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Abstract

We consider verbal embedding constructions preserving some residual properties for
groups. An arbitrary residually finite countable group H has a V-verbal embedding
into a residually finite 2-generator group G for any non-trivial word set V . If in
addition H is a residually soluble (residually nilpotent) group, then the group G
can be constructed also to be residually soluble (residually nilpotent). The analogs
of this embedding also are true without the requirement about residual finiteness:
Any residually soluble (residually nilpotent) countable group H for any non-trivial
word set V has a V-verbal embedding into a residually soluble (residually nilpotent)
2-generator group G.

Mathematics Subject Classification (2010): 20E10, 20E22, 20D15, 20E26

Keywords: embeddings of groups, 2-generator groups, residually finite
groups, soluble groups, nilpotent groups, residually soluble groups, resid-
ually nilpotent groups, wreath products, verbal subgroups, varieties of
groups, products of varieties of groups

1 The author was supported in part by joint grant 15RF-054 of RFBR and SCS MES
RA (in frames of joint research projects SCS and RFBR), and by 13-1A246 grant of
SCS MES RA. The result of Theorem 1.1 was recently announced at the Mal’tsev
Meeting International Conference in Novosibirsk, Russia, May 3–7, 2015



4 Vahagn H. Mikaelian

1 Introduction
1.1 The main results
For the word set V ⊆ F∞ the embedding τ : H → G of the group H
is called a V-verbal embedding, if the isomorphic image τ(H) lies in
the verbal subgroup V(G) of G. Verbal embeddings are economical
embeddings in the sense that the image of H occupies “the small
part” V(G) inside G: the larger is the variety V corresponding to V ,
the smaller the verbal subgroup V(G). Our main aim is to show that
any countable residually free group has a V-verbal embedding into
a 2-generator residually finite group, and this can also be combined
with residual solubility or residual nilpotence:

Theorem 1.1 Let H be an arbitrary countable residually finite group and
V ⊆ F∞ be any non-trivial word set. Then there exists a 2-generator resid-
ually finite group G admitting a V-verbal embedding τ : H→ G.

Moreover, if H is a residually finite and residually soluble group (or a
residually finite and residually nilpotent group), then G can be chosen to
also have that property.

The proof of this theorem occupies Section 2 below. A further mod-
ification of the main embedding construction allows one to prove the
analogs of Theorem 1.1 for embeddings of countable residually solu-
ble (residually nilpotent) groups into 2-generator residually soluble
(residually nilpotent) groups regardless of residual finiteness of the
groups. We bring them as Theorem 3.1 and Theorem 3.2 in Section 3.

The fact that every countable residually finite group can be em-
bedded into a 2-generator residually finite group and that this em-
bedding can also preserve residual solubility (residual nilpotence)
was established by J.S. Wilson in [23, Theorem A]. Our Theorem 1.1
adds verbality to that embedding.

Since for a trivial word set V the verbal subgroup V(G) is equal
to {1} for any group G, it is common to restrict to consideration of
V-verbal embeddings for non-trivial word sets only. Also, if from the
context it is clear which V is assumed, we will just term the embed-
ding “verbal”. For background information on varieties of groups we
refer to Hanna Neumann’s monograph [20]. The details on wreath
products can be found in P. Neumanns article [21].

1.2 A brief summary of background and recent development
Before we proceed to the proofs let us give a brief outline of the
context in which verbal embeddings occurred, and announce some



Residual properties of the verbal embeddings of groups 5

recent development on them. Since for the given group G its commu-
tator subgroup G ′, the n-th derived subgroup G(n), the c-th member
γc(G) of the lower central series, the m-th power of Gm and many
other commonly used types of subgroups are particular cases of the
verbal subgroup V(G) = 〈ϕ(w) |w ∈ V , ϕ ∈ Hom(F∞,G)〉 generated
by all values in G of the words w ∈ V for the given words set V ,
examples of verbal embedding can be found since the early stages of
group theory development.

For any group H and for any non-trivial V it is easy to find a
group G admitting a V-verbal embedding τ : H→ G. Thus the verbal
embeddings are usually considered in connection with some extra
properties such as;

- normality or subnormality of embedding (when τ(H) is a nor-
mal or subnormal subgroup in G),

- with conditions making G a “small group” (for example, G is a
2-generator group, when H is countable),

- with requirements on G to be “close” to H (for example, G
is abelian, nilpotent, soluble, generalized soluble, generalized
nilpotent, ordered group, etc., as long as H has those proper-
ties),

- with conditions that make the embedding τ useful for compu-
tational purposes for finite groups H and G, etc.

In 1912 W. Burnside proved that a non-abelian group with cyclic
center or a non-abelian group the index of whose derived group is p2

cannot be the commutator group (and thus cannot be a subgroup in
the commutator group) of some p-group [2, Theorems on pp. 241

and 242]. In 1957 N. Blackburn has described all the 2-generated
p-groups which occur as derived groups of p-groups [1]. Both ref-
erences, clearly, are examples of the possibility (or impossibility) of
normal V-verbal embeddings for the case V = {[x1, x2]}.

In 1959 Hanna Neumann and B.H. Neumann presenting their
second construction for embedding of any countable group H
into a 2-generator group G stressed that the embedding actually
is into the second derived group G ′′ (the verbal subgroup for
V = {[[x1, x2], [x3, x4]]}) [19]. Related embeddings can also be found
in P. Hall’s work [6].
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In 1991 widely generalizing these approaches H. Heineken in [7]
studied the verbal embeddings for an arbitrary wordw ∈ F∞. He con-
sidered normal verbal embeddings for finite p-groups, and gave the
classification of all finite p-groups that for the given non-trivial word
w have normalw-verbal embedding into finite p-groups. In [9] verbal
embedding were defined in the more general form for any word set
V . Heineken’s criterion was generalized to classify all the cases when
for a given non-trivial word set V the given group H has a normal
V-verbal embedding into some group. Both the criteria of [7] and [9]
are in terms of automorphisms group Aut (H). See also [15], where
the same criterion is proved by other means, and also [8], where the
normal embeddings for subgroups were considered.

B. Eick considered the verbal embeddings for finite groups and she
generalized Heineken’s criterion to classify those finite groups that
for the given word w have a normal verbal embedding into finite
groups [4]. This embedding also has computational applications, in
particular, for finite groups presented by permutations. It is used in
computational group theory (see also [5]).

The verbal embeddings were the subject of our research program
carried out in 1997–98 at the Universität Würzburg, Germany, under
supervision of Prof. Dr. Herman Heineken (project A/97/13683 sup-
ported by the DAAD – Deutscher Akademischer Austauschdienst).
In [15] we classified the cases, when for the non trivial word set V
the soluble (nilpotent) groupH has a normal verbal embedding into a
soluble (nilpotent) group G. The similar question for abelian groups
was solved in [9].

In [11] we proved that, unlike normal embeddings, the subnormal
embeddings are possible for any group H and for any non-trivial
word set V . Moreover, if H is countable then G can be selected to
be 2-generator, which strengthens the embedding theorem of [19]
mentioned above. The subnormal verbal embeddings of soluble, gen-
eralized soluble and generalized nilpotent groups were considered
in [11, 12, 16], and some verbal embeddings for ordered groups were
constructed in [13].

Also, we used verbal embeddings to construct some specific classes
of groups such as continuously large classes of SI∗-groups, which are
not locally soluble [14], continuously large classes of finitely gener-
ated soluble non-Hopfian groups [17, 18], etc.

In the current work we wish to combine verbality of the embed-
dings with properties, which are very different from those we just
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listed, namely with residual finiteness, residual solubility and resid-
ual nilpotence. The arguments are based on the verbal embedding
methods we used in cited papers and on the construction by J.S. Wil-
son in [23], which we find is a very elegant and inspirating gener-
alization of older embedding arguments by wreath products, devel-
oped by B.H. Neumann, Hanna Neumann and P. Hall.

2 The proof of Theorem 1.1
2.1 A supersoluble group with finite factors
For technical purposes we need a slightly “stronger” version of the
residual finiteness property. Although in a residually finite group H
for any element h ∈ H there is a normal subgroup N / H such that
h /∈ N and |H/N| is finite, the exponent of h modulo N may not
vary much in the sense that it may not be divisible by a pre-given
integer (it is easy to find examples of that type). For some residually
finite groups, however, this requirement can be added. Recall that
the group S is supersoluble if it possesses a series of subgroups

S = S0 > S1 > · · · > Sk = {1} (1)

such that Si / S and Si−1/Si is cyclic for all i = 1, . . . , k.

Lemma 2.1 If for the supersoluble group S in the notation above the fac-
tors Si−1/Si are infinite for all i = 1, . . . , k, then for any non-trivial el-
ement s ∈ S and for any positive integer n there is a normal subgroup
N = N(s,n) / S such that s /∈ N, the factor S/N is finite and the exponent
exp (Ns) is divisible by n. Moreover, if n is a power of a prime p and G is
nilpotent, then N can be selected so that S/N is a p-group.

Proof — We prove this by induction. For k = 1 we have S ' Z is
an infinite cycle, and we can take N(s,n) = 〈sn〉 = snZ.

Assume the lemma is proved for all 1, . . . , k− 1, and take any el-
ement s ∈ S in a group with series (1). If s ∈ S\S1, then the image
of s under natural map π : S → S/S1 ' Z is an element S1s in an
infinite cycle, and we can choose as N = N(s,n) the full pre-image
π−1 (〈S1(sn)〉) of the cyclic subgroup generated in S/S1 by S1(sn).

Now assume s ∈ S1 and by induction hypothesis take L / S1 such
that s is not in L, the factor-group S1/L is finite, and the exponent
exp (Ls) is divisible by n. Set r = |S1/L| and consider the subgroup
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Sr1 = 〈xr | x ∈ S1〉, which lies in L and which is normal in S, since it is
a fully-invariant subgroup in the normal subgroup S1 of S. The factor
group S1/S

r
1 is finite, since it is a supersoluble group of restricted

period. The element s is not in Sr1 and, since

S1/L ' (S1/S
r
1)/(L/S

r
1)

holds, the exponent exp (Sr1s) also is divisible by n.

The factor group (S/Sr1)/(S1/S
r
1) is isomorphic to the infinite

cycle S/S1 ' Z. Denote the generator of the latter by S1a. The ac-
tion of Sr1a by conjugation defines an automorphism on the normal
subgroup S1/S

r
1 of S/Sr1. Since S1/Sr1 is finite, Aut

(
S1/S

r
1

)
also is

finite, and this automorphism must be of some finite exponent h:
the element Sr1a

h acts trivially on S1/Sr1, that is, ah commutes with
elements of S1 modulo Sr1.

Take N = N(s,n) to be the subgroup generated in S by ah and Sr1.
It is easy to check thatN is normal in S: all powers of a commute with
ah and normalize Sr1. And the elements of S1 normalize Sr1, and they
commute with ah modulo Sr1. The factor S/N clearly is finite.

Taking into account the normalizing effect of the powers of the
element ah on Sr1, it is easy to check that an element of N belongs
to S1 only if it belongs to Sr1. This means that for any s ∈ S1 the
exponent of s modulo N is equal to the exponent of s modulo Sr1 and
is divisible by n.

Finally, assume n is a power of the prime p. By the procedure
above we can find N / S such that exp (Ns) is divisible by n. Being
a finite nilpotent group, the factor S/N is a direct product of its Sy-
low subgroups. Denote by Q the direct product of those Sylow sub-
groups, which correspond to primes other than p. Let N ′ be the full
pre-image of Q under the natural map S → S/N. Clearly, s is not in
N ′, and N ′ is normal in S. It suffices to take N ′ as N. The lemma is
proved. ut

If H is a residually finite and residually soluble group, then by re-
fining the subgroups Hi (where necessary) it is possible to get such a
system of normal subgroups Hi /H, i ∈ I,

⋂
i∈IHi = {1} that each fac-

tor H/Hi is finite and soluble simultaneously. And if H is a residually
finite and residually nilpotent group, then it is possible to construct
the Hi so that each factor H/Hi is finite group of prime-power order.
We will use this below without references.
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2.2 An auxiliary verbal embedding

The group S of Lemma 2.1 is a constructive block for the proof of the
following verbal embedding:

Lemma 2.2 Let H be a countable residually finite group and U ⊆ F∞
be any non-trivial word set. Then there exists a countable residually finite
group R = R(H,U) admitting a U-verbal embedding ρ : H ↪→ R.

Moreover, if H is a residually soluble or a residually nilpotent group,
then R can be constructed to also have the same properties.

Proof — Take a (finite or countably infinite) system of normal sub-
groups Hi /H, i = 1, 2, . . ., such that

⋂
iHi = {1}. Denote ni = |H/Hi|,

i = 1, 2, . . .
Since the word set U is non-trivial, the corresponding variety

U = var (F∞/U(F∞))

is distinct from the variety of all groups O. The set of all nilpotent
groups generates O, thus there is a group S, which does not belong
to U and satisfies the conditions of Lemma 2.1. One may take a free
nilpotent group S of large enough class and of large enough finite
rank: the finitely generated nilpotent groups are supersoluble, and
the corresponding factors in (1) can be constructed to be infinite.
Since S /∈ U, the verbal subgroup U(S) contains a non-trivial element
s ∈ U(S). By Lemma 2.1 for the integers ni there are normal sub-
groups

Ni = N(s,ni) / S, i = 1, 2, . . .

such that s /∈ Ni, the factor group S/Ni is finite and expNis is divis-
ible by ni. Consider the direct wreath products

Wi = H/Hiwr S/Ni, i = 1, 2, . . . (2)

Denote by W the Cartesian product of all the wreath products of (2),
and denote by M the Cartesian product of the base subgroups Mi of
these wreath products. We are going to construct the group R by a
set of its generators singled out in W.

For any h ∈ H and any i = 1, 2, . . . define an element γh,i in Mi:

γh,i(t ·Nisj) = Hihj, j = 0, 1, . . . , |Nis|− 1,

where t is an element in the transversal Ti of the cyclic subgroup



10 Vahagn H. Mikaelian

〈Nis〉 in the group S/Ni. Also define an element Γh ∈ M: its co-
ordinates on elements of S/Ni are equal to the coordinates of γh,i
respectively:

Γh(t ·Nisj) = γh,i(t ·Nisj) for any t, i, j.

Denote by δ the injective embedding of S into the Cartesian prod-
uct W, which assigns to each l ∈ S the vector with coordinates Nil,
i = 1, 2, . . . Since s ∈ U(S), we get that

δ(s) ∈ U
(∏

S/Ni

)
6 U(W).

Since a verbal subgroup is characteristic, U(W) contains conjugations
of δ(s) by any elements of W. Thus U(W) contains the elements

πh = δ(s)Γh(δ(s))−1

for any h ∈ H. We have

πh = Γ−1h δ(s)Γh(δ(s))
−1 = Γ−1h Γ

(δ(s))−1

h .

From here the values of πh can be computed taking into account the
shifting effect of Nis on coordinates of γh,i in the base subgroup Mi
for each i. Clearly,

Γ−1h (t ·Nisj) = Hih−j

and
Γ
(δ(s))−1

h (t ·Nisj) = Γh(t ·Nisj+1) = Hihj+1.

Therefore for any j = 0, 1, . . . , (expNis) − 2 we have πh(t ·Nisj) =
Hih.

To compute the value of πh on the last coordinates with index

t ·Nis(expNis)−1

we use the fact that the order of Nis (that is, the number of coordi-
nates in the substrings of γh,i corresponding to each coset t ·Ni) is
divisible by the order of the element Hih. Namely, the conjugation
of the first element Hih0 = Hi, standing at index t ·Nis0, by the
element (δ(s))−1 (that is, by the element Nis−1) shifts it to the last
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index
t ·Nis−1 = t ·Nis(expNis)−1.

So at the last index we have the following value for πh:

Hih
−[(expNis)−1] ·Hih0 = Hih.

Thus πh is a constant function with the value Hih inside each Mi.
Since all Hi intersect trivially, we have an injective embedding
π : h→ πh of H into W. Although we also have π(H) 6 U(W), this
is not yet the desired embedding, since W may not be a countable
group.

Since s ∈ U(S), there is a finite system {s1, . . . , su} of elements in S
such that s ∈ U(〈s1, . . . , su〉) also holds. Denote

R = 〈Γh, δ(si) |h ∈ H; i = 1, . . . ,u〉.

Then R contains the element δ(s) with the desired properties. Thus by
arguments above it contains all the elements πh. There only remains
to denote by ρ the restriction of π from H to R.

Turning to the final two statements of the lemma notice that, if the
residually finite group H also is residually soluble, then all the factor
groups H/Hi can be assumed to be soluble. And, since the factors
S/Ni are nilpotent, all the wreath products (2) also are soluble, and
the group W is residually soluble together with its subgroup R.

If the residually finite group H is residually nilpotent, we may as-
sume each H/Hi is a finite pi-group for some prime pi. Then by the
last statement of Lemma 2.1 the suitable Ni / S can be selected so
that S/Ni is a pi-group, and the wreath product Wi in (2) is nilpo-
tent, since it is a finite pi-group. Thus W and R are residually nilpo-
tent. ut

We will apply Lemma 2.2 to the group H of Theorem 1.1 for the
case, when U is the word set corresponding to the product variety
VA, where A is the variety of all abelian groups, and V is the variety
corresponding to the non-trivial word set V of Theorem 1.1. Clearly,
VA 6= O, and U is a non-trivial word set.

2.3 Construction of the 2-generator group
The final step of the construction is based on a simplification of the
important argument of J.S. Wilson in subsections 2.2 and 2.3 in [23].
Denote by Ri, i = 1, 2, . . ., a series of normal subgroups of the resid-
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ually finite (residually finite and residually soluble, residually finite
and residually nilpotent) group R = R(H,V) of Lemma 2.2, for which⋂
i Ri = {1} and the factors R/Ri are finite (are finite soluble, prime-

power order) groups. In some way order the elements of the count-
able group R:

r1, . . . , ri, . . . (3)

and denote by αn the number of the first members of (3) such that

{Rnr1, . . . ,Rnrαn}

contains all the cosets in R/Rn. Let βn = 2(α1 + · · ·+ αn). We need
two variants of a countable series of additively written finite cyclic
groups

Zn = 〈zn〉, n = 1, 2, . . . (4)

and of some “sparse” subsets of integer indices. Each variant will be
used for one segment one the proof.

Variant 1) When R is a residually finite or a residually finite and
residually soluble group, set the order |Zn| = 2βn+1, and define the
indices ti = 2i, i = 1, 2, . . .

Variant 2) When R is a residually finite and residually nilpotent
group (and if without loss of generality the order of each factor
R/Rn is a power of some prime pn), define |Zn| as follows. Take
σ1 = 1 and set |Z1| = p

σ1+2α1+1
1 . If pσ22 is the least power of p2

greater than p
σ1+2α1
1 , then set |Z2| = p

σ2+2α2+1
2 . By induction, if

pσnn is the least power of pn greater than p
σn−1+2αn−1
n−1 , then set

|Zn| = p
σn−1+2αn−1+1
n−1 . For this case the indices ti can be defined

as:

t1 = pσ1+11 , t2 = pσ1+21 , . . . , tβ1 = p
σ1+2α1
1 ;

tβ1+1 = pσ2+12 , tβ1+2 = pσ2+22 , . . . , tβ1+2α2 = tβ2 = p
σ2+2α2
2 ;

......................................................................................

tβn−1+1=p
σn+1
n , tβn−1+2 = pσn+2n , . . . , tβn−1+2αn= tβn= p

σn+2αn
n ;

.................................................................................................

In both cases the indices t1, . . . , tβn can be considered to be some
elements of the “first part” of the cyclic group Zn. If needed, we
will denote these elements of the additive group Zn not by ti but by
ti · zn in order to stress to which one of the cycles (4) it belongs.
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As is easy to check (we omit the calculation, since such arguments
are repeatedly used in the literature), for each d ∈ Zn there is at
most one pair of non-negative integers k, l, both not exceeding βn,
such that tkd = tl.

Denote by Bn the Cartesian product of the copies of R/Rn, indexed
by the elements of Zn (the base subgroup of the wreath product
(R/Rn)wrZn), and let B =

∏
n=1,2,...Bn be their Cartesian product.

We can think of an element of B as of an infinite vector of coordinates,
which are laid out as an infinite column of finite rows, and which are
indexed by elements of the disjoint union of all cycles Zn. Define an
element θ ∈ B by the following steps for each n = 1, 2, . . .:

1. for “even” indices t2k, k = 1, . . . ,βn/2, define

θ(t2k) = θ(t2k·zn) = Rnrk;

2. for “odd” indices t2k−1, k = βn−1/2+ 1, . . . ,βn/2, define

θ(t2k−1) = θ(t2k−1·zn) = Rnrk−βn−1/2;

3. for all other indices tj define θ(tj) = θ(tj·zn) = Rn.

Thus for each n in the n-th row of θ, besides trivial coordinates,
we have selected two collections of coordinates. The first collection
has βn/2 coordinates Rnr1, . . . ,Rnrβn/2, which are distributed “uni-
formly” for all n in the sense that their indices t2, t4, . . . , tβn are the
same for all rows (as long as Zn accommodates them). And the sec-
ond, smaller collection has αn coordinates Rnr1, . . . ,Rnrαn , which
are distributed “uniquely” for each n in the sense that for any other
m 6= n the m-th row of θ no longer contains non-trivial coordinates
at the indices tβn−1+1, . . . , tβn−1.

Denote by ψ the automorphism of B defined by its shifting ac-
tions on coordinates in each Bn: for any δ ∈ B we have δψ(i · zn) =
δ((i+ 1) · zn) for i = 0, . . . , |Zn| − 2, and δψ(i · zn) = δ(0 · zn) for
i = |Zn|− 1. This defines a split extension E of W by 〈ψ〉, in which
we select the subgroup G = 〈θ,ψ〉.

Lemma 2.3 In the above notation:
1) for an arbitrary pair of indices k, l there is a positive integer n0 and

an element µ = µk,l ∈ G such that for any n > n0 we have µ(0) =
µ(0 · zn) = Rn[rk, rl], and µ(i) = µ(i · zn) = Rn for i = 1, . . . , |Zn|− 1.
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2) for an arbitrary pair of indices k, l and for any positive integer n the
group G contains an element ρ = ρk,l,n in which ρ(0) = ρ(0 · zn) =
Rn[rk, rl], and all the other coordinates of ρ are trivial.

Notice that the lemma states nothing about the coordinates of µk,l
in the n-th row for any n < n0.

Proof — Let µ = [θψ
t2k , θψ

t2l ] and take any integer n0 for which
βn0 > k, l. For any n > n0 the first coordinate µ(0) in the n-th row
clearly is equal to

µ(0) = µ(0 · zn) = [θ(t2k), θ(t2l)] = Rn[rk, rl].

All the remaining coordinates in the n-th row of µ are trivial, since
by selection of the indices ti for each d ∈ Zn there is at most one
pair of indices k, l 6 βn for which tkd = tl. For small values n < n0,
however, the effect of shiftings ψt2k and ψt2l upon θmay be different:
the first rows of µ may look differently, but they will still consist of
some (finitely many) commutators.

To prove the second statement take ρ = [θψ
tu , θψ

tv
] for u =

βn−1 + 2k− 1, v = βn−1 + 2l− 1. Then in the n-th row

ρ(0) = ρ(0 · zn) = [θ(tu), θ(tv)] = Rn[rk, rl].

All the other coordinates in the n-th row are trivial for the reason
concerning the singe pair we just mentioned. And all the coordinates
in other rows are trivial, since θ may contain non-trivial coordinates
at indices tu, tv in the n-th row only. ut

Lemma 2.3 allows to construct an injective image of the commu-
tator subgroup R ′ = [R,R] in G. Any non-trivial element c ∈ R ′

is a product of finitely many commutators of type [rk, rl]. By state-
ment (1) of Lemma 2.3 for each such pair the group G contains an
element µk,l in which each n-th row for all n > n0 begins with
Rn[rk, rl] followed by trivial cosets Rn. If m is the maximum of all
such integers n0 occurring, we get that G contains an element µ in
which for all rows n > m the first coordinate is Rnc, and it is fol-
lowed by trivial cosets Rn for i = 1, . . . , |Zn|− 1.

Whatever the coordinates of µ in rows n < m may be, by multiply-
ing µ to some finitely many elements of type ρ = ρk,l,n (provided by
statement (2) of Lemma 2.3) and their conjugates ρψ

j
, j = −1,−2, . . .,
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one will get a product ωc ∈ G for which

ωc(0 · zn) = Rnc, ωc(i · zn) = Rn for i = 1, . . . , |Zn|− 1

holds for an arbitrary row. Since the subgroups Rn, n = 1, 2, . . ., inter-
sect trivially, the map ν : c→ ωc is an embedding of R ′ into G.

Consider the composition τ = ρ ·ν of the embedding ρ of Lemma 2.2
with ν. Since the variety U = VA contains A as a subvariety, the word
set U ⊆ F∞ is a subset of the commutator subgroup F ′∞ = [F∞, F∞],
and thus the image ρ(H) is contained in the commutator R ′. There-
fore τ is an embedding of the initial group H into the two-generator
group G.
Both the extension E and its subgroup G are residually finite groups.

If R is a residually finite and residually soluble group, then E and G
also have this property, since all the wreath products R/RnwrZn are
finite and soluble. And when R is a residually finite and residually
nilpotent group, the above wreath products also can be nilpotent,
since, without loss of generality, the factors R/Rn can be selected to
be finite pn-groups, and the finite cycles Zn can be selected to be
groups of orders of powers of pn. Thus τ preserves all the residual
properties of Theorem 1.1, and it remains to show that the embed-
ding τ is V-verbal.

Since the embedding ρ is U-verbal, we have ρ(H) ⊆ U(R).
By [20, 21,12] the word set U 6 F∞, which corresponds to U = VA,
is generated by words of type v(w1, . . . ,wk) ∈ F∞, where v ∈ V is
an identity of V, and where w1, . . . ,wk ∈ F ′∞ are commutator words
(i.e., some identities of A). Thus U(R) ⊆ V(R ′) holds, and ρ actually is
a V-verbal embedding of H into the commutator R ′. Since ν(R ′) 6 G,
we get that τ is a V-verbal embedding of H into G.

All the steps of the proof of Theorem 1.1 are now completed. �

3 Some other verbal embedding constructions
with residual properties

A simplified version of the construction of Section 2 can be used
for embeddings of residually soluble or residually nilpotent groups
(without requirement of residual finiteness).

Returning to the proof of Lemma 2.2 recall that for any non trivial
word set U in the free nilpotent group S (of sufficiently large rank
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and class) we took an element s ∈ S so that s ∈ U(S). Clearly, s is
of infinite order. If Hi /H, i = 1, 2, . . ., such that all H/Hi are soluble
and

⋂
iHi = {1}, then in case of finite factors H/Hi take the same

wreath product as in (2), and in case of infinite factors H/Hi take
H/Hiwr S, and define γh,i(t · sj) = His

j for any integer j ∈ Z and
for any t from the transversal T of 〈s〉 in S. Then the elements Γh
can be re-defined taking into account this modification for infinite
factors H/Hi, and the homomorphism δ can be altered so that for
infinite H/Hi it identically maps s to the copy of that element in the
active group S of H/Hiwr S. Then in the proof of Lemma 2.3 we may
have some of the factors R/Rn infinite. For them we take the Zn = Z,
and we will have an infinite n-th row in θ ∈ B. A slight adaptation of
the arguments following Lemma 2.3 allows one to add verbality also
to the embedding of Theorem C in [23]:

Theorem 3.1 Let H be an arbitrary countable residually soluble group
and V ⊆ F∞ be an arbitrary non-trivial word set. Then there exists a
2-generator residually soluble group G admitting a V-verbal embedding
τ : H→ G.

Embedding of countable soluble groups in 2-generator soluble
groups was established in [19, Corollary 5.2], and we added verbality
to this embedding in [11, statement C in Theorem 1].

The situation is different for residually nilpotent and for nilpotent
groups. Not every countable nilpotent group can be embedded into a
2-generator nilpotent group, since a subgroup of a finitely generated
nilpotent group is finitely generated due to the maximal condition
on subgroups. And not every countable residually nilpotent group
can be embedded into a 2-generator residually nilpotent group, be-
cause by theorem of A.I. Mal’cev [10] a finitely generated residually
nilpotent group (together with its subgroups) has to be residually
finite. So residual finiteness is a necessary condition and, as Corol-
lary A1 in [23] shows, it also is sufficient. The arguments in Section 2

add verbality in this case also:

Theorem 3.2 Let H be an arbitrary countable residually nilpotent group.
Then for an arbitrary non-trivial word set V ⊆ F∞ there exists a 2-generator
residually nilpotent group G admitting a V-verbal embedding τ : H→ G if
and only if H is residually finite.

[23] also considers embeddings of periodic residually finite groups.
An adaptation of the arguments in Lemma 2.1 and Lemma 2.2 ex-
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tends to cover this case also, but we prefer not to consider that case
here.

Another direction for generalization is to consider Lemma 2.2 not
only for countable but for any infinite group H. If for an index set I
there exists a system of normal subgroups Hi, i ∈ I, such that⋂
i∈IHi = {1} and each factor H/Hi is a finite (finite soluble or fi-

nite nilpotent) group then, taking into account that the group S of
Lemma 2.1 is countable, a slight modification in the proof of Lem-
ma 2.2 allows one to prove:

Proposition 3.3 Let H be an arbitrary infinite residually finite group of
any cardinality. Then for an arbitrary non-trivial word set V ⊆ F∞ there
exists a residually finite group G of the same cardinality as H admitting a
V-verbal embedding τ : H → G. Moreover, if H is a residually soluble or
a residually nilpotent group, then G can be constructed to also have that
property.

This is an amendment to [11] in which we proved that any infinite
group for any non-trivial V has a verbal embedding into a group of
the same cardinality, with some properties preserved by the embed-
ding. Notice that if H is finite, then the group G of Proposition 3.3
can be constructed to also be finite, but this is the insignificant trivial
case, since residual finiteness is just finiteness here.

One of the properties that can be added to the embedding τ of a
countable group into a 2-generator group is subnormaliy of the em-
bedding: the image τ(H) of the given countable group H is a subnor-
mal subgroup of the 2-generator group G. This was first established
by R. Dark in [3], and most of the embeddings of countable groups
into 2-generator groups (with additional properties) we constructed
in [11, 12, 13, 15, 16, 17, 18] are subnormal. The constructions in The-
orem 1.1, Theorem 3.2 and Theorem 3.2 do not provide subnormality
for the embeddings τ. We would like to complete this work by sug-
gesting a question:

Problem 3.4 Let H be a residually finite (residually soluble, residually
nilpotent) countable group.

1) Does H admit a subnormal embedding into a residually finite (residu-
ally soluble, residually nilpotent) 2-generator group?

2) If yes, then can those subnormal embeddings be V-verbal for an arbi-
trary non-trivial word set V ⊆ F∞?
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