-group $G \triangleright A$ has been studied with deep results in [[3](#page-31-6), pp. 245–248], [[4](#page-31-7), p. 45], [[15](#page-32-6), p. 2571] and [[16](#page-32-7)], and the properties we present here are taken from those four articles. Let G and A be any two groups and let $G * A$ be their free product. The identity morphism $id_G: G \rightarrow G$ and the trivial morphism

$$
0\colon A\to G
$$

define a group morphism $id_G *0: G * A \rightarrow G$. Let $\varepsilon_G : G \rightarrow G * A$ be the canonical embedding of G into the free product, so that we get a G-semidirect product (pointed object)

$$
G \stackrel{\epsilon_G}{\longrightarrow} G \ast A \stackrel{id_G \ast 0}{\longrightarrow} G.
$$

Let G $\flat A$ be the kernel of $\mathrm{id}_G * 0$: $G * A \to G$. Then $G * A$ splits as a semidirect product $G * A = (G \nmid A) \rtimes G$. The group morphism

$$
id_G * 0 \colon G * A \to G
$$

maps a word

 $g_1a_1g_2a_n \dots g_na_n \in G*A$

to

$$
g_1g_2\ldots g_n
$$

. Thus $G \triangleright A$ consists of all words

 $g_1a_1g_2a_n \dots g_na_n \in G*A$

with $g_1g_2...g_n = 1_G$. By induction on n, it is easy to see that a word $q_1q_1q_2q_n...q_na_n \in G*A$ is in $G\flat A$ if and only if it can be written as a product of finitely many words of the form

$$
gag^{-1} \quad (g \in G, a \in A).
$$

In particular, $G \triangleright A$ is a G-group (G acts on $G \triangleright A$ via conjugation).

Every element of G_bA can be written in a *unique* way as a product

$$
(g_1a_1g_1^{-1})(g_2a_2g_2^{-1})\dots(g_na_ng_n^{-1})
$$

with $q_i \neq q_{i+1}$ for every $i=1,\ldots, n-1$ and $a_i \neq 1$ for every $i=1,\ldots, n$.

More precisely, $G \triangleright A$ is the free product of $|G|$ copies of A, as the following proposition shows.

Proposition 6.4 *Let* G, A, L *be groups. For every family of group morphisms* $\psi_{\mathfrak{a}}: A \to L$ *(g* \in *G), there exists a unique group morphism*

$$
\psi\colon \mathsf{G}\!\flat\!\mathsf{A}\to \mathsf{L}
$$

 \mathfrak{such} that $\psi(\mathfrak{gag}^{-1}) = \psi_{\mathfrak{g}}(\mathfrak{a})$ for every $\mathfrak{g} \in \mathsf{G}$, $\mathfrak{a} \in \mathsf{A}$.

PROOF $-$ If such a group morphism ψ exists, it is unique because the elements gag^{-1} generate G $\forall A$. In order to show that ψ is well defined, it suffices to notice that $(\mathfrak{gag}^{-1})(\mathfrak{g}a'\mathfrak{g}^{-1})\!=\!\mathfrak{gaa'}\mathfrak{g}^{-1}$ and $\psi_g(a)\psi_g(a') = \psi_g(a a')$). \Box

If $F_{G\times A}$ is the free group on the cartesian product $G\times A$, there is a canonical group epimorphism

$$
F_{G\times A}\to G\flat A, \quad (g,a)\mapsto gag^{-1},
$$

whose kernel is the normal subgroup of $F_{G\times A}$ generated by the subset

$$
\{(g, a)(g, a')(g, aa')^{-1} | g \in G, a, a' \in A\}
$$

of $F_{G\times A}$ (show by induction on n that if

$$
(g_1, a_1)^{\pm 1} \dots (g_n, a_n)^{\pm 1} \in F_{G \times A}
$$

is in the kernel, then $(\mathfrak{g}_{1},\mathfrak{a}_{1})^{\pm 1}\ldots(\mathfrak{g}_{\mathfrak{n}},\mathfrak{a}_{\mathfrak{n}})^{\pm 1}$ belongs to the subgroup generated by the elements $(g, a)(g, a')(g, aa')^{-1}$).

As we have already said, $G \triangleright A$ is a G-group. It has the following property. If we fix any mapping $\varphi: G \to End(A)$, we can apply Proposition [6](#page-25-0).4 to the groups G, A, A and the family of group morphisms

$$
\phi(g)\colon A\to A,
$$

getting a unique group morphism $\psi: G \flat A \to A$ such that

$$
\psi(gag^{-1})=\phi(g)(a)
$$

for every $g \in G$, $a \in A$. Since $G \nmid A$ is the coproduct of $|G|$ copies of A, it is easily seen that this assignment $\varphi \mapsto \psi$ is a bijection

$$
Hom_{\mathbf{Set}}(G,End(A)) \to Hom_{\mathbf{Grp}}(G\,\flat A, A).
$$

Let λ_{α} : G \rightarrow G denote left multiplication by g, for every $g \in G$. Endow the set $Hom_{Set}(G, End(A))$ with a G-set structure defining as left scalar multiplication the mapping:

$$
\cdot\colon G\times Hom_{\textbf{Set}}(G,End(A))\rightarrow Hom_{\textbf{Set}}(G,End(A))
$$

where $gf = f \circ \lambda_{q-1}$ for every $g \in G$, $f \in Hom_{Set}(G, End(A))$. Then the bijection above becomes a G-set isomorphism

$$
Hom_{\mathbf{Set}}(G,End(A)) \simeq Hom_{\mathbf{Grp}}(G\,\flat A, A).
$$

In this G-set isomorphism, the elements ϕ∈Hom**Set**(G, End(A)) that are group homomorphisms $\varphi: G \to Aut(A)$ corresponds to the group morphisms $\psi \in \text{Hom}_{\text{Grp}}(G \flat A, A)$ such that the two diagrams

and

N \mathcal{A}

 $\begin{array}{c}\n\epsilon_A \end{array}$ id_A ❄ ❄ ❄ ❄ ❄ ❄ ❄ ❄

/A

ψ

ε^A

 $\mathsf{G} \mathsf{b} \mathsf{A}$

If $\varphi: G \to Aut(A)$ is any group morphism, so that we have a Ggroup structure on A, then the G-group A is a homomorphic image of the G-group G \flat A. In fact, the corresponding ψ : G \flat A \to A, defined by $\psi(gag^{-1}) = \varphi(g)(a)$ for every $g \in G$, $a \in A$, is a G-group epimorphism.

Now suppose that G is a group and A is an abelian G-group that is a direct product $A = A_1 \times ... \times A_n$ of finitely many uniserial (or biuniform) G-subgroups $\mathcal{A}_{\mathfrak{t}}$. Let $\psi\colon \mathsf{G}\flat\mathsf{A}\ \to\ \mathsf{A}\,$ be the corresponding G-epimorphism and e_i : $A \rightarrow A$ the idempotent endomorphisms

corresponding to the direct-product decomposition

$$
A = A_1 \times \ldots \times A_n.
$$

Then $f_1 := e_1 \psi, \ldots, f_n := e_n \psi$ is an independent family of morphisms with $f_1 + ... + f_n = \psi$, and Theorem [6](#page-23-0).3 applies.

7 Final remarks

We conclude this article with three remarks.

Remark 7.1 Let us recall a construction that appears in our previous paper [[2](#page-31-4), Section 2]. Let **C** be any category and M any monoid. Define the category **C**^M of all M-objects in **C**. It is the category of all pairs (C, φ) , where C is an object in **C** and $\varphi : M \to \text{End}(C)$ is a monoid morphism. There is a forgetful functor $U: \mathbb{C}^M \to \mathbb{C}$, which associates to every object (C, φ) of C^M the object C of C. If C has M-indexed coproducts, the forgetful functor $U: \mathbb{C}^M \to \mathbb{C}$ has a left adjoint F: $C \rightarrow C^M$, which is defined on objects by $F(C) = M \cdot C$, where $M \cdot C$ is the M-indexed coproduct of $|M|$ copies of C.

Now suppose that **C** has M-indexed products. This occurs when M is a group G and $C = Grp$, where, for any family of groups H_q indexed by the elements g of G, the M-indexed product is the direct product of the groups H_q. The forgetful functor $U: \mathbb{C}^M \to \mathbb{C}$ then also has a right adjoint L: $C \rightarrow C^M$. The functor L is defined on objects by $L(C) = (C^{\hat{M}}, \varphi)$, where C^M is the M-indexed product of $|M|$ copies of C, and $\varphi: M \to \text{End}(\mathcal{C}^M)$ is constructed as follows. For every $m \in M$, let $\pi_m : C^M \to C$ be the projection. Now if $m \in M$ is fixed and we consider the family of morphisms

$$
f_{m'} := \pi_{m'm}: C^M \to C, \quad m' \in M,
$$

we get a unique morphism $f := \varphi(m) : C^M \to C^M$ such that

$$
\pi_{m'}\phi(m)=\pi_{m'm}
$$

for every $m' \in M$. Thus we get a mapping

$$
\phi\colon M\to End(C^M)
$$

such that

$$
\pi_{\mathfrak{m}'}\varphi(\mathfrak{m})=\pi_{\mathfrak{m}'\mathfrak{m}}
$$

for every $m, m' \in M$, and it is easily checked that φ is a monoid morphism.

The action of L on the morphisms of **C** is defined as follows. Let C and C' be two objects in **C** and $\alpha: C \rightarrow C'$ be a morphism. Consider $L(C) = (C^{\mathcal{M}}, \varphi)$ and $L(C') = (C'^{\mathcal{M}}, \varphi')$. For each $\mathfrak{m} \in \mathcal{M}$, let

 $\pi_{\mathfrak{m}}: C^{\mathcal{M}} \to C \text{ and } \pi'_{\mathfrak{m}}: C^{\prime^{\mathcal{M}}} \to C^{\prime}$

be the projections. Given the family of morphisms

$$
\alpha_m = \alpha \circ \pi_m \colon C^M \to C',
$$

L(α) is the unique morphism L(α): $\textsf{C}^{\textsf{M}}\to \textsf{C'}^{\textsf{M}}$ such that

$$
\pi'_m L(\alpha) = \alpha_m = \alpha \pi_m
$$

for every $m \in M$, so

$$
\phi'(m)L(\alpha) = L(\alpha)\phi(m)
$$

for every $m \in M$, i.e., $L(\alpha)$ is a morphism $L(C) \to L(C')$ in $\mathbf{C}^{\mathbf{M}}$.

Thus the forgetful functor U: $C^{\hat{M}} \rightarrow C$ has both a right adjoint and a left adjoint, provided that **C** has M-indexed coproducts and products.

We can apply this construction to the category $C = Ab$ of abelian groups, which has arbitrary products and coproducts, and to an arbitrary monoid M. Then the category Ab^M is clearly equivalent to the category **Z**M-Mod, so that it is easy to adapt Theorem A to this case of the category of all M-objects in Ab.

Notice that the Ω-groups considered in [[19](#page-32-4), 3.3.6] are exactly the objects of the category C^M , where M is the free monoid on the set Ω and **C** is the category **Grp**.

Remark 7.2 A behaviour similar to that studied in this paper takes place in the setting of Hopf algebras [[2](#page-31-4), Subsection 4.2]. Let k be a field fixed once and for all. Let $(A, m_A, u_A, \Delta_A, \epsilon_A, S_A)$ be a Hopf algebra. Recall that a Hopf algebra

$$
(M, m_M, u_M, \Delta_M, \varepsilon_M, S_M)
$$

is a *left* A*-module Hopf algebra* [[2](#page-31-4), Definition 4.2] if

(a) M is a left A-module, i.e., a left module over the algebra (A, m_A, u_A) , via

$$
A\otimes M\to M,\quad \mathfrak{a}\otimes x\mapsto \mathfrak{a}\cdot x.
$$

(b) m_M , u_M , Δ_M and ϵ_M are left A-module morphisms.

Let A -ModH be the category of all left A-module Hopf algebras. Here the morphisms are the mappings that preserve both the left A-module structure and the Hopf algebra structure. For any G-group H, the group algebras kG and kH are Hopf algebras and, extending by k-bilinearity the left scalar multiplication $G \times H \rightarrow H$ to a left scalar multiplication kG \otimes kH \rightarrow kH, the group algebra kH becomes a left kG-module Hopf algebra. Now the category of commutative and cocommutative Hopf algebras is an abelian category ([[20](#page-32-8), Corollary 4.16], or [[17](#page-32-9), Theorem 4.3]). More generally, the category of cocommutative Hopf algebras over a field of characteristic zero is semi-abelian [[11](#page-31-8)], and the abelian objects in this semi-abelian category are the commutative and cocommutative Hopf algebras [[21](#page-32-10)]. It would be therefore natural to restrict our attention to commutative and cocommutative Hopf algebras and consider, for a fixed Hopf algebra A, the left A-module Hopf algebras M that are commutative and cocommutative, seeing if a weak form of the Krull-Schmidt Theorem holds in this case. Notice that if M , M' are commutative and cocommutative Hopf algebras, then the sum of two morphisms

$$
f,f'\in Hom(M,M')
$$

is given by the convolution product ∗ defined by

$$
(\mathsf{f} \ast \mathsf{g})(x) = \mathfrak{m}_{M'} \circ (\mathsf{f} \otimes \mathsf{f}')(\Delta_M x)
$$

for all $x \in M$. Also notice that monomorphisms in the category of cocommutative Hopf algebras are injective mappings, epimorphisms are surjective mappings and coproducts are tensor products over the base field [[20](#page-32-8), proof of Theorem 4.4]. For instance, from our example in Section [2](#page--1-3), we get n^2 Hopf algebras kU_{i,j}, i, j = 1, ..., n, which are left kG-module Hopf algebras, such that

$$
\text{kU}_{1,1}\otimes \text{kU}_{2,2}\otimes\ldots\otimes \text{kU}_{n,n}
$$

$$
\simeq \mathrm{kU}_{\sigma(1),\tau(1)} \otimes \mathrm{kU}_{\sigma(2),\tau(2)} \otimes \ldots \otimes \mathrm{kU}_{\sigma(n),\tau(n)}
$$

as left kG-module Hopf algebras for every pair of permutations σ, τ of $\{1, 2, ..., n\}$. For every i, j, k, $\ell = 1, 2, ..., n$, we have that

$$
[kU_{i,j}]_m=[kU_{k,\ell}]_m
$$

if and only if $i = k$, and $[kU_{i,j}]_e = [kU_{k,\ell}]_e$ if and only if $j = \ell$.

Remark 7.3 There are versions of the Weak Krull-Schmidt Theorem not only for biuniform modules, but also for several other classes of modules, like cyclically presented modules over a local ring [[1](#page-31-0)], or kernels of morphisms between indecomposable injective modules [[8](#page-31-2)]. For the general categorical pattern, see [[10](#page-31-9)], and for a survey about these topics, see [[7](#page-31-10)]. For instance, let us describe the behaviour of kernels of morphisms between indecomposable injective modules.

For a right module A_R over a ring R, let $E(A_R)$ denote the injective envelope of A_R . Two modules A_R and B_R are said to *have the same upper part*, denoted by $[A_R]_u = [B_R]_u$, if there exist a morphism

$$
\phi\colon E(A_R)\to E(B_R)
$$

and a morphism

 $\psi: E(B_R) \to E(A_R)$

such that $\varphi^{-1}(B_R) = A_R$ and $\psi^{-1}(A_R) = B_R$.

Theorem 7.4 (Weak Krull-Schmidt Theorem [[8](#page-31-2)]) *Let*

$$
\varphi_i\colon E_{i,0}\to E_{i,1} (i=1,2,\ldots,n)
$$

and

$$
\phi'_j\colon E'_{j,0}\to E'_{j,1}\ (j=1,2,\ldots,t)
$$

be n + t *non-injective morphisms between indecomposable injective right modules* $E_{i,0}$, $E_{i,1}$, $E'_{j,0}$, $E'_{j,1}$ over an arbitrary ring R. Then the direct $sum \in \mathfrak{p}_{\mathfrak{i}=0}^{\mathfrak{n}}$ ker $\varphi_{\mathfrak{i}}$ *and* $\oplus_{\mathfrak{j}=0}^{\mathfrak{t}}$ ker $\varphi_{\mathfrak{j}}'$ *are isomorphic* R-modules if and only $if n = t$ *and there exist two permutations* σ , τ *of* $\{1, 2, ..., n\}$ *such that*

$$
[\ker \varphi_i]_m = [\ker \varphi'_{\sigma(i)}]_m \text{ and } [\ker \varphi_i]_u = [\ker \varphi'_{\tau(i)}]_u
$$

for every $i = 1, 2, ..., n$.

It is therefore possible to modify the results in this paper substituting biuniform and uniserial modules with these kernels of morphisms between indecomposable injective modules, getting very similar results.

R E F E R E N C E S

- [1] B. AMINI – A. AMINI – A. FACCHINI: "Equivalence of diagonal matrices over local rings", *J. Algebra* 320 (2008), 1288–1310.
- [2] M.J. ARROYO PANIAGUA – A. FACCHINI: "Category of G-Groups and its Spectral Category", *Comm. Algebra* (2016), to appear; DOI:10.1080/00927872.2016.1222409.
- [3] F. BORCEUX – G. JANELIDZE – G.M. KELLY: "Internal object actions", *Comment. Math. Univ. Carolin.* 46 (2005), 235–255.
- [4] D. BOURN – G. JANELIDZE: "Protomodularity, descent, and semidirect products", *Theory Appl. Categ.* 4 (2) (1998), 37-46.
- [5] A. Facchini: "Krull-Schmidt fails for serial modules", *Trans. Amer. Math. Soc.* 348 (1996), 4561–4575.
- [6] A. FACCHINI: "Module Theory. Endomorphism Rings and Direct Sum Decompositions in some Classes of Modules", *Birkhäuser*, Basel (2010).
- [7] A. FACCHINI: "Direct-sum decompositions of modules with semilocal endomorphism rings", *Bull. Math. Sci.* 2 (2012), 225–279.
- [8] A. FACCHINI – S. ECEVIT – M. T. KOŞAN: "Kernels of morphisms between indecomposable injective modules", *Glasgow Math. J.* 52 (2010), 69–82.
- [9] A. FACCHINI – A. LUCCHINI: "The Krull-Schmidt Theorem holds for biuniform groups", to appear.
- [10] A. FACCHINI – P. Příhoda: "The Krull-Schmidt Theorem in the case two", *Algebr. Represent. Theory* 14 (2011), 545–570.
- [11] M. GRAN – G. KADJO – J. VERCRUYSSE: "A torsion theory in the category of cocommutative Hopf algebras", *Appl. Categ. Structures* (2016), published online.
- [12] A.V. JATEGAONKAR: "A counter-example in ring theory and homological algebra", *J. Algebra* 12 (1969), 418–440.
- [13] C.E. LINDERHOLM: "A group epimorphism is surjective", *Amer. Math. Monthly* 77 (1970), 176–177.
- [14] S. Mac Lane: "Categories for the Working Mathematician", Second Edition, *Springer*, New York (1998).
- [15] S. Mantovani – G. Metere: "Normalities and commutators", *J. Algebra* 324 (2010), 2568–2588.
- [16] S. MANTOVANI – G. METERE: "Internal crossed modules and Peiffer condition", *Theory Appl. Categ.* 23 (2010), 113–135.
- [17] K. Newman: "A correspondence between bi-ideals and sub-Hopf algebras in cocommutative Hopf algebras", *J. Algebra* 36 $(1975), 1-15.$
- [18] P. Příhoda: "Weak Krull-Schmidt theorem and direct sum decompositions of serial modules of finite Goldie dimension", *J. Algebra* 281 (2004), 332–341.
- [19] D.J.S. ROBINSON: "A Course in the Theory of Groups", Second Edition, *Springer*, New York (1996).
- [20] M. TAKEUCHI: "A correspondence between Hopf ideals and sub-Hopf algebras", *Manuscripta Math.* 7 (1972), 251-270.
- [21] C. VESPA – M. WAMBST: "On some properties of the category of cocommutative Hopf algebras", to appear.

María José Arroyo Paniagua Departamento de Matemáticas Universidad Autónoma Metropolitana - Iztapalapa 09340, D.F. (México) e-mail: mja@xanum.uam.mx

Alberto Facchini Dipartimento di Matematica Università di Padova 35121 Padova (Italy) e-mail: facchini@math.unipd.it