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Abstract

Suppose G is a group with finite Hirsch number h modulo the k-th term of its upper

central series. The Hirsch number of the k + 1-th term of the lower central series of G
is known to be finite and of order bounded in terms of h and k. Here we give simpler

proofs leading to simpler and sharper bounds. In particular and perhaps surprisingly,

we show that the Hirsch number of the h + 2k + 1-th term of the lower central series
of G is bounded by h(h+ 3)/2; in particular it is bounded independently of k.
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1 Introduction

Let G be any group. Then G has finite Hirsch number the integer h
if G has an ascending series exactly h of whose factors are infinite
cyclic, the remaining factors of the series being locally finite; h here
is independent of the choice of series. The upper central series of G
we denote by {(i(G)}i>0 and the lower central series of G we de-
note by {in}i>1. We are interested here in the effect on y**'1G
of G/Cx(G) having finite Hirsch number, k here and throughout the
paper being an integer. Also the Hirsch number of G we denote by
hn(G) and the (Prufer) rank (the upper bound over the finitely gen-
erated subgroups X of G of the minimal number of generators of X)
by rk(G).
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Let ni(r) denote the least integer such that if G is a group with
hn(G/%(G)) < r finite, then hn(y**1G) < 1y (r); we will see in a
moment that ny (1) is an integer. If k = 0, then G/(x(G) = G = v1G,
so No(r) = rforall r > 0. If r = 0, then G/Ck(G) is locally finite,
so Y**1G is locally finite (e.g. see [3] 4.21 and p.115) and hence
Nk (0) =0 for all k > 0. Also

rr—1)/2<m(r) <r(r+1)/2 forallr >0,

the first inequality coming from the free nilpotent group of class 2
on r generators and the second from Theorem 3.b) of [8]. Finally note
that directly from its definition it follows that each 1y (r) is mono-
tonic increasing in .

Theorem 1 Consider the integersk > 1, v > 0 and e = 25— Then

Me(r) <t (1) +me 1 ()2 +mi ().

Further if v > 4, then (1) < 26 T (1) < re(r+1)¢/2 and ifr <4,
then ni (r) < 267 110€.

The first claim for 1y (r) in Theorem 1 is the main part of the the-
orem. Clearly iteration of it for any specific k will produce a bound,
but a very complicated bound, for ny(r) in terms of k, r and 1y ()
that lies between 17 ()¢ and, if v > 4, 267 (r)¢. Theorem 7.1.25
of [1] also gives a bound ny (1) for ny () defined as follows: set

ng(r) = (5% +5r—1)/2
and for each k > 2 set
(1) = 1 (1) (572 (1 +1)/2 4+ 5ng_1 (1) +5ng_1 (1) = 1).

It follows clearly from Theorem 1 that 1y (r) < ny(r) for all k > 1
and r > 0. Hence [1] Theorem 7.1.25 is an immediate corollary of
our Theorem 1 above.

If G is a group with hn(G/{x(G)) = r finite, then by Theorem 1
there exists N normal in G with G/N nilpotent of class bounded by k
and hn(N) bounded, but in terms of both k and r. We can do things
the other way round and choose N with the class of G/N bounded
in terms of k and r and hn(N) bounded by a function of r only.
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Theorem 2 Let G be a group and k and v non-negative integers with
hn(G/(k(G)) < r. Then

hn(v2*tH1G) < v+ (r) < v(r+3)/2.

Moreover unless k= r= 0 we have hn(y?*T7G) < r+n;(r) < r(r+3)/2.

Now 7.1.33 of [1] states that under the hypotheses of Theorem 2
the nilpotent residual GN of G has Hirsch number at most

(512 451+ 1)/2.

But GN trivially lies in y?**7+'G, so [1] 7.1.33 is an immediate con-
sequence of Theorem 2 and with the improved bound r(r + 3)/2.

Below 1(G) denotes the unique maximal locally finite normal sub-
group of a group G and d(G) denotes the minimal number of gener-
ators of G, so

rk(G) = sup{d(X) : X < G, X finitely generated}.

Let G be a group with t(G) = (1). If h = hn(G) is finite, then G
is soluble-by-finite with rk(G) < [7h/2] + 1 (see Theorem 3.a) of [8])
and if G is soluble-by-finite with r = rk(G) finite, then hn(G) < 2r.
Thus we should expect some sort of analogue of Theorem 1 for rank.

Now (f’, L)(AF) denotes the smallest class of groups containing
all abelian groups and all finite groups that is closed under the as-
cending series operator P and the local operator L. It is in fact a very
large class of groups indeed containing for example all locally solu-
ble groups and all locally finite groups. Also it contains every group
with finite Hirsch number. It is extensively studied in [8].

For non-negative integers k and r let p (r) denote the least integer
such that for all (P, L) (AF)-groups G with rk(G/{x(G)) < r we have
rk(y*t1G) < pk(r). Here p is the analogue of n. Clearly po(r) = for
all r > 0 and ug(0) = 0 = pi (1) for all k > 1. Also by Theorem 1.b)
of [8] we have

w(r) <r9r+1)/24+m(m—1) form=r(1—[-log,]) <17

Now Kurdachenko and Otal in [2] prove that py(r) is bounded by
some recursively-defined function of k and r only. Here we present
the following improvement (the bound in Theorem 3 comes from the
recurrence relation py (r) < ru—q(r) + 11 (r) while the bound in [2]
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effectively uses (1) < rpg—1(v) 4+ w1 (Hi—1(1))).

Theorem 3 Forall k > 1 and r > 0 we have
(™) < (T 4+r4+r2 . 4+ Dy ().

Theorem 4 Let F be any field not containing a square root of —1 and with
char F # 2. If G is a 2-subgroup of GL(n, F), then G has rank at most n.

Obviously the fields most of interest to us in this context are the
rationals and the reals. Trivially for any field F with charF # 2,
the general linear group GL(n, F) contains a diagonal 2-subgroup
of rank exactly n. The main theorem of [6] yields that if P is a p-sub-
group of GL(n, F) with p # charF, then rk(P) < n if p is odd and
rk(P) < [3n/2] if p = 2. Moreover if F contains a square root of —1,
then GL(n, F) contains a 2-subgroup of rank exactly [3n/2], cf. the
example in [6]. Thus Theorem 4 nicely completes the picture for lin-
ear 2-subgroups. More to the point it enables us to make a little im-
provement to some of our bounds.

2 Proofs

Proor oF THEOREM 4 — We induct on n, the case n = 1 being trivial.
Let G be a finite 2-subgroup of GL(n, F) where n > 2. It suffices to
prove that d = d(G) is at most n. Now G is completely reducible
by Maschke’s theorem. If G is not irreducible, then induction yields
that d < n. Hence assume that G is irreducible (over F).

Let K be the algebraic closure of F. Then G is monomial over K
([5], 1.6 and 1.14), so there is a maximal diagonalizable (over K) nor-
mal subgroup A of G with S = G/A isomorphic to a 2-subgroup
of Sym(n). Now V = F") is an irreducible FG-module and
hence is completely reducible as an FA-module. Let U be an irreduci-
ble FA-submodule of V. Then A/C (U) is cyclic (use Schur’s lemma).
Also

V=UdUg, ®...0Ugm

for some g; in G. If dimg U > 2, then d(A) < n/2. Also d(S) < n/2
by the Proposition of [6] and so in this case d < n. Hence assume
dimr U = 1. But then A/Ca (U) embeds into F* and by hypothesis F*
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contains no element of order 4. Therefore |[A/Ca (U)| < 2 and hence A
is an elementary abelian 2-group (of rank at most n).

Now G is monomial over K, so G embeds into the permutational
wreath product W = S(K*)(™) of K* by S. Clearly K* = E x C, where C
is a Priifer 2°°-group and E is 2-free. It follows that the 2-group G
embeds into the permutation wreath product SC™) ~ W/E(™) such
that A maps into C(™) and G/A = S maps naturally onto S < SC(™),
then A maps into the S-submodule

B={beCM™ . .p2=1}

of C("). Clearly SB is the permutational wreath product of (—1) by S
and hence SB embeds into Sym(2n). Consequently rk(SB) < n by
the Proposition of [6] again.

We have an embedding of G into SC(™) that maps A into B and G
naturally onto S, but the image of G in SC(™ may not lie in SB.
However G maps onto G/A =S < SB, so A is an S-submodule of B.
That is, A is normalized by S and SA < SB has rank at most n. Thus

(SA: (SA)?) < 2™

If seSand a€A, then (sa)?=s2[a, s] since a?=1, so (SA)2=S2[A,S].
But [A, S =[A, Gl < G’ < G? and

(G:G%) < (G/A:(G/A)?)(A:[A, G) < (S:SH)(A:A, S)
< (SA: (SA)2) < 2™,

Therefore d < n and Theorem 4 follows. O

Lemma 5 Let G be a locally nilpotent subgroup of GL(n, R) with
hn(G) < h. Then rk(G) < h+n.

Proor — We may assume G is finitely generated and hence nilpo-
tent. Then T(G) has finite rank at most n by [6] and Theorem 4.
Also G/T(G) has all its upper central factors torsion-free. There-
fore G/t(G) has a series running from (1) to the whole group of
length at most h with all factors infinite cyclic. It follows that
rk(G/t(G)) < hand rk(G) < h+n. O

Lemma 6 Let G bea group, A an abelian normal subgroup of G and Z< A
a central subgroup of G. Suppose hn(G/Cg(A)) < rand hn(A/Z) < s. If
also G/Cg(A/Z) is locally nilpotent, then hn([A, G]) < rs+ s2.
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ProorF — Clearly we may assume T(A) = (1) and Z = AN {;(G),
so A and A/Z are both now torsion-free. Then Cg(A/Z)/Cg(A) is
torsion-free abelian and hence its rank is equal to its Hirsch num-
ber, r1 say. Further rtk(A/Z) = hn(A/Z) < s, so G/Cg(A/Z) is iso-
morphic to a locally nilpotent linear group of degree s over the ra-
tionals. Lemma 5 yields that

rk(G/Cg(A/Z)) <2+,

where r1 + 1, < 1. Therefore rk(G/Cg(A)) < r+s. Finally Lem-
ma 3.4.c) of [8] yields that

hn([A, G]) = rk([A, G]) < (r+s)s = Ts + s2.
The statement is proved. 0

Lemma 7 For k > 1 let G be a group with hn(G/(x(G)) = r < oo and
hn((vy*G)/(v*G N ¢ (G)) = s < oo. Then

hn(y*T1G) < rs+ s% 4+ (r).

In particular, since the definition of n applied to G/Cq1(G) yields that
s <M1 (1), we have hn(y*H1G) <y (1) +mi1 (02 +11 (7).

Proor — Always [((G), Y*G] = (1), so Y*G N ¢ (G) < & (v*G).
Thus hn((v*G)/¢1(Y*G)) < r and hn((v*G)’) <n1(r). Set

A =(*G)/(y*G)" and H=G/(v*G)"
Then hn(H/Cy(A)) < r, H/CH(A) is nilpotent (of class less than k)
and hn(A/Ca(H)) < s. Therefore hn([A, H]) < rs + s2 by Lemma 6.
But [A, Hl = (y**1G)/(y*G)’. Consequently
hn(y**1G) < rs+s2 +n1(r)
and the statement is proved. 0
Proor oF THEOREM 1 — Consider integers k >, 1> 0, e = 2k=1 and
a group G with hn(G/(x(G)) < r. Suppose ni—1(r) < co. By Lemma 7

there is an integer s > 0 with

s<Mr_1(r) and hn(y*"'G) <rs+s?+n1(1).
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Therefore Ny (1) < TMk—1(1) +M—1(1)% +171 () < 0.
To prove our second bound for 1y (G) we induct on k, this bound
being trivial if k = 1. Suppose k > 1 and r > 4. Then

r+1<r(r—1)/2<n1(v)

and e > 1. Using induction on k and our first bound for i (r) we
have

Mer1 (1) <1267 T ()€ + 22672 (1)2€ + 11 (1)
< (r+1)28 Ty (r)€ + 2267 2n (1)2¢

<287 Ty (r)et ! 22620, (r)2€ < 2.22¢ 2 (1) 2%e.

The second bound for hn(y*t1G) with r > 4 follows.
For r < 4 we have my (1) <1 (4) <2¢1(4(4+1)/2)¢ =2¢-1.10¢. O

Lemma 8 Let F be a perfect field, G a locally nilpotent group, V
a (right) FG-module and U an FG-submodule of V. With g denoting the
augmentation ideal of G in FG, assume Ug® = {0} for some integer k > 0
and suppose r = dimg V/U is finite. Then there exists an FG-submodule W
of V with dimp W < v, with Vg™ < W and with UNW = {0}.

ProorF — If k or r is zero the claims are obvious, so assume other-
wise. We may also assume that G acts faithfully on V. Suppose G is
finitely generated. Set a = Anngg(V/U). Then Vagk ={0} and

(ang)**! <agk <b=AnnggV.

Clearly dim¢(FG/(ang)) is finite (it's at most 2 +1). Hence the F-di-
mension of FG/b is finite (cf. §1 of [5] p.22 or [7] 4.7; it is here we use
the assumption that G is finitely generated).

We may regard G as a subset of R = FG/b. Let G < Gy x Gg
be the Jordan decomposition of the (locally) nilpotent subgroup G
in End¢ R (see [5] 7.14, where G,G4 is denoted by pu(G), or 3.1.6
and 3.1.7 of [4]). Since F is perfect [4] 3.1.6 and its proof show that

GuGgq CFGI <R

(for each g4 is constructed there as a polynomial in g, so G.G4g=GGq
is contained in F[G]); thus U is also an FG, G g-module. Now G, CRis
unipotent and hence so is its image in Endg(V/U) ~ F'x". Thus if g,
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denotes the augmentation ideal of G in FGy, we have V(g )" < U;
that is, (g, )" <a/b.

If g € G, then gq = (gu) " 'g and g, and g commute and act unipo-
tently on U, the latter by hypothesis. Consequently g4 acts unipo-
tently on U (see [5] 7.1.ii). Now F[G4] < R is semisimple Artinian
by [5] 7.7 and 1.24.i).a), so V is a direct sum of irreducible FG 4-mo-
dules. Let U be the G4-trivial homogeneous FG 3-component of V
and W the sum of the remaining homogeneous FG 4-components
of V. Since [G, G4l = (1), so U; and W are R-submodules of V.
If I is an irreducible FG g-submodule of U, then dimf I < dimg R < 00
and G4 acts unipotently on I. If g; denotes the augmentation ideal
of G4 in FGq, then Igy; < I, Ig4 = {0} and Ug, = {0}. Consequent-
ly U < Uy, dimp W < dimg(V/U) = r and UNW = {0}. Further G4
centralizes V/W and V(g,)" < U. Consequently Vg" < U@ W and
therefore Vg™ < W.

We now drop the assumption that G is finitely generated. Consi-
der a finitely generated subgroup H of G with h denoting the aug-
mentation ideal of H in FH. By the above there exists an FH-sub-
module Wy of V with VA*™™ < Wi, and UNnWy = {0}. Pick Wi
with dimr Wi < r minimal. If H < K < G with K finitely generated
and the obvious notations k and Wy, we have

h<k and Vh*™ < Wy nWk.

Thus by the choice of Wi we have Wi < Wx.

Set W = Jyy WH. Then W is an FG-submodule of V and since each
dimr Wy < 1, 50 dimp W < r and W = Wy for some H. In particu-
lar UNW = UN Wy = {0}. Finally g = [J;; h and hence

ng+T < Uth+T < UWH —W.
H H

The proof is complete. 0

Proor oF THEOREM 2 — Thus let G be a group and k and r non-
negative integers such that hn(G/((G)) < r. If k = 0 then

hn(y1 G)=hn(G) <

and the claims follow in this case, whether or not r is 0. Suppose k > 1.
If r = 0 then G/Cx (G) is locally finite and hence vk+1G is also locally
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finite. Thus hn(y**'G) =0 and 2k +r > k+ 1. Again the claims fol-
low. Now assume both k and r are positive. Always [(x (G), Y*G]=(1),
so hn((y*G)/Z; (Y*G)) < r. Therefore

hn((v*G)") <mi(v).

Let T/(Y*G)' = t((v*G)/(v*G)), A = (Y*G)/T and H = G/T.
If B = (Y*G N k(G))T/T, then [B,  H] = (1). Note that H/Cy(A)
is nilpotent.

Now A is torsion-free abelian. Let V = QA and U = QB, where Q
is the field of rational numbers and we are taking tensor products
over Z. Since hn(A/B) < 1, so dimg(V/U) < 1. Also if g denotes
the augmentation ideal of G in QG, then ng = {0}. By Lemma 8
there is a QG-submodule W of V with dimg W < r and ng+r < W.
Set C=ANW. Then hn(C) = rk(C) < r and [A, x++G] < C. De-
fine D < G by D/T = C. Then

hd(D) <t+m(r) and y*""G < [Y*G, kGl < D.

The proof is complete. 0

Lemma 9 For integers k > 2 and v > 1, let G be a (15, L)(AF)-group
with rk(G/(G)) < v and rk((Y*G)/Y*G N ¢1(G)) = s. Then

rk(Y*1G) < s+ ().

In particular, rk(y*T1G) < ru_1 (v) + w1 (r) since by definition of p we
have s < yur_1(r).

ProOF — Always [(k(G), Y*G] = (1) and y*G N x(G) < G1(Y*G).
Hence rk((v*G)/¢; (v*G)) < v and rk((v*G)”) < (7). Set

A=(¥*G)/(y*G)" and H=G/(y*G)"
Then rk(H/Cp(A)) < rand rk(A/Ca (H)) < s. By Lemma 3.4.c) of [8]

we have rk([A, H]) < rs. But [A, H = (v*T1'G)/(v*G)’. Therefore
k(YT <rs 4 g (r). 0

ProoFf oF THEOREM 3 — If r = 0 the claim is 0 < 0 and if k = 1 the
claim is puq(r) < py(r). Thus assume r > 1 and k > 2. By Lemma 9
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we have py (1) < m.ug_1(r) + 1 (r). Then induction on k yields that

e (r) < (1414 2y (1) + g (1)
=(+r+r2+.. .+ N (r)

and the theorem is proved. 0
The following is an easy consequence of Theorem 2.

Corollary 10 If G is a (P, L)(2F)-group with
©(G)=(1) and 1k(G/Ck(G)) <

then tk(y2*t™H1G) < 7r2 +10r + [r/2] + 1.

Proor — By Theorem 1.a) of [8] (and [3] 4.21 Corollary 2) G is
soluble-by-finite. Thus rk(G/(x(G)) < r implies hn(G/(k(G)) < 2r.
Hence

hn(y?*F™1G) < r(2r +3)

by Theorem 2 and therefore rk(y?¥+"™+1G) < 7r% +10r + [r/2] +1
by [8] Theorem 3.a). O
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