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Abstract

In this paper we describe all hereditary formations with the Shemetkov property F
such that the intersection of all F-maximal subgroups coincides with the F-hyper-
center of a finite group.
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1 Introduction and the main results

All groups considered here will be finite. The notation and terminol-
ogy agree with the books [2],[5]. We refer the reader to these books
for the results on formations. Let X be a class of groups. Recall that
a subgroup U of G is called X-maximal in G provided that: (a) U 2 X,
and (b) if U 6 V 6 G and V 2 X, thenU = V (see [5, p.288]); the
symbol IntX(G) denotes the intersection of all X-maximal subgroups
of G (see [12]). A chief factor H/K of G is called X-central in G pro-
vided (H/K) o (G/CG(H/K)) 2 X (see [10, pp.127–128] or [6, p.6]).
The symbol ZX(G) denotes the X-hypercenter of G, that is, the largest
normal subgroup of G such that every chief factor H/K of G below
it is X-central. If X is a formation, then the X-hypercenter exists in
every group by [10, §14, Lemma 14.1].
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Note that the intersection of all maximal abelian subgroups of G

is the center of G. According to R. Baer [1], the intersection of all
maximal nilpotent subgroups of G coincides with the hypercenter
of G. It was shown that the intersection of all maximal supersoluble
subgroups of G does not necessary coincide with the supersoluble
hypercenter of G (see [12, Example 5.17]). L.A. Shemetkov posed
the following question on Gomel Algebraic seminar in 1995: «For

what non-empty (normally) hereditary local (Baer-local) formations X do

the equality IntX(G) = ZX(G) hold for every group G?»
The solution to this question for hereditary local formations was

obtained by A.N. Skiba in [12] (for the soluble case, see also J.C.
Beidleman and H. Heineken [4]) and for the class of all quasi-F-
groups, where F is a hereditary local formation, was given in [9].
Note that the methods of [4, 12] are not very useful for non-local or
non-hereditary formations. Here we prove the following result.

Theorem. Let F 6= (1) be a formation with the Shemetkov property. Assume

that ZF(G) = IntF(G) holds for every group G. Then there is a partition �

of P such that FS
is the class of all �-nilpotent groups.

Corollary. Let F 6= (1) be a hereditary formation with the Shemetkov prop-

erty. Then ZF(G) = IntF(G) holds for every group G if and only if F is the

class of all �-nilpotent groups for some partition � of P.

It is well known that the class FS of all groups whose all sub-
groups belong to a formation F is a formation. Recall [2, p. 268]
that a Schmidt group is a non-nilpotent group whose all proper sub-
groups are nilpotent and a formation F has the Shemetkov property if
all F-critical groups are either Schmidt groups or groups of prime
order (for results about these formations see [2, Chapter 6.4]). There
are examples of hereditary non-local formations with the Shemetkov
property [3, 7, 14]. According to [7] every hereditary formation with
the Shemetkov property is Baer-local [5, Chapter IV, Definition 4.9].
In the universe of all soluble groups this result was earlier obtained
by A.N. Skiba [11].

Let � = {⇡i | i 2 I} be a partition of the set of all primes P,
i.e. [i2I⇡i = P and ⇡i \ ⇡j = ; for i 6= j. Note that from [2, Theo-
rem 6.4.14] it follows that the class of groups all whose Hall ⇡i-sub-
groups are normal for all i 2 I is a hereditary formation with the She-
metkov property. Groups in this class are called �-nilpotent (see [13]).
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Proposition. Let F be a formation such that F\S = N. Then FS = N. In

particular F has the Shemetkov property.

It follows from the above result that the class N⇤ of all quasinilpo-
tent groups and the class Nca of all groups whose chief factors are ei-
ther central or simple non-abelian are formations with the Shemetkov
property. It was shown in [9] that

IntN⇤(G) = ZN⇤(G)

holds for every group G and there is a group H with

IntNca
(H) 6= ZNca

(H).

Thus the converse of Theorem is false.

2 Proof of the main results

A.F. Vasil’ev and the author [15] developed a method for studying
formations with the Shemetkov property. Recall [15] that a Schmidt
(p,q)-group is a Schmidt group with a normal Sylow p-subgroup.
An N-critical graph �Nc(G) of a group G [15, Definition 1.3] is a di-
rected graph on the vertex set ⇡(G) of all prime divisors of |G|
and (p,q) is an edge of �Nc(G) iff G has a Schmidt (p,q)-subgroup.
An N-critical graph �Nc(X) of a class of groups X [15, Definition 3.1]
is a directed graph on the vertex set

⇡(X) =
[

G2X

⇡(G)

such that �Nc(X) = [G2X�Nc(G).

Proof of Theorem — Let prove that if ZF(G) = IntF(G) holds for
every group G, then there is a partition � = {⇡i | i 2 I} of the set of all
primes P such that FS is the class N� of all �-nilpotent groups.

1) FS 6= (1).
Assume that FS = (1). It means that every abelian simple group

does not belong F. Note that the quotient group of some group by
its maximal normal subgroup is a simple group. Since F 6= (1) is
a formation, a non-abelian simple group G belongs F. Let p be a
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prime, H = G o Zp be a regular wreath product of G and the cyclic
group Zp of order p and N be the base of H. Since G is a simple
non-abelian group, N is a minimal normal subgroup of H. Let K

be an F-maximal subgroup of H. Then KN/N ' K/(K \N) 2 F is
a subgroup of H/N ' Zp 62 F. Hence K/(K \ N) ' 1. It means
that K 6 N. Therefore N is the unique F-maximal subgroup of H.
So N = ZF(H). Now No (H/CH(N)) ' NoH 2 F. So H 2 F. Thus
H/N ' Zp 2 F, the contradiction.

2) ⇡(FS) = P.
Assume that there is a prime q 62 ⇡(FS). It means that Zq 62 F.

Since FS 6= (1) by 1), there is a prime p with Zp 2 FS ✓ F. There
exists a simple FpZq-module V which is faithful for Zq by [5, Chap-
ter B, Theorem 10.3]. Let G = G(p,q) = V o Zq. Now V is a normal
Sylow p-subgroup of G. Note that V is the unique F-maximal sub-
group of G. Hence V = ZF(G) by our assumption. Since V is a chief
factor of G, G ' V o (G/CG(V)) 2 F. Since F is a formation, it follows
that G/V ' Zq 2 F, a contradiction.

3) If (p,q) 2 �Nc(F
S), then all Schmidt (p,q)-groups belong F.

Recall that FS is a formation such that the classes of all F-critical
and FS-critical groups coincides. Hence FS is a hereditary formation
with the Shemetkov property. Now 3) directly follows from Lemma 4
of [11].

4) Let r 6= p 6= q be primes. If (r,p) 2 �Nc(F
S) and (r,q) 2 �Nc(F

S)
or r = q, then (p,q) 2 �Nc(F

S).
Assume that r 6= p 6= q are primes, (r,p) belongs to �Nc(F

S),
(p,q) 62 �Nc(F

S) and (r,q) 2 �Nc(F
S) or r = q. So G(p,q) is an FS-cri-

tical group by 2) and our assumption. So G(p,q) 62 F.
There exists a simple FrG(p,q)-module T which is faithful

for G(p,q) by [5, Chapter B, Theorem 10.3]. Let

H = H(r,p,q) = T oG(p,q).

From G(p,q) 62 F it follows that if K is a F-maximal subgroup of H,
then KT < H. Let show that every maximal subgroup M of H which
contains T belongs to F. Note that T is a normal Sylow r-subgroup
of M and M/T is isomorphic to a maximal subgroup of G(p,q). So
it is either a direct product V of groups of order p or a group Zq of
order q.

Assume that M 62 F. Then it contains an F-critical subgroup. Since T

is normal in M and F is a formation with the Shemetkov property,
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it can be Zn for n 2 {r,p,q} or a Schmidt (r,n)-group for n 2 {p,q}.
From ⇡(FS) = P by 2) it follows that the first case is impossible. Ac-
cording to our initial assumption, 1) and 3) all Schmidt (r,p)-groups
belong to F and either all Schmidt (r,q)-groups belong F or r = q.
Note that Schmidt (r,q)-groups exist only for r 6= q. It means that
the second case is impossible too, a contradiction. Thus M 2 F.

Therefore the sets of all F-maximal subgroups of H and maximal
subgroups of H which contain T coincide. Thus T 6 IntF(H). It fol-
lows from ZF(H) = IntF(H) that T 6 ZF(H).

Note that T is a chief factor of H, so that

T o (H/CH(T)) ' T oG(p,q) 2 F.

It means that G(p,q) 2 F. Since G(p,q) is a Schmidt (p,q)-group
whose proper subgroups belong FS, G(p,q) 2 FS and (p,q)2�Nc(F

S),
the contradiction.

5) There is a partition � = {⇡i | i 2 I} of P such that �Nc(F
S) is the

disjoint union of complete graphs �i where V(�i) = ⇡i.

Let ⇠ be a relation on the set of all primes P such that p ⇠ p

and p ⇠ q if (p,q) 2 �Nc(F
S) for p 6= q. It is clear that ⇠ is re-

flexive. From 4) for r = q it follows that if (q,p) 2 �Nc(F
S), then

(p,q) 2 �Nc(F
S). Hence ⇠ is symmetric. From this and 4) it follows

that if (p, r), (r,q) 2 �Nc(F
S), then (p,q) 2 �Nc(F

S). So ⇠ is transi-
tive. Thus ⇠ is an equivalence relation. Let ⇡i be the i-th equivalence
class under ⇠. Then � = {⇡i | i 2 I} is a partition of P. Let �i be an
induced subgraph of �Nc(F

S) on the vertex set ⇡i. It is clear that �i
is a complete directed graph on ⇡i.

6) FS = N� is the class of all �-nilpotent groups.

From 2), 3) and 5) it follows that all Schmidt ⇡i-groups and cyclic
groups of order p 2 ⇡i belong FS for all i 2 I. Since FS is a for-
mation with the Shemetkov property, we see that the class G⇡i

of
all ⇡i-groups is a subset of FS for all i 2 I. Note that every �-
nilpotent group G is a direct product of all its Hall ⇡i-subgroups
for all i in {j |⇡j \ ⇡(G) 6= ;}. Since FS is a formation, N� ✓ FS.

Let X be a class of groups. According to [15, Theorem 5.4] if �Nc(X)
is a disjoint union of graphs �i where V(�i) = ⇡i, then every group
in X has a normal Hall ⇡i-subgroup. It means that FS ✓ N�.
Thus FS = N�. ut



6 Viachaslau I. Murashka

Proof of Corollary — From Theorem it follows that there is a
partition � = {⇡i | i 2 I} of P such that F = FS = N�.

Assume that F = N�. Now ZF(G) = IntF(G) holds for every
group G by [12, Theorem A and Proposition 4.2] or [8, Corollary 1].ut

Proof of Proposition — From F\S = N is a hereditary formation
it follows that N ✓ FS. Assume that FS 6= N. Then there is a non-
soluble group in FS. Since FS is hereditary, it contains an S-criti-
cal group G. Now all maximal subgroups of G belong FS \S = N.
Hence G is a Schmidt group. Thus G is soluble, the contradiction.
Therefore FS = N. Since the sets of all F-critical groups and FS-criti-
cal groups coincide, we see that F is the formation with the Shemet-
kov property. ut
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