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Abstract
Suppose G is a group with finite Hirsch number h modulo the k-th term of its upper
central series. The Hirsch number of the k+ 1-th term of the lower central series of G
is known to be finite and of order bounded in terms of h and k. Here we give simpler
proofs leading to simpler and sharper bounds. In particular and perhaps surprisingly,
we show that the Hirsch number of the h+ 2k+ 1-th term of the lower central series
of G is bounded by h(h+ 3)/2; in particular it is bounded independently of k.
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1 Introduction

Let G be any group. Then G has finite Hirsch number the integer h
if G has an ascending series exactly h of whose factors are infinite
cyclic, the remaining factors of the series being locally finite; h here
is independent of the choice of series. The upper central series of G
we denote by {⇣i(G)}i>0 and the lower central series of G we de-
note by {�iG}i>1. We are interested here in the effect on �k+1G
of G/⇣k(G) having finite Hirsch number, k here and throughout the
paper being an integer. Also the Hirsch number of G we denote by
hn(G) and the (Pruf̈er) rank (the upper bound over the finitely gen-
erated subgroups X of G of the minimal number of generators of X)
by rk(G).
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Let ⌘k(r) denote the least integer such that if G is a group with
hn(G/⇣k(G)) 6 r finite, then hn(�k+1G) 6 ⌘k(r); we will see in a
moment that ⌘k(r) is an integer. If k = 0, then G/⇣k(G) = G = �1G,
so ⌘0(r) = r for all r > 0. If r = 0, then G/⇣k(G) is locally finite,
so �k+1G is locally finite (e.g. see [3] 4.21 and p.115) and hence
⌘k(0) = 0 for all k > 0. Also

r(r- 1)/2 6 ⌘1(r) 6 r(r+ 1)/2 for all r > 0,

the first inequality coming from the free nilpotent group of class 2
on r generators and the second from Theorem 3.b) of [8]. Finally note
that directly from its definition it follows that each ⌘k(r) is mono-
tonic increasing in r.

Theorem 1 Consider the integers k > 1, r > 0 and e = 2k-1. Then

⌘k(r) 6 r.⌘k-1(r) + ⌘k-1(r)
2 + ⌘1(r).

Further if r > 4, then ⌘k(r) 6 2e-1⌘1(r)
e 6 re(r+ 1)e/2 and if r 6 4,

then ⌘k(r) 6 2e-110e.

The first claim for ⌘k(r) in Theorem 1 is the main part of the the-
orem. Clearly iteration of it for any specific k will produce a bound,
but a very complicated bound, for ⌘k(r) in terms of k, r and ⌘1(r)
that lies between ⌘1(r)

e and, if r > 4, 2e-1⌘1(r)
e. Theorem 7.1.25

of [1] also gives a bound nk(r) for ⌘k(r) defined as follows: set

n1(r) = r(5r2 + 5r- 1)/2

and for each k > 2 set

nk(r) = nk-1(r)(5r
2(r+ 1)/2+ 5nk-1(r)

2 + 5nk-1(r)- 1).

It follows clearly from Theorem 1 that ⌘k(r) 6 nk(r) for all k > 1
and r > 0. Hence [1] Theorem 7.1.25 is an immediate corollary of
our Theorem 1 above.

If G is a group with hn(G/⇣k(G)) = r finite, then by Theorem 1
there exists N normal in G with G/N nilpotent of class bounded by k
and hn(N) bounded, but in terms of both k and r. We can do things
the other way round and choose N with the class of G/N bounded
in terms of k and r and hn(N) bounded by a function of r only.
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Theorem 2 Let G be a group and k and r non-negative integers with
hn(G/⇣k(G)) 6 r. Then

hn(�2k+r+1G) 6 r+ ⌘1(r) 6 r(r+ 3)/2.

Moreover unless k= r= 0 we have hn(�2k+rG) 6 r+ ⌘1(r) 6 r(r+ 3)/2.

Now 7.1.33 of [1] states that under the hypotheses of Theorem 2
the nilpotent residual GN of G has Hirsch number at most

r(5r2 + 5r+ 1)/2.

But GN trivially lies in �2k+r+1G, so [1] 7.1.33 is an immediate con-
sequence of Theorem 2 and with the improved bound r(r+ 3)/2.

Below ⌧(G) denotes the unique maximal locally finite normal sub-
group of a group G and d(G) denotes the minimal number of gener-
ators of G, so

rk(G) = sup{d(X) : X 6 G, X finitely generated}.

Let G be a group with ⌧(G) = h1i. If h = hn(G) is finite, then G
is soluble-by-finite with rk(G) 6 [7h/2] + 1 (see Theorem 3.a) of [8])
and if G is soluble-by-finite with r = rk(G) finite, then hn(G) 6 2r.
Thus we should expect some sort of analogue of Theorem 1 for rank.

Now hṔ, Li(AF) denotes the smallest class of groups containing
all abelian groups and all finite groups that is closed under the as-
cending series operator Ṕ and the local operator L. It is in fact a very
large class of groups indeed containing for example all locally solu-
ble groups and all locally finite groups. Also it contains every group
with finite Hirsch number. It is extensively studied in [8].

For non-negative integers k and r let µk(r) denote the least integer
such that for all hṔ, Li(AF)-groups G with rk(G/⇣k(G)) 6 r we have
rk(�k+1G) 6 µk(r). Here µ is the analogue of ⌘. Clearly µ0(r) = r for
all r > 0 and µk(0) = 0 = µk(1) for all k > 1. Also by Theorem 1.b)
of [8] we have

µ1(r) 6 r(9r+ 1)/2+m(m- 1) for m = r(1- [- log
2
r]) 6 r2.

Now Kurdachenko and Otal in [2] prove that µk(r) is bounded by
some recursively-defined function of k and r only. Here we present
the following improvement (the bound in Theorem 3 comes from the
recurrence relation µk(r) 6 rµk-1(r) + µ1(r) while the bound in [2]
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effectively uses µk(r) 6 rµk-1(r) + µ1(µk-1(r))).

Theorem 3 For all k > 1 and r > 0 we have

µk(r) 6 (1+ r+ r2 + . . .+ rk-1)µ1(r).

Theorem 4 Let F be any field not containing a square root of -1 and with
char F 6= 2. If G is a 2-subgroup of GL(n, F), then G has rank at most n.

Obviously the fields most of interest to us in this context are the
rationals and the reals. Trivially for any field F with char F 6= 2,
the general linear group GL(n, F) contains a diagonal 2-subgroup
of rank exactly n. The main theorem of [6] yields that if P is a p-sub-
group of GL(n, F) with p 6= char F, then rk(P) 6 n if p is odd and
rk(P) 6 [3n/2] if p = 2. Moreover if F contains a square root of -1,
then GL(n, F) contains a 2-subgroup of rank exactly [3n/2], cf. the
example in [6]. Thus Theorem 4 nicely completes the picture for lin-
ear 2-subgroups. More to the point it enables us to make a little im-
provement to some of our bounds.

2 Proofs

Proof of Theorem 4 — We induct on n, the case n = 1 being trivial.
Let G be a finite 2-subgroup of GL(n, F) where n > 2. It suffices to
prove that d = d(G) is at most n. Now G is completely reducible
by Maschke’s theorem. If G is not irreducible, then induction yields
that d 6 n. Hence assume that G is irreducible (over F).

Let K be the algebraic closure of F. Then G is monomial over K
([5], 1.6 and 1.14), so there is a maximal diagonalizable (over K) nor-
mal subgroup A of G with S = G/A isomorphic to a 2-subgroup
of Sym(n). Now V = F(n) is an irreducible FG-module and
hence is completely reducible as an FA-module. Let U be an irreduci-
ble FA-submodule of V . Then A/CA(U) is cyclic (use Schur’s lemma).
Also

V = U�Ug2 � . . .�Ugm

for some gi in G. If dimFU > 2, then d(A) 6 n/2. Also d(S) 6 n/2
by the Proposition of [6] and so in this case d 6 n. Hence assume
dimFU = 1. But then A/CA(U) embeds into F⇤ and by hypothesis F⇤



On groups with finite Hirsch number 131

contains no element of order 4. Therefore |A/CA(U)| 6 2 and hence A
is an elementary abelian 2-group (of rank at most n).

Now G is monomial over K, so G embeds into the permutational
wreath product W = S(K⇤)(n) of K⇤ by S. Clearly K⇤ = E⇥C, where C
is a Prüfer 21-group and E is 2-free. It follows that the 2-group G

embeds into the permutation wreath product SC(n) ' W/E(n) such
that A maps into C(n) and G/A = S maps naturally onto S 6 SC(n).
then A maps into the S-submodule

B = {b 2 C(n) : b2 = 1}

of C(n). Clearly SB is the permutational wreath product of h-1i by S
and hence SB embeds into Sym(2n). Consequently rk(SB) 6 n by
the Proposition of [6] again.

We have an embedding of G into SC(n) that maps A into B and G

naturally onto S, but the image of G in SC(n) may not lie in SB.
However G maps onto G/A = S 6 SB, so A is an S-submodule of B.
That is, A is normalized by S and SA 6 SB has rank at most n. Thus

(SA : (SA)2) 6 2n.

If s2S and a2A, then (sa)2=s2[a, s] since a2=1, so (SA)2=S2[A, S].
But [A, S] = [A, G] 6 G 0 6 G2 and

(G : G2) 6 (G/A : (G/A)2)(A : [A, G]) 6 (S : S2)(A : [A, S])

6 (SA : (SA)2) 6 2n.

Therefore d 6 n and Theorem 4 follows. ut

Lemma 5 Let G be a locally nilpotent subgroup of GL(n, R) with
hn(G) 6 h. Then rk(G) 6 h+n.

Proof — We may assume G is finitely generated and hence nilpo-
tent. Then ⌧(G) has finite rank at most n by [6] and Theorem 4.
Also G/⌧(G) has all its upper central factors torsion-free. There-
fore G/⌧(G) has a series running from h1i to the whole group of
length at most h with all factors infinite cyclic. It follows that
rk(G/⌧(G)) 6 h and rk(G) 6 h+n. ut

Lemma 6 Let G be a group, A an abelian normal subgroup of G and Z6A
a central subgroup of G. Suppose hn(G/CG(A)) 6 r and hn(A/Z) 6 s. If
also G/CG(A/Z) is locally nilpotent, then hn([A, G]) 6 rs+ s2.
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Proof — Clearly we may assume ⌧(A) = h1i and Z = A \ ⇣1(G),
so A and A/Z are both now torsion-free. Then CG(A/Z)/CG(A) is
torsion-free abelian and hence its rank is equal to its Hirsch num-
ber, r1 say. Further rk(A/Z) = hn(A/Z) 6 s, so G/CG(A/Z) is iso-
morphic to a locally nilpotent linear group of degree s over the ra-
tionals. Lemma 5 yields that

rk(G/CG(A/Z)) 6 r2 + s,

where r1 + r2 6 r. Therefore rk(G/CG(A)) 6 r + s. Finally Lem-
ma 3.4.c) of [8] yields that

hn([A, G]) = rk([A, G]) 6 (r+ s)s = rs+ s2.

The statement is proved. ut

Lemma 7 For k > 1 let G be a group with hn(G/⇣k(G)) = r < 1 and
hn((�kG)/(�kG\ ⇣1(G)) = s < 1. Then

hn(�k+1G) 6 rs+ s2 + ⌘1(r).

In particular, since the definition of ⌘ applied to G/⇣1(G) yields that
s 6 ⌘k-1(r), we have hn(�k+1G) 6 r⌘k-1(r) + ⌘k-1(r)

2 + ⌘1(r).

Proof — Always [⇣k(G), �kG] = h1i, so �kG \ ⇣k(G) 6 ⇣1(�
kG).

Thus hn((�kG)/⇣1(�
kG)) 6 r and hn((�kG) 0) 6 ⌘1(r). Set

A = (�kG)/(�kG) 0 and H = G/(�kG) 0.

Then hn(H/CH(A)) 6 r, H/CH(A) is nilpotent (of class less than k)
and hn(A/CA(H)) 6 s. Therefore hn([A, H]) 6 rs+ s2 by Lemma 6.
But [A, H] = (�k+1G)/(�kG) 0. Consequently

hn(�k+1G) 6 rs+ s2 + ⌘1(r)

and the statement is proved. ut

Proof of Theorem 1 — Consider integers k >, r > 0, e = 2k-1 and
a group G with hn(G/⇣k(G)) 6 r. Suppose ⌘k-1(r) < 1. By Lemma 7
there is an integer s > 0 with

s 6 ⌘k-1(r) and hn(�k+1G) 6 rs+ s2 + ⌘1(r).
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Therefore ⌘k(r) 6 r.⌘k-1(r) + ⌘k-1(r)
2 + ⌘1(r) < 1.

To prove our second bound for ⌘k(G) we induct on k, this bound
being trivial if k = 1. Suppose k > 1 and r > 4. Then

r+ 1 < r(r- 1)/2 6 ⌘1(r)

and e > 1. Using induction on k and our first bound for ⌘k(r) we
have

⌘k+1(r) 6 r.2e-1⌘1(r)
e + 22e-2⌘1(r)

2e + ⌘1(r)

6 (r+ 1)2e-1⌘1(r)
e + 22e-2⌘1(r)

2e

6 2e-1⌘1(r)
e+1 + 22e-2⌘1(r)

2e 6 2.22e-2⌘1(r)
2e.

The second bound for hn(�k+1G) with r > 4 follows.
For r 6 4 we have ⌘k(r) 6 ⌘k(4) 6 2e-1(4(4+ 1)/2)e = 2e-1.10e. ut

Lemma 8 Let F be a perfect field, G a locally nilpotent group, V
a (right) FG-module and U an FG-submodule of V . With g denoting the
augmentation ideal of G in FG, assume Ugk = {0} for some integer k > 0
and suppose r = dimF V/U is finite. Then there exists an FG-submodule W
of V with dimFW 6 r, with Vgk+r 6 W and with U\W = {0}.

Proof — If k or r is zero the claims are obvious, so assume other-
wise. We may also assume that G acts faithfully on V . Suppose G is
finitely generated. Set a = AnnFG(V/U). Then Vagk = {0} and

(a \ g)k+1 6 agk 6 b = AnnFG V .

Clearly dimF(FG/(a\ g)) is finite (it’s at most r2 + 1). Hence the F-di-
mension of FG/b is finite (cf. §1 of [5] p.22 or [7] 4.7; it is here we use
the assumption that G is finitely generated).

We may regard G as a subset of R = FG/b. Let G 6 Gu ⇥ Gd

be the Jordan decomposition of the (locally) nilpotent subgroup G
in EndF R (see [5] 7.14, where GuGd is denoted by µ(G), or 3.1.6
and 3.1.7 of [4]). Since F is perfect [4] 3.1.6 and its proof show that

GuGd ✓ F[G] 6 R

(for each gd is constructed there as a polynomial in g, so GuGd=GGd

is contained in F[G]); thus U is also an FGuGd-module. Now Gu✓R is
unipotent and hence so is its image in EndF(V/U) ' Fr⇥r. Thus if g

u



134 B.A.F. Wehrfritz

denotes the augmentation ideal of Gu in FGu, we have V(g
u
)r 6 U;

that is, (g
u
)r 6 a/b.

If g 2 G, then gd = (gu)-1g and gu and g commute and act unipo-
tently on U, the latter by hypothesis. Consequently gd acts unipo-
tently on U (see [5] 7.1.ii). Now F[Gd] 6 R is semisimple Artinian
by [5] 7.7 and 1.24.i).a), so V is a direct sum of irreducible FGd-mo-
dules. Let U1 be the Gd-trivial homogeneous FGd-component of V
and W the sum of the remaining homogeneous FGd-components
of V . Since [Gu, Gd] = h1i, so U1 and W are R-submodules of V .
If I is an irreducible FGd-submodule of U, then dimF I 6 dimF R < 1
and Gd acts unipotently on I. If g

d
denotes the augmentation ideal

of Gd in FGd, then Ig
d

< I, Ig
d

= {0} and Ug
d

= {0}. Consequent-
ly U 6 U1, dimFW 6 dimF(V/U) = r and U \W = {0}. Further Gd

centralizes V/W and V(g
u
)r 6 U. Consequently Vgr 6 U�W and

therefore Vgk+r 6 W.
We now drop the assumption that G is finitely generated. Consi-

der a finitely generated subgroup H of G with h denoting the aug-
mentation ideal of H in FH. By the above there exists an FH-sub-
module WH of V with Vhk+r 6 WH and U \WH = {0}. Pick WH

with dimFWH 6 r minimal. If H 6 K 6 G with K finitely generated
and the obvious notations k and WK, we have

h 6 k and Vhk+r 6 WH \WK.

Thus by the choice of WH we have WH 6 WK.
Set W =

S
H
WH. Then W is an FG-submodule of V and since each

dimFWH 6 r, so dimFW 6 r and W = WH for some H. In particu-
lar U\W = U\WH = {0}. Finally g =

S
H

h and hence

Vgk+r 6
[

H

Vhk+r 6
[

H

WH = W.

The proof is complete. ut

Proof of Theorem 2 — Thus let G be a group and k and r non-
negative integers such that hn(G/⇣k(G)) 6 r. If k = 0 then

hn(�1G) = hn(G) 6 r

and the claims follow in this case, whether or not r is 0. Suppose k >1.
If r = 0 then G/⇣k(G) is locally finite and hence �k+1G is also locally
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finite. Thus hn(�k+1G) = 0 and 2k+ r > k+ 1. Again the claims fol-
low. Now assume both k and r are positive. Always [⇣k(G), �kG]=h1i,
so hn((�kG)/⇣1(�

kG)) 6 r. Therefore

hn((�kG) 0) 6 ⌘1(r).

Let T/(�kG) 0 = ⌧((�kG)/(�kG) 0), A = (�kG)/T and H = G/T .
If B = (�kG \ ⇣k(G))T/T , then [B, kH] = h1i. Note that H/CH(A)
is nilpotent.

Now A is torsion-free abelian. Let V = QA and U = QB, where Q
is the field of rational numbers and we are taking tensor products
over Z. Since hn(A/B) 6 r, so dimQ(V/U) 6 r. Also if g denotes
the augmentation ideal of G in QG, then Ugk = {0}. By Lemma 8
there is a QG-submodule W of V with dimQ W 6 r and Vgk+r 6 W.
Set C = A\W. Then hn(C) = rk(C) 6 r and [A, k+rG] 6 C. De-
fine D 6 G by D/T = C. Then

hd(D) 6 r+ ⌘1(r) and �2k+rG 6 [�kG, k+rG] 6 D.

The proof is complete. ut

Lemma 9 For integers k > 2 and r > 1, let G be a hṔ, Li(AF)-group
with rk(G/⇣k(G)) 6 r and rk((�kG)/�kG\ ⇣1(G)) = s. Then

rk(�k+1G) 6 rs+ µ1(r).

In particular, rk(�k+1G) 6 rµk-1(r) + µ1(r) since by definition of µ we
have s 6 µk-1(r).

Proof — Always [⇣k(G), �kG] = h1i and �kG \ ⇣k(G) 6 ⇣1(�
kG).

Hence rk((�kG)/⇣1(�
kG)) 6 r and rk((�kG) 0) 6 µ1(r). Set

A = (�kG)/(�kG) 0 and H = G/(�kG) 0.

Then rk(H/CH(A)) 6 r and rk(A/CA(H)) 6 s. By Lemma 3.4.c) of [8]
we have rk([A, H]) 6 rs. But [A, H] = (�k+1G)/(�kG) 0. Therefore
rk(�k+1 6 rs+ µ1(r). ut

Proof of Theorem 3 — If r = 0 the claim is 0 6 0 and if k = 1 the
claim is µ1(r) 6 µ1(r). Thus assume r > 1 and k > 2. By Lemma 9
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we have µk(r) 6 r.µk-1(r) + µ1(r). Then induction on k yields that

µk(r) 6 r(1+ r+ . . .+ rk-2)µ1(r) + µ1(r)

= (1+ r+ r2 + . . .+ rk-1)µ1(r)

and the theorem is proved. ut

The following is an easy consequence of Theorem 2.

Corollary 10 If G is a hṔ, Li(AF)-group with

⌧(G) = h1i and rk(G/⇣k(G)) 6 r

then rk(�2k+r+1G) 6 7r2 + 10r+ [r/2] + 1.

Proof — By Theorem 1.a) of [8] (and [3] 4.21 Corollary 2) G is
soluble-by-finite. Thus rk(G/⇣k(G)) 6 r implies hn(G/⇣k(G)) 6 2r.
Hence

hn(�2k+r+1G) 6 r(2r+ 3)

by Theorem 2 and therefore rk(�2k+r+1G) 6 7r2 + 10r + [r/2] + 1
by [8] Theorem 3.a). ut
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