

Advances in Group Theory and Applications © 2020 AGTA - www.advgrouptheory.com/journal 10 (2020), pp. 67–81 ISSN: 2499-1287 DOI: 10.32037/agta-2020-010

Conjugacy Class Sizes in Affine Semi-linear Groups

Hossein Shahrtash

(Received Jan. 20, 2020; Accepted Mar. 16, 2020 — Communicated by L.S. Kazarin)

Abstract

The aim of this work is to study the structure and sizes of conjugacy classes in certain affine semi-linear groups. This provides a wealth of finite groups of small conjugate rank that are solvable and non-nilpotent.

Mathematics Subject Classification (2020): 20E45 Keywords: affine semi-linear group; conjugacy class

1 Introduction

In this work we study the conjugacy classes of affine semi-linear groups. These groups play an important role in the study of solvable linear groups and solvable permutation groups and have been studied, for example, in [2]. Given a prime power q^n , where q is a prime and n > 1, F_{q^n} will denote the finite field of size q^n . We note that $F_{q^n}^*$ is a cyclic group of order $q^n - 1$. Another component of the structure of an affine semi-linear group is $Gal(F_{q^n}/F_q)$, which is a cyclic group of order n, generated by the automorphism f of F_{q^n} defined by $f(x) = x^q$. To construct an affine semi-linear group, we begin with the action of $F_{q^n}^* \wedge F_{q^n}^*$, which is a semi-linear group. Next, we

will consider the natural action of $Gal(F_{q^n}/F_q)$ on $F_{a^n}^+ \rtimes F_{a^n}^*$, which gives rise to the affine semi-linear group

$$G = (F_{q^n}^+ \rtimes F_{q^n}^*) \rtimes Gal(F_{q^n}/F_q)$$

with the following group multiplication:

$$(\mathbf{x}, \mathbf{t}, \tau)(\mathbf{y}, \mathbf{s}, \sigma) = \left(\mathbf{x} + \mathbf{t}^{-1}\mathbf{y}^{\tau^{-1}}, \mathbf{t}\mathbf{s}^{\tau^{-1}}, \tau\sigma\right)$$

In this paper we fully calculate the conjugacy classes of an affine semi-linear group

$$\mathbf{G} = (\mathbf{F}_{\mathbf{q}^{\mathbf{p}}}^+ \rtimes \mathbf{F}_{\mathbf{q}^{\mathbf{p}}}^*) \rtimes \operatorname{Gal}(\mathbf{F}_{\mathbf{q}^{\mathbf{p}}}/\mathbf{F}_{\mathbf{q}}),$$

where p and q are primes, and our main results are Theorems 3.2 and 3.3.

Throughout this paper all groups are finite. If x is an element of a group G, we denote by x^{G} the conjugacy class of x in G. We use cs(G)to denote the set of all conjugacy class sizes of G, and the conjugate rank of G, crk(G), is given by crk(G) = |cs(G)| - 1. We also use N and Tr to denote the norm and trace functions respectively.

2 Calculating the conjugacy classes in affine semi-linear groups

We start off with the following lemma which facilitates the calculation of the conjugacy classes of $G = (F_{q^n}^+ \rtimes F_{q^n}^*) \rtimes Gal(F_{q^n}/F_q)$.

Lemma 2.1 $F_{q^n}^+$ is a normal subgroup of $G = (F_{q^n}^+ \rtimes F_{q^n}^*) \rtimes Gal(F_{q^n}/F_q)$.

Proof — Let

$$(x,t,\tau) \in G = (F_{q^n}^+ \rtimes F_{q^n}^*) \rtimes Gal(F_{q^n}/F_q) \quad \text{and} \quad (y,1,1) \in F_{q^n}^+$$

be arbitrary elements. Then we have

$$(x, t, \tau)^{-1}(y, 1, 1)(x, t, \tau)$$

= $(t^{\tau}(-x)^{\tau}, (t^{-1})^{\tau}, \tau^{-1})(y, 1, 1)(x, t, \tau)$

$$= (t^{\tau}(-x)^{\tau} + t^{\tau}y^{\tau}, (t^{-1})^{\tau}, \tau^{-1})(x, t, \tau)$$
$$= (t^{\tau}(-x)^{\tau} + t^{\tau}y^{\tau} + t^{\tau}x^{\tau}, 1, 1) = (t^{\tau}y^{\tau}, 1, 1)$$

which lies in $F_{a^n}^+$.

Corollary 2.2 The finite group $G = (F_{q^n}^+ \rtimes F_{q^n}^*) \rtimes Gal(F_{q^n}/F_q)$ has a conjugacy class of size $q^n - 1$.

PROOF — It follows by the proof of Lemma 2.1 that we have

$$(y, 1, 1)^{G} = \{((t^{\tau}y^{\tau}, 1, 1)|t \in F_{q^{n}}^{*}, \tau \in Gal(F_{q^{n}}/F_{q})\}.$$

Therefore if $(0, 1, 1) \neq (y, 1, 1) \in G = (F_{q^n}^+ \rtimes F_{q^n}^*) \rtimes Gal(F_{q^n}/F_q)$, then we have

$$(y, 1, 1)^{G} = \{(x, 1, 1) | x \in F_{q^{n}}^{*}\}$$

The statement is proved.

Corollary 2.3 Let (x, t, τ) and (y, r, σ) be elements of

$$G = (F_{q^n}^+ \rtimes F_{q^n}^*) \rtimes Gal(F_{q^n}/F_q)$$

that lie in the same conjugacy classes. Then (t, τ) and (r, σ) must be conjugate in $F_{q^n}^* \rtimes Gal(F_{q^n}/F_q)$. Also we must have $\tau = \sigma$.

PROOF — These follow from $F_{q^n}^+ \trianglelefteq (F_{q^n}^+ \rtimes F_{q^n}^*) \rtimes Gal(F_{q^n}/F_q)$ and $F_{q^n}^+ \rtimes F_{q^n}^* \trianglelefteq (F_{q^n}^+ \rtimes F_{q^n}^*) \rtimes Gal(F_{q^n}/F_q)$.

Remark 2.4 Let $\sigma \in \text{Gal}(F_{q^n}/F_q)$. Then $|C_{\text{Gal}(F_{q^n}/F_q)}(\sigma)| = n$. This follows from the fact that $\text{Gal}(F_{q^n}/F_q)$ is a cyclic group of order n.

Lemma 2.5 Let $(\lambda, \sigma) \in F_{q^n}^* \rtimes Gal(F_{q^n}/F_q)$, where σ is a generator of $Gal(F_{q^n}/F_q)$. Then we have $|C_{F_{q^n}^* \rtimes Gal(F_{q^n}/F_q)}(\lambda, \sigma)| = n(q-1)$.

PROOF — Suppose

$$(\lambda_1, \sigma_1) \in C_{F_{\mathfrak{q}^n}^* \rtimes \operatorname{Gal}(F_{\mathfrak{q}^n}/F_{\mathfrak{q}})}((\lambda, \sigma)).$$

Therefore we must have

$$(\lambda_1, \sigma_1)(\lambda, \sigma) = (\lambda, \sigma)(\lambda_1, \sigma_1),$$

which implies $\lambda_1 \lambda^{\sigma_1^{-1}} = \lambda \lambda_1^{\sigma_1^{-1}}$, or equivalently, $\lambda^{-1} \lambda^{\sigma_1^{-1}} = \lambda_1^{-1} \lambda_1^{\sigma_1^{-1}}$. To count the number of elements (λ_1, σ_1) satisfying this equation, we choose an element $\sigma_1 \in \text{Gal}(F_{q^n}/F_q)$. Now if we consider the element on the left hand side of the previous equation, namely $\lambda^{-1} \lambda^{\sigma_1^{-1}}$, it is clear that this is an element of norm 1. Now we note that σ is a generator of $\text{Gal}(F_{q^n}/F_q)$ and therefore by Hilbert's theorem 90 (see Theorem 7.6. in [1]), there exists $\lambda_1 \in F_{q^n}^*$ satisfying the aformentioned equation. Furthermore, in the case of $\sigma_1 = 1$ the previous equation simplifies to $1 = \lambda_1^{-1} \lambda_1^{\sigma^{-1}}$. In order for λ_1 to satisfy this equation it has to be in the kernel of the $F_{q^n}^*$ homomorphism $t \mapsto t^{-1}t^{\sigma^{-1}}$, and we know there are exactly q - 1 elements in the kernel of this homomorphism, which is the same as the fixed field of σ . Considering there are exactly n choices for σ_1 , we get

$$C_{\mathsf{F}_{q^n}^*\rtimes \operatorname{Gal}(\mathsf{F}_{q^n}/\mathsf{F}_q)}(\lambda,\sigma)|=\mathfrak{n}(q-1).$$

The statement is proved.

Lemma 2.6 Let $(\lambda, 1) \in F_{q^n}^* \rtimes \text{Gal}(F_{q^n}/F_q)$. Then we have:

$$|C_{\mathsf{F}_{\mathsf{q}^n}^* \rtimes \operatorname{Gal}(\mathsf{F}_{\mathsf{q}^n}/\mathsf{F}_{\mathsf{q}})}(\lambda, 1)| = (\mathfrak{q}^n - 1)\mathfrak{m}$$

where m is the size of the set { $\tau \in \text{Gal}(\mathsf{F}_{q^n}/\mathsf{F}_q)|\lambda^{\tau} = \lambda$ }.

PROOF — Suppose an element $(t, \tau) \in C_{F_{q^n}^* \rtimes Gal(F_{q^n}/F_q)}(\lambda, 1)$. Therefore we must have

$$(\lambda, 1)(t, \tau) = (t, \tau)(\lambda, 1),$$

and hence we get $\lambda t = t\lambda^{\tau^{-1}}$, which implies $\lambda^{\tau} = \lambda$. Therefore we have

$$C_{F_{q^n}^*\rtimes Gal(F_{q^n}/F_q)}(\lambda,1) = \{(t,\tau) | t \in F_{q^n}^*, \lambda^\tau = \lambda\}$$

and the result follows.

Lemma 2.7 Let $(a, \sigma), (b, \sigma) \in F_{q^n}^* \rtimes Gal(F_{q^n}/F_q)$, where σ is a generator of $Gal(F_{q^n}/F_q)$. Then (a, σ) is conjugate to (b, σ) if and only if N(a) = N(b).

PROOF — The elements (a, σ) and (b, σ) are conjugate if and only if there exists $(t, \tau) \in F_{q^n}^* \rtimes Gal(F_{q^n}/F_q)$ such that

$$(\mathbf{t}, \mathbf{\tau})^{-1}(\mathbf{a}, \mathbf{\sigma})(\mathbf{t}, \mathbf{\tau}) = (\mathbf{b}, \mathbf{\sigma}).$$

Equivalently, we can say the elements (a, σ) and (b, σ) are conjugate if and only if there exist

$$(t,\tau) \in F_{q^n}^* \rtimes Gal(F_{q^n}/F_q)$$

satisfying the equation $(t^{-1})^{\tau}(t^{\tau})^{\sigma^{-1}} = b(a^{-1})^{\tau}$. Suppose there exists $(t, \tau) \in F_{q^n}^* \rtimes \text{Gal}(F_{q^n}/F_q)$ satisfying the equation

$$(t^{-1})^{\tau}(t^{\tau})^{\sigma^{-1}} = b(a^{-1})^{\tau}.$$

Then we note the the element on the left side of the equation, namely $(t^{-1})^{\tau}(t^{\tau})^{\sigma^{-1}}$, has norm 1, and therefore we must have

$$N(b(a^{-1})^{\tau}) = 1,$$

which implies

$$\mathbf{N}(\mathbf{a}) = \mathbf{N}(\mathbf{b}).$$

Conversely, suppose we have $N(\mathfrak{a})=N(\mathfrak{b}).$ Let $\tau=1\in Gal(F_{q^n}/F_q).$ Therefore the equation

$$(t^{-1})^{\tau}(t^{\tau})^{\sigma^{-1}} = b(a^{-1})^{\tau}$$

simplifies to

$$(t^{-1})(t)^{\sigma^{-1}} = b(a^{-1}).$$

Since by assumption N(a) = N(b), it follows that $N(b(a^{-1}) = 1$, and hence by Hilbert's theorem 90, there exist $t \in F_{a^n}^*$ satisfying

$$(t^{-1})(t)^{\sigma^{-1}} = b(a^{-1}),$$

which implies (a, σ) and (b, σ) are conjugate.

Corollary 2.8 Suppose $(a, \sigma) \in F_{q^n}^* \rtimes Gal(F_{q^n}/F_q)$, where σ is a generator of $Gal(F_{q^n}/F_q)$. Then (a, σ) is conjugate to $(1, \sigma)$ if and only if N(a) = 1.

PROOF — This follows immediately from Lemma 2.7 together with the fact that N(1) = 1.

Corollary 2.9 Let p and q be primes. The semi-linear subgroup

$$H = F_{q^{p}}^{*} \rtimes Gal(F_{q^{p}}/F_{q})$$

has conjugate rank 2 and, furthermore, $cs(H) = \{1, p, \frac{q^p-1}{q-1}\}$. The conjugacy class size of an element (λ, σ) lying in this subgroup of the affine semi-linear group is summarized as follows:

λ	σ	$ (\lambda,\sigma)^{H} $
F [*] _q p	<i>≠</i> 1	$\frac{q^p-1}{q-1}$
F [*] _q	1	1
$F_{q^p}^* - F_q$	1	р

Proof — If

$$(\lambda, \sigma) \in \mathsf{F}^*_{\mathsf{q}^p} \rtimes \operatorname{Gal}(\mathsf{F}_{\mathsf{q}^p}/\mathsf{F}_{\mathsf{q}})$$

where σ is a generator of $\text{Gal}(\mathsf{F}_{q^p}/\mathsf{F}_q)$, then it follows by Lemma 2.5 that the conjugacy class of (λ, σ) has $\frac{q^p-1}{q-1}$ elements. Next, we consider an element of the form $(\lambda, 1)$. It follows by Lemma 2.6 that if λ is an element of the base field, then the element $(\lambda, 1)$ would be a central element; otherwise the centralizer of $(\lambda, 1)$ has $q^p - 1$ elements and hence the conjugacy class of this element has p elements. Therefore the set of the conjugacy classes of $(\lambda, \sigma) \in \mathsf{F}^*_{q^p} \rtimes \text{Gal}(\mathsf{F}_{q^p}/\mathsf{F}_q)$ is $\{1, p, \frac{q^p-1}{a-1}\}$.

Lemma 2.10 Let $G = (F_{q^n}^+ \rtimes F_{q^n}^*) \rtimes Gal(F_{q^n}/F_q)$ and let $(0, \lambda, \sigma) \in G$. Suppose σ is a generator of $Gal(F_{q^n}/F_q)$. If λ is an element of norm 1, we have

$$|C_{\mathbf{G}}((0,\lambda,\sigma))| = \mathfrak{n}(q-1)q,$$

otherwise we have

$$|C_{\mathsf{G}}((0,\lambda,\sigma))| = \mathfrak{n}(q-1).$$

PROOF — Suppose $(a, \lambda_1, \sigma_1) \in C_G(0, \lambda, \sigma)$. Therefore we have

$$(\mathfrak{a},\lambda_1,\sigma_1)(\mathfrak{0},\lambda,\sigma)=(\mathfrak{0},\lambda,\sigma)(\mathfrak{a},\lambda_1,\sigma_1)$$

which results in the following equations:

$$\mathfrak{a} = \lambda^{-1} \mathfrak{a}^{\sigma^{-1}}, \quad \lambda_1 \lambda^{\sigma_1^{-1}} = \lambda \lambda_1^{\sigma^{-1}} \quad \text{and} \quad \sigma_1 \sigma = \sigma \sigma_1.$$

This can be put as follows:

$$C_{G}((0,\lambda,\sigma)) = \{(a,\lambda_{1},\sigma_{1}): a = \lambda^{-1}a^{\sigma^{-1}}, \\ (\lambda_{1},\sigma_{1}) \in C_{F_{\sigma^{n}}^{*} \rtimes Gal(F_{\sigma^{n}}/F_{\sigma})}(\lambda,\sigma)\}$$

and we note that the size of $C_{F_{q^n}^* \rtimes \operatorname{Gal}(F_{q^n}/F_q)}(\lambda, \sigma)$ is calculated in Lemma 2.5. It remains to calculate the number of elements a that satisfy the equation $a = \lambda^{-1} a^{\sigma^{-1}}$. We note that a = 0 always satisfies the equation. Now if $a \neq 0$ then this equation could be rewritten as $\lambda = a^{-1} a^{\sigma^{-1}}$. Using Hilbert's Theorem 90, if λ is an element of norm 1, then there exists an element a satisfying this equation, and in fact, using the same argument as in the proof of Lemma 2.5, it follows that there are exactly q elements (the number of elements in the fixed field of σ) satisfying this equestion. On the other hand if the norm of λ is not equal to 1, then we must have a = 0 and this completes the proof.

Corollary 2.11 Let $G = (F_{q^n}^+ \rtimes F_{q^n}^*) \rtimes Gal(F_{q^n}/F_q)$ and let $(0, \lambda, \sigma) \in G$. Suppose σ is a generator of $Gal(F_{q^n}/F_q)$. If λ is an element of norm 1, we have

$$|(0,\lambda,\sigma)^{\mathsf{G}}| = \frac{q^{n-1}(q^n-1)}{q-1},$$

otherwise we have

$$|(0,\lambda,\sigma)^{\mathsf{G}}| = \frac{q^{\mathfrak{n}}(q^{\mathfrak{n}}-1)}{q-1}.$$

PROOF — This is an immediate consequence of Lemma 2.10, considering the fact that $|G| = nq^n(q^n - 1)$

Lemma 2.12 Let $G = (F_{q^n}^+ \rtimes F_{q^n}^*) \rtimes Gal(F_{q^n}/F_q)$ and let $(0, \lambda, 1) \in G$, where $\lambda \neq 1$. Then we have

$$|C_{G}(0,\lambda,1)| = |C_{F_{q^{n}}^{*} \rtimes Gal(F_{q^{n}}/F_{q})}(\lambda,1)|.$$

PROOF — If an element (a, b, τ) lies in the centralizer of $(0, \lambda, 1)$, we must have a = 0 and $(b, \tau) \in C_{F_{q^n}^* \rtimes Gal(F_{q^n}/F_q)}(\lambda, 1)$, and the result follows.

Corollary 2.13 Let $G = (F_{q^n}^+ \rtimes F_{q^n}^*) \rtimes Gal(F_{q^n}/F_q)$ and let $(0, \lambda, 1) \in G$, where $\lambda \neq 1$. Then we have:

$$|(0,\lambda,1)^{G}| = q^{n} \cdot |(\lambda,1)^{F_{q^{n}}^{*} \rtimes Gal(F_{q^{n}}/F_{q})}|.$$

PROOF — This is just a rephrasing of the previous lemma.

As we observed earlier, it is possible for a conjugacy class of

$$F_{q^n}^* \rtimes \operatorname{Gal}(F_{q^n}/F_q)$$

to give rise to a single conjugacy class of G, or to split and give rise to more than one classes of G. The following results are aimed at determining whether a conjugacy class of $F_{q^n}^* \rtimes \text{Gal}(F_{q^n}/F_q)$ splits.

Lemma 2.14 Let $G = (F_{q^n}^+ \rtimes F_{q^n}^*) \rtimes Gal(F_{q^n}/F_q)$ and let $(\alpha, 1, \sigma)$ and $(0, 1, \sigma)$ be elements of G where σ is a generator of $Gal(F_{q^n}/F_q)$. Then $(\alpha, 1, \sigma)$ and $(0, 1, \sigma)$ are conjugate if and only if $Tr(\alpha) = 0$.

PROOF — The elements $(a, 1, \sigma)$ and $(0, 1, \sigma)$ are conjugate if and only if there exists $(x, t, \tau) \in G$ such that

$$(x, t, \tau)^{-1}(0, 1, \sigma)(x, t, \tau) = (a, 1, \sigma).$$

This equation further simplifies to

$$(t^{\tau}(-x)^{\tau} + t^{\tau}x^{\tau\sigma^{-1}}, (t^{-1})^{\tau}t^{\tau\sigma^{-1}}, \sigma) = (a, 1, \sigma).$$

Therefore $(a, 1, \sigma)$ and $(0, 1, \sigma)$ are conjugate if and only if there exist $(x, t, \tau) \in G$ such that

$$(t^{-1})^{\tau}t^{\tau\sigma^{-1}} = 1$$
 and $t^{\tau}(-x)^{\tau} + t^{\tau}x^{\tau\sigma^{-1}} = a.$

Suppose there exist $(x, t, \tau) \in G$ such that

$$(t^{-1})^{\tau}t^{\tau\sigma^{-1}} = 1$$
 and $t^{\tau}(-x)^{\tau} + t^{\tau}x^{\tau\sigma^{-1}} = a$

We note that it follows from $(t^{-1})^\tau t^{\tau\sigma^{-1}}=1$ that $t^\tau=t^{\tau\sigma^{-1}},$ and hence the equation

$$\mathbf{t}^{\tau}(-\mathbf{x})^{\tau} + \mathbf{t}^{\tau}\mathbf{x}^{\tau\sigma^{-1}} = \mathbf{a}$$

is equivalent to $-(tx)^{\tau} + ((tx)^{\tau})^{\sigma^{-1}} = a$. The element on the left side of this equation, namely $-(tx)^{\tau} + ((tx)^{\tau})^{\sigma^{-1}}$, has trace zero and therefore we must have Tr(a) = 0. Conversely suppose we have Tr(a) = 0. Let t = 1 and $\tau = 1$. Then the equation $(t^{-1})^{\tau}t^{\tau\sigma^{-1}} = 1$ holds true

trivially and the equation

$$\mathbf{t}^{\tau}(-\mathbf{x})^{\tau} + \mathbf{t}^{\tau}\mathbf{x}^{\tau\sigma^{-1}} = \mathbf{a}$$

simplifies to $-x + x^{\sigma^{-1}} = a$. Using the fact that Tr(a) = 0, Hilbert's theorem 90 guarantees that there exists $x \in F_{q^n}$ that satisfies the equation $-x + x^{\sigma^{-1}} = a$, and consequently, $(a, 1, \sigma)$ and $(0, 1, \sigma)$ are conjugate as desired.

Lemma 2.15 Let $G = (F_{q^n}^+ \rtimes F_{q^n}^*) \rtimes Gal(F_{q^n}/F_q)$ and let $(a, 1, \sigma)$ and $(b, 1, \sigma)$ be elements of G where σ is a generator of $Gal(F_{q^n}/F_q)$ and $Tr(a) \neq 0$. Then $(a, 1, \sigma)$ and $(b, 1, \sigma)$ are conjugate if and only if $Tr(b) \neq 0$.

PROOF — The elements $(a, 1, \sigma)$ and $(b, 1, \sigma)$ are conjugate if and only if there exists $(x, t, \tau) \in G$ such that

$$(x, t, \tau)^{-1}(a, 1, \sigma)(x, t, \tau) = (b, 1, \sigma).$$

This equation is equivalent to

$$(t^\tau(-x)^\tau+t^\tau a^\tau+t^\tau x^{\tau\sigma^{-1}},(t^{-1})^\tau t^{\tau\sigma^{-1}},\sigma)=(b,1,\sigma).$$

Therefore $(a, 1, \sigma)$ and $(b, 1, \sigma)$ are conjugate if and only if there exists $(x, t, \tau) \in G$ such that

$$(t^{-1})^{\tau}t^{\tau\sigma^{-1}} = 1$$
 and $t^{\tau}(-x)^{\tau} + t^{\tau}a^{\tau} + t^{\tau}x^{\tau\sigma^{-1}} = b.$

Suppose there exists $(x, t, \tau) \in G$ such that

$$(t^{-1})^{\tau}t^{\tau\sigma^{-1}} = 1$$
 and $t^{\tau}(-x)^{\tau} + t^{\tau}a^{\tau} + t^{\tau}x^{\tau\sigma^{-1}} = b.$

Then it follows from $(t^{-1})^{\tau}t^{\tau\sigma^{-1}} = 1$ that $t^{\tau} = t^{\tau\sigma^{-1}}$, and hence the equation $t^{\tau}(-x)^{\tau} + t^{\tau}a^{\tau} + t^{\tau}x^{\tau\sigma^{-1}} = b$ would be equivalent to

$$-(tx)^{\tau} + ((tx)^{\tau})^{\sigma^{-1}} = b - t^{\tau}a^{\tau}.$$

The element on the left side of this equation has trace zero and therefore we must have $Tr(b - t^{\tau}a^{\tau}) = 0$. Using the linearity property of trace, and the fact that t^{τ} is an element of the base field, it follows that $Tr(b) = t^{\tau}Tr(a)$. Since by assumption $Tr(a) \neq 0$, we

have $\text{Tr}(b) \neq 0$ as desired. Conversely, suppose we have $\text{Tr}(b) \neq 0$. Let t = Tr(b)/Tr(a) and $\tau = 1$. We note that not only is t an element that lies in $F_{q\pi}^*$, but also it lies in the base field. Hence the equation $(t^{-1})^{\tau}t^{\tau\sigma^{-1}} = 1$ holds true trivially and the equation

$$\mathbf{t}^{\tau}(-\mathbf{x})^{\tau} + \mathbf{t}^{\tau}\mathbf{a}^{\tau} + \mathbf{t}^{\tau}\mathbf{x}^{\tau\sigma^{-1}} = \mathbf{b}$$

simplifies to

$$-x + x^{\sigma^{-1}} = b \frac{\operatorname{Tr}(a)}{\operatorname{Tr}(b)} - a.$$

We observe that the element on the right side of this equation has trace zero and Hilbert's theorem 90 guarantees that there exists $x \in F_{q^n}$ that satisfies the equation , and consequently, $(a, 1, \sigma)$ and $(b, 1, \sigma)$ are conjugate as desired.

Corollary 2.16 Let $G = (F_{q^n}^+ \rtimes F_{q^n}^*) \rtimes Gal(F_{q^n}/F_q)$ and let

$$(\lambda, \sigma) \in F_{q^n}^* \rtimes \operatorname{Gal}(F_{q^n}/F_q).$$

Then we have:

- (1) If $\sigma = 1$ and $\lambda \neq 1$, then the conjugacy class of $(\lambda, 1)$ would not split.
- (2) If σ is a generator of $Gal(F_{q^n}/F_q)$, then the conjugacy of (λ, σ) in $F_{\alpha^n}^* \rtimes Gal(F_{q^n}/F_q)$ would split precisely when $N(\lambda) = 1$.

Proof — (1) follows from Corollary 2.13. (2) follows from Corollary 2.11. \Box

Remark 2.17 In the previous corollary, the case where σ is not a generator remains to be further investigated.

3 Main Results

Lemma 3.1 Let $G = (F_{q^p}^+ \rtimes F_{q^p}^*) \rtimes Gal(F_{q^p}/F_q)$, where p and q are primes. The size of the conjugacy class of an element $(a, \lambda, \sigma) \in G$ would be as follows.

a	λ	σ	$ (a, \lambda, \sigma)^G $
0	1	1	1
F [*] _q ^p	1	1	q ^p - 1
Fqp	$F_{q} - \{1\}$	1	qp
Fqp	$F_{q^p} - F_q$	1	pqp
$\operatorname{Tr}(\mathfrak{a}) = \mathfrak{0}$	$N(\lambda) = 1$	≠1	$\frac{q^{\mathfrak{p}-1}(q^{\mathfrak{p}}-1)}{q-1}$
$\operatorname{Tr}(\mathfrak{a}) \neq \mathfrak{0}$	$N(\lambda) = 1$	≠1	$\left \begin{array}{c} \frac{(q^p - q^{p-1})(q^p - 1)}{q - 1} \right $
Fqp	$N(\lambda) \neq 1$	≠1	$\frac{q^{p}(q^{p}-1)}{q-1}$

PROOF — Let $(a, \lambda, \sigma) \in G$. We shall consider all possible scenarios for this element and in each case will calculate the class size.

Case 1: $\sigma = 1$. If $\lambda = 1$, then the conjugacy class of

$$(1,1) \in F_{q^p}^* \rtimes \operatorname{Gal}(F_{q^p}/F_q)$$

would split as follows:

- 1.1 The conjugacy class of (0, 1, 1), namely the identity element of G, which has size 1.
- 1.2 The conjugacy class of (1, 1, 1), which as we've seen in Corollary 2.2 has size $q^p 1$.

Next, suppose $1 \neq \lambda \in F_{q^p}^*$. Then by Corollary 2.16 the conjugacy class of $(\lambda, 1) \in F_{q^p}^* \rtimes \text{Gal}(F_{q^p}/F_q)$ would not split and therefore by Corollary 2.9 we have the following two possibilities.

- 1.3 If λ is an element of the base field (and $\lambda \neq 1$), then the conjugacy class of $(0, \lambda, 1)$ has size q^p .
- 1.4 If λ is not an element of the base field, then the conjugacy class of $(0, \lambda, 1)$ has size pq^p .

Case2: $\sigma \neq 1$. We note that σ will be a generator for $Gal(F_{q^p}/F_q)$. In this situation the conjugacy class of $(\lambda, \sigma) \in F_{q^p}^* \rtimes Gal(F_{q^p}/F_q)$ would split depending on whether or not λ is an element of norm 1. More precisely, as we've seen in Corollary 2.11, if $N(\lambda) \neq 1$ then the conjugacy class of (λ, σ) would not split and if $N(\lambda) = 1$ then the conjugacy class of (λ, σ) would split. We also take into account the fact that by Corollary 2.9 in this situation the class of

$$(\lambda, \sigma) \in \mathsf{F}^*_{\mathsf{q}^p} \rtimes \operatorname{Gal}(\mathsf{F}_{\mathsf{q}^p}/\mathsf{F}_{\mathsf{q}})$$

has size $\frac{q^p-1}{a-1}$. This could be summarized as follows:

2.1 If $N(\lambda) \neq 1$ then the conjugacy class of (λ, σ) would not split, and therefore using the conjugacy class of $(0, \lambda, \sigma)$ has size

$$\frac{q^p(q^p-1)}{q-1}.$$

2.2 If $N(\lambda) = 1$ then the conjugacy class of (λ, σ) would split as in Lemma 2.14 and Lemma 2.15 and we get two conjugacy classes of sizes $\frac{(q^p-q^{p-1})(q^p-1)}{q-1}$ and $\frac{q^{p-1}(q^p-1)}{q-1}$.

The statement is proved.

Theorem 3.2 Let $G = (F_{2p}^+ \rtimes F_{2p}^*) \rtimes Gal(F_{2p}/F_2)$, where p is a prime. The set of conjugacy class sizes of G, namely cs(G), is as follows.

$$cs(G) = \{1, 2^{p} - 1, p2^{p}, 2^{p-1}(2^{p} - 1)\}$$

PROOF — This follows from Lemma 3.1 where q = 2. We note that since q = 2, the cases 1.3. and 2.1., as in the proof of Lemma 3.1, would not occur and we have to eliminate the corresponding class sizes.

Theorem 3.3 Let $G = (F_{q^p}^+ \rtimes F_{q^p}^*) \rtimes Gal(F_{q^p}/F_q)$, where p and q are primes and $q \neq 2$. The set of conjugacy class sizes of G, namely cs(G), is as follows:

$$\left\{1, q^{p}-1, q^{p}, pq^{p}, \frac{q^{p-1}(q^{p}-1)}{q-1}, \frac{q^{p}(q^{p}-1)}{q-1}, \frac{(q^{p}-q^{p-1})(q^{p}-1)}{q-1}\right\}$$

PROOF — The class sizes have all been calculated in the proof of Lemma 3.1. П

Corollary 3.4 Let $G = (F_{q^p}^+ \rtimes F_{q^p}^*) \rtimes Gal(F_{q^p}/F_q)$, where p and q are *primes. Then we have* $crk(G) \leq 6$ *.*

PROOF — As we observed in the previous corollary, the set of conjugacy class sizes of G is contained in the set:

$$\left\{1, q^p - 1, q^p, pq^p, \frac{q^{p-1}(q^p - 1)}{q - 1}, \frac{q^p(q^p - 1)}{q - 1}, \frac{(q^p - q^{p-1})(q^p - 1)}{q - 1}\right\}$$

and therefore the are at most 6 nontrivial class sizes.

Corollary 3.5 Let $G = (F_{2p}^+ \rtimes F_{2p}^*) \rtimes Gal(F_{2p}/F_2)$, where p is a prime. Then G has conjugate rank 3.

PROOF — As we observed in Theorem 3.2 the set of conjugacy class sizes of G is $cs(G) = \{1, 2^p - 1, p2^p, 2^{p-1}(2^p - 1)\}$, and it's fairly easy to observe that the elements of this set are always distinct. Hence we have crk(G) = 3.

Remark 3.6 Let $G = (F_{q^p}^+ \rtimes F_{q^p}^*) \rtimes Gal(F_{q^p}/F_q)$, where p and q are primes. Then as we've seen in Lemma 3.1 the identity element is the only element of index 1, and hence Z(G) = 1. This implies G cannot be nilpotent.

Example 3.7 Let n = q = 2. We note that $|F_4^+| = 4$, $|F_4^*| = 3$ and

 $|Gal(F_4/F_2)| = 2.$

Therefore

 $G = (F_4^+ \rtimes F_4^*) \rtimes Gal(F_4/F_2)$

is a group of size 24. To be able to carry out the multiplication in G, we need to have a clear understanding of multiplication and addition within F₄. First off we notice that two elements have to be 0 and 1, and we call the other elements a and b. We know that the multiplicative group F_4^* is cyclic of order 3; hence we must have $a^2 = b$, $b^2 = a$, and ab = 1. Using the properties of a field we can also check a + 1 = b, b + 1 = a, and a + b = 1. Suppose σ is the generator of Gal(F₄/F₂); and we know the way σ acts on any element is by squaring that element. By Corollary 2.3 calculating the conjugacy classes of (F₄^{*}) × Gal(F₄/F₂) would facilitate the process of finding the conjugacy classes of G. As it turns out, (F₄^{*}) × Gal(F₄/F₂) is a non-abelian group of order 6 and has three conjugacy classes as follows:

• $C_1 = \{(1,1)\};$

• $C_2 = \{(a, 1), (b, 1)\};$

• $C_3 = \{(1, \sigma), (a, \sigma), (b, \sigma)\}.$

Next, using the above classes together with Corollary 2.3 and finding the centralizer of elements deemed necessary, we can calculate the conjugacy classes of G as follows.

 C_1 gives rise to D_1 and D_2 :

- $D_1 = \{(0, 1, 1)\};$
- $D_2 = \{(1, 1, 1), (a, 1, 1), (b, 1, 1)\}.$

C₂ gives us the following conjugacy class:

• D₃={(0, a, 1), (1, a, 1), (a, a, 1), (b, a, 1), (0, b, 1), (1, b, 1), (a, b, 1), (b, b, 1)}.

C₃ generates the following two conjugacy classes:

- $D_4 = \{(0, 1, \sigma), (1, 1, \sigma), (0, a, \sigma), (b, a, \sigma), (0, b, \sigma), (a, b, \sigma)\};$
- $D_5 = \{(a, 1, \sigma), (b, 1, \sigma), (1, a, \sigma), (a, a, \sigma), (1, b, \sigma), (b, b, \sigma)\}.$

Remark 3.8 According to GAP, the symmetric group S_4 is the only group of order 24 with the conjugacy class sizes $\{1, 3, 6, 8\}$ and hence we must have

 $(F_4^+ \rtimes F_4^*) \rtimes \operatorname{Gal}(F_4/F_2) \simeq S_4.$

Acknowledgment

I'd like to extend my thanks to Professor Alexandre Turull for his invaluable advice and suggestions.

REFERENCES

- [1] T.W. HUNGERFORD: "Algebra", Springer, Berlin (1974).
- [2] O. MANZ T.R. WOLF: "Representations of Solvable Groups", *Cambridge University Press*, Cambridge (1993).

81

Hossein Shahrtash Department of Mathematics Cabrini University 610 King of Prussia Road 19087 Radnor, PA (USA) e-mail: hs10274@cabrini.edu