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Abstract
A group G is said to be an H1-group (a P1-group, respectively) if it has an ascending
(finte, respectively) normal series whose factors have rank 1. Some splitting and
conjugacy theorems for groups with an H1 (or a P1)-homomorphic image are proved.
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1 Introduction

Recall that a group G has finite rank r if every finitely generated sub-
group of G can be generated by at most r elements, and r is the least
positive integer with such property. Thus a group has rank 1 if and
only if it is locally cyclic, and hence it is isomorphic either to a sub-
group of the additive group of rational numbers or to a subgroup of
the multiplicative group of complex roots of unity.

1 The first author is a member of GNSAGA (INdAM), and works within the
ADV-AGTA project
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We shall say that a group G is an H1-group if it has an ascending
normal series

{1} = G0 < G1 < . . . < Gα < Gα+1 < . . . < Gτ = G

such that each factor Gα+1/Gα has rank 1, and G is called a P1-group
if the above normal series can be chosen of finite length. In partic-
ular, H1-groups are hyperabelian and all hypercyclic groups have
the H1-property; moreover, P1-groups are soluble of finite rank and
clearly all supersoluble groups have the P1-property. It is also clear
that the class of P1-groups and that of H1-groups are closed with
respect to subgroups and homorphic images, and that for a finite
group the properties P1 and H1 coincide and are equivalent to su-
persolubility. On the other hand, easy examples show that P1-groups
need not be locally supersoluble. The group classes P1 and H1 have
been introduced and studied in [1], where it was shown that these
classes share many of the important embedding properties already
known for nilpotent and supersoluble groups. Recently the wider
class of groups having an ascending normal series whose factors are
abelian of finite rank has been considered by B.A.F. Wehrfritz (see [8]
and [9]).

The aim of this paper is to obtain some splitting and conjugacy
theorems for abelian-by-H1 groups. Splitting properties for abelian-
by-(locally nilpotent), abelian-by-(locally supersoluble) and abelian-
by-hyperfinite groups have been obtained in [5], [6] and [7], respec-
tively.

Our first main result describes a splitting property over torsion-
free divisible abelian normal subgroups of finite rank.

Theorem A Let G be a group, and let A be a torsion-free divisible abelian
normal subgroup of finite rank of G which has no torsion-free divisible
G-sections of rank 1. If G/A is either an H1-group or a locally P1-group,
then G splits over A and all complements of A in G are conjugate.

It is well-known that results ensuring that a group splits conju-
gately over an abelian normal subgroup are equivalent to the van-
ishing of certain cohomology groups of low degree. Although our
proofs here are homology free, the above theorem can also be inter-
preted in the following way.

Corollary Let Q be a group which is either H1 or locally P1, and let A be
a Q-module whose additive group is torsion-free divisible of finite rank. If
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A has no Q-submodules B and C such that C < B and the additive group
of B/C is torsion-free divisible of rank 1, then H1(Q,A) = H2(Q,A) = 0.

Our other main result is a nearly splitting theorem over periodic
abelian normal subgroups of finite rank.

Theorem B Let G be a group, and let A be an abelian normal subgroup
of G satisfying the minimal condition on subgroups. If A has no infinite
G-sections of rank 1 and G/A is a finitely generated P1-group, then there
exists a finitely generated P1-subgroup E of G such that G = AE and
A ∩ E is finite. Moreover, if G splits over A and L is the set of all comple-
ments of A in G, then A contains a finite G-invariant subgroup B such that
{XB | X ∈ L} is a class of conjugate subgroups of G.

Most of our notation is standard and can for instance be found
in [4].

2 Preliminary results on projectors

Let X be an H-closed group class, i.e. a class of groups such that all
homomorphic images of X-groups belong to X. A subgroup X of a
group G is called an X-projector if XN/N is a maximal X-subgroup of
G/N for each normal subgroup N of G. In particular, any X-projector
is a maximal X-subgroup.

The following reduction lemma is quite useful in order to find
projectors of large groups.

Lemma 2.1 Let X be an H-closed group class, and let G be a group
and N a normal subgroup of G. If S/N is an X-projector of G/N, then
every X-projector of S is also an X-projector of G. Moreover, if G/N and S
have a unique conjugacy class of X-projectors, then also the X-projectors
of G are conjugate.

Proof — Let X be any X-projector of S. Consider a normal subgroup
K of G, and let H/K be an X-subgroup of G/K containing XK/K. As
S/N is an X-group and X is an X-projector of S, we have S = XN and
hence SK = XNK 6 HN. Then SK/NK is contained in the X-subgroup
HN/KN of G/KN, and so SK = HN since S/N is an X-projector of
G/N. In particular, H is a subgroup of SK and so

H = SK∩H = K(S∩H).
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It follows that
H∩ S/K∩ S ' H/K

is an X-subgroup of S/K ∩ S containing X(K ∩ S)/K ∩ S, and hence
H∩ S = X(K ∩ S). Therefore H = K(S ∩H) = KX and X is an X-pro-
jector of G. Suppose now that all X-projectors of G/N are conjugate
to S/N and all X-projectors of S are conjugate to X, and let Y be any
other X-projector of G. Then YN/N is an X-projector of G/N and so Y
is contained in Sg for a suitable element g of G. Clearly, Y and Xg are
X-projectors of Sg and hence there exists z ∈ Sg such that Y = Xgz.
Therefore G has a unique conjugacy class of X-projectors. ut

Projectors play a special role in the theory of formations. Recall
that an H-closed group class F is a formation if it is also R0-closed,
i.e. if G/N1 ∩N2 belongs to F whenever N1 and N2 are normal sub-
groups of a group G such that G/N1 and G/N2 are F-groups. Our
next result relates in certain cases the existence of projectors with
respect to a formation to a splitting theorem.

Lemma 2.2 Let F be a formation, and let G be a group and N an abelian
minimal normal subgroup of G. If G is not an F-group but G/N belongs
to F, then the F-projectors of G are precisely the complements of N in G.

Proof — Let X be any F-projector of G. As G/N is an F-group, we
have G = XN, so that N is not contained in X and X ∩N is a proper
subgroup of N which is normal in G; thus X ∩N = {1} and X is a
complement of N in G. Conversely, let X be a complement of N in
G, so that in particular X ' G/N belongs to F. Let K be any normal
subgroup of G and let H/K be an F-subgroup of G/K containing
XK/K; then

H = XN∩H = X(H∩N)

with H ∩N normal in G = HN. If N is contained in H, then H = G
and G/K is an F-group; in this case K must contain N and XK = G.
Suppose now that N is not contained in H, so that H ∩N = {1} and
hence H = X. Therefore X is an F-projector of G. ut

A normal subgroup H of a group G is said to be H1-embedded in G
if it has an ascending G-invariant series

{1} = H0 < H1 < . . . < Hα < Hα+1 < . . . < Hτ = H

whose factors have rank 1. It is easy to show that any group G con-
tains a largest H1-embedded normal subgroup H(G), and H(G) coin-
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cides with the intersection of all normal subgroups N of G such that
G/N does not contain non-trivial normal subgroups of rank 1 (see
[4] Part 1, Lemma 1.39.3). The following property of the characteris-
tic subgroup H(G) has been proved in [1].

Lemma 2.3 Let G be a group containing a finite normal subgroupN such
that the factor group G/N has the H1-property. Then the subgroup H(G)
has finite index in G.

Lemma 2.4 LetG be a group, and letA be a finite abelian minimal normal
subgroup of G. If A is not cyclic and G/A is an H1-group, then G splits
over A and all complements of A in G are conjugate.

Proof — Since A is non-cyclic, we have A ∩H(G) = {1}. Moreover,
the factor group G = G/H(G) is finite by Lemma 2.3 and G/A is
supersoluble. Thus the supersoluble projectors of G form a unique
conjugacy class of complements of A in G. If K/H(G) is one such
complement, then G = AK and

A∩K 6 A∩H(G) = {1},

so that K is a complement of A in G. Let L be any complement of A
in G; then L is a maximal subgroup of G and it has the property H1.
As G is not an H1-group, it follows that L contains H(G) and hence
L is a conjugate of K. The lemma is proved. ut

Lemma 2.5 Let G be a group containing a finite soluble normal subgroup
N such that G/N has the property H1. Then G has H1-projectors and all
such projectors are conjugate and self-normalizing.

Proof — It can obviously be assumed that G is not an H1-group.
Suppose first that N is a minimal normal subgroup of G. As N can-
not be cyclic, it follows from Lemma 2.4 that there exists a unique
conjugacy class of complements of N in G, and such complements
are precisely the H1-projectors of G; in particular, in this case the
H1-projectors of G are maximal subgroups and hence they are self-
normalizing. Assume now that M is a normal subgroup of G such
that {1} 6= M < N. By induction on the order of N, the group G/M
has a unique conjugacy class of self-normalizing H1-projectors; more-
over, if S/M is one of such projectors, again by induction we have that
also S has a unique conjugacy class of self-normalizing H1-projectors.
It follows from Lemma 2.1 that G itself contains H1-projectors and
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these are conjugate. Finally, if T is any H1-projector of S, then S = TM
and hence NG(T) 6 NG(S) = S, so that NG(T) = NS(T) = T . There-
fore all H1-projectors of G are self-normalizing and the lemma is
proved. ut

The same argument used in the proof of Lemma 2.5 shows that for
P1-projectors a corresponding result holds.

Lemma 2.6 Let G be a group containing a finite soluble normal subgroup
N such that G/N has the property P1. Then G has P1-projectors and all
these projectors are conjugate and self-normalizing.

3 Splitting theorems

Let G be a group. If g is any element of G and m,n are integers, we
consider the mapping

g(m,n) : x ∈ G 7−→ x−m(xn)g ∈ G.

We have obviously that g(0, 0) is the zero map, g(1, 0) is the inversion
map and g(0, 1) is the conjugation by g. Moreover, g(1, 1) is the com-
mutator map x 7→ [x, g] and if G is a nilpotent group there is a posi-
tive integer k such that xg(1, 1)k = 1 for all x and g in G. We shall say
that the group G has the (∗)-property if for all elements x, g of G there
exist a positive integer k and non-zero integersm1, . . . ,mk,n1, . . . ,nk
(depending on x and g) such that

x
( k∏
i=1

g(mi,ni)
)
= 1.

Observe that, if A is an abelian normal subgroup of a group G such
that [A,G ′] = {1}, then each g(m,n) induces on A a G-endomorphism
and such G-endomorphisms pairwise commute; this applies in par-
ticular when A is a normal subgroup of rank 1. In this special case,
if a is any element of A and g ∈ G, as 〈a〉 ∩ 〈ag〉 6= {1}, there exist
non-zero integersm,n such that am = (ag)n and hence ag(m,n) = 1.
From this remark we can deduce the following result.

Lemma 3.1 Every H1-group G has the (∗)-property.
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Proof — Let

{1} = G0 < G1 < . . . < Gα < Gα+1 < . . . < Gτ = G

be an ascending normal series whose factors have rank 1, and assume
that µ 6 τ is a non-zero ordinal number such that the (∗)-property
holds for all pairs (y, g), with y ∈ Gα for some α < µ and g ∈ G. If µ
is a limit ordinal, then

Gµ =
⋃
α<µ

Gα

and hence (∗) also holds for the pairs in Gµ×G. Suppose now that µ
is not a limit, so that we can consider µ− 1 and Gµ/Gµ−1 is a group
of rank 1. If x is any element of Gµ and g ∈ G, there are non-zero
integers m,n such that xg(m,n) lies in Gµ−1; then for some positive
integer k there exist non-zero integers m1, . . . ,mk,n1, . . . ,nk such
that

x
(
g(m,n)

k∏
i=1

g(mi,ni)
)
= 1.

Therefore by transfinite induction it follows that (∗) holds for all
pairs of elements of G, and hence G has the (∗)-property. ut

As the class of groups with the (∗)-property is obviously local, we
have the following consequence.

Corollary 3.2 Let G be a locally P1-group. Then G has the (∗)-property.

Lemma 3.3 Let G be a group and let A be an abelian normal subgroup
ofG. If g is an element ofG such that g(m,n) induces the zero map onA for
some non-zero integers m and n, then g normalizes all divisible subgroups
of A.

Proof — Let B be a divisible subgroup of A, and let b be any el-
ement of B. Then b = un for some u ∈ B; as ug(mn,n) = 1, we
have

bg = (un)g = um ∈ B.

Similarly, it follows from the identity (um)g
−1

= un that also bg
−1

belongs to B. Therefore Bg = B and g normalizes B. ut

Let G be a group and M a G-module. Recall that a derivation from
G into M is a map δ : G −−→M such that

(xy)δ = (xδ)y+ yδ
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for all x,y in G. Then 1δ = 0 and the set

kerδ = {x ∈ G | xδ = 0}

is a subgroup of G, which is called the kernel of δ.

Next lemma is essentially the metabelian case of our main results.

Lemma 3.4 Let G be a metabelian group, and let A be a divisible abelian
normal subgroup of G with finite rank r > 1 such that [A,G ′] = {1}. Sup-
pose that A does not contain proper non-trivial divisible normal subgroups
of G and G/A has the property (∗). Then the following hold:

(a) if A is torsion-free, then G splits over A and all complements of A in
G are conjugate;

(b) if A is a p-group for some prime number p and G/A is finitely gener-
ated, then there is a subgroup S of G such that G = AS and A∩ S is
finite. Moreover, if G splits over A and L is the set of all complements
of A in G, there exists a finite G-invariant subgroup B of A such that
{XB | X ∈ L} is a conjugacy class of subgroups of G.

Proof — Since A has no proper non-trivial divisible subgroups,
it follows from Lemma 3.3 that G contains an element g such that
g(m,n) induces a non-zero G-endomorphism on A for all non-zero
integers m and n. In particular, Ag(m,n) = A for all m,n 6= 0. Let
x be any element of G. As G/A has the (∗)-property, there exists a
positive integer k and non-zero integers m2, . . . ,mk,n2, . . . ,nk such
that the element

[x, g]
k∏
i=2

g(mi,ni)

belongs to A (where [x, g] ∈ A if k = 1); put also m1 = n1 = 1. Thus

[x, g]
k∏
i=2

g(mi,ni) = a
k∏
i=2

g(mi,ni),

for some a ∈ A, because

A

k∏
i=2

g(mi,ni) = A.
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On the other hand, G ′ is abelian and [A,G ′] = {1}, so that

(xa−1)

k∏
i=1

g(mi,ni) = [xa−1, g]
k∏
i=2

g(mi,ni)

= ([x, g][a, g]−1)
k∏
i=2

g(mi,ni)

=
(
[x, g]

k∏
i=2

g(mi,ni)
)(

[a, g]−1
k∏
i=2

g(mi,ni)
)

=
(
x

k∏
i=1

g(mi,ni)
)(
a

k∏
i=1

g(mi,ni)
)−1

= 1.

Thus xa−1 belongs to the set SG(g) consisting of all elements y of G
such that yα = 1 for some function

α = g(1, 1)g(m2,n2) . . . g(mr,nr)

and suitable non-zero integers m2, . . . , mr, n2, . . . , nr. Therefore
G = SG(g)A. Since G ′ is abelian, again the identity

y
(
g(1, 1)g(m2,n2) . . . g(mr,nr)

)
= [y, g]

(
g(m2,n2) . . . g(mr,nr)

)
yields that SG(g) is a subgroup of G.

We distinguish the two cases. Suppose first that A is torsion-free.
Then the map g(m,n) induces an automorphism on A for all non-
zero integers m and n, so that A ∩ SG(g) = {1} and SG(g) is a com-
plement of A in G. Let L be any complement of A in G, so that

G = LA = L[A, g],

and there exist elements y of L and a of A such that g = y[a, g]. Thus
y = ga and it follows easily that

L = SG(y) = SG(g)
a.

Therefore all complements of A in G are conjugate.
Assume now that A is a p-group for some prime number p and

G/A is finitely generated. Then G = AE for some finitely generated
subgroup E = 〈y1, . . . ,yn〉, and since G/A has the (∗)-property, for
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each j = 1, . . . ,n there exist a positive integer k(j) and non-zero inte-
gers

mj,1, . . . ,mj,k(j),nj,1, . . . ,nj,k(j)

such that the element

[yj, g]
k(j)∏
i=1

g(mj,i,nj,i)

belongs to A. The mapping

δ = g(1, 1)
n∏
j=1

k(j)∏
i=1

g(mj,i,nj,i)

is a derivation from G into the abelian group G ′, and Eδ is contained
in A because the g(m,n)’s commute on G ′. As Aδ = A, for each
element y of E we have yδ = aδ for some a ∈ A and ya−1 belongs to
the subgroup

kerδ = {x ∈ G | xδ = 1}.

Therefore G = Akerδ. Moreover, B = A∩ kerδ is a proper G-invariant
subgroup of A and hence it is finite.

Suppose finally that G splits over A, and let X be any complement
of A in G. Then g = x[a, g] for suitable elements x of X and a of A, so
that x = ga and xA = gA. Let δ∗ be the derivation of G into G ′ ob-
tained by replacing g by x in the definition of δ. Then X is contained
in kerδ∗ = (kerδ)a and

kerδ∗ = X(A∩ kerδ∗) = X(A∩ kerδ) = XB,

and hence XB is conjugate to kerδ. The proof is complete. ut

Proof of Theorem A — Suppose that B is a non-trivial G-invariant
subgroup of A such that A/B is not periodic, and let B∗/B be the sub-
group consisting of all elements of finite order of A/B. Then B∗ is a
proper G-invariant subgroup of A and A/B∗ is torsion-free. By induc-
tion on the rank of A, it can be assumed that A/B∗ has a complement
X/B∗ in G/B∗. Clearly, B∗ has no torsion-free divisible X-sections.
Moreover, B∗ is a pure subgroup of A, so that it is divisible and again
by induction it has a complement Y in X. Then Y is also a complement
of A in G. It is also easy to show that if the complements of A/B∗ in
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G/B∗ are conjugate and the complements of B∗ in X are conjugate,
then also the complements of A in G form a single conjugacy class.
Therefore it can be assumed without loss of generality that G acts
rationally irreducibly on A. In particular, A cannot contain proper
non-trivial divisible G-invariant subgroups.

Since G/A is an H1-group (or a locally P1-group), its commuta-
tor subgroup K/A is hypercentral (or locally nilpotent, respectively),
and so there exists a unique conjugacy class of self-normalizing hy-
percentral (or locally nilpotent, respectively) supplements of A in K
(see [2], Theorem 7). If S is one such supplement, application of the
Frattini argument yields that G = ANG(S), so that A∩NG(S) = A∩S
is a normal subgroup of G. Suppose first that [A,K] 6= {1}. Since the
intersection A ∩ Z(K) is a normal subgroup of G, and G acts ratio-
nally irreducibly on its torsion-free normal subgroup A, it follows
that A∩Z(K) = {1}. In particular,

A∩NG(S) = A∩ S = {1},

so that NG(S) is a complement of A in G. Let U be any other comple-
ment of A in G. Then K∩U is a complement of A in K and of course
U 6 NG(K∩U). On the other hand,

A∩NG(K∩U) = A∩CG(K∩U) 6 A∩Z(K) = {1}.

It follows that NG(K ∩U) = U, and so U is conjugate to NG(S) as
K∩U is conjugate to S. Therefore we may assume that [A,K] = {1}, so
that in particular [A,G ′] = {1}.

Suppose that G/A is an H1-group. As A is contained in the centre
of K, we have that K/Z(K) is H1-embedded in G/Z(K), and hence
K ′ is an H1-embedded normal subgroup of G (see [1], Lemma 5). It
follows that

G ′′ 6 K 6 H(G),

so that the factor group G/H(G) is metabelian. Clearly, A∩H(G)= {1},
and so Lemma 3.4 yields that AH(G)/H(G) has a complement V/H(G)
in G/H(G) and all such complements are conjugate. Then G = AV
and

A∩ V = A∩
(
AH(G)∩ V

)
= A∩H(G) = {1},

so that V is a complement of A in G. Let W be any complement of A
in G. As W is an H1-group, also the product WH(G) belongs to the
class H1. On the other hand, A∩WH(G) is a normal subgroup of G,
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so that
A∩WH(G) = {1}

and hence H(G) is contained in W. Therefore all complements of A
in G are conjugate.

Assume finally that the group G/A is locally P1. As [A,G ′] = {1},
the mapping g(m,n) induces on A a G-endomorphism for every
element g of G and for all integers m,n. Moreover, such G-endo-
morphism is either the zero map or an automorphism of A, because
G acts rationally irreducibly on A. For each g ∈ G, consider the sub-
group SG(g) consisting of all elements x of G such that

x

k∏
i=1

g(mi,ni) = 1

for suitable non-zero integers m1, . . . ,mk,n1, . . . ,nk As in the proofs
of Lemma 4 and Lemma 5 of [2], it can be proved that

G ′′ 6
⋂
g∈G

SG(g).

It follows that for every g ∈ G there exist non-zero integersm = m(g)
and n = n(g) such that the function g(m,n) acts as the zero map on
A ∩G ′′. Let a be any element of A ∩G ′′. Then for each g ∈ G, we
have (an)g = am, where m = m(g) and n = n(g), and hence the
normal closure 〈a〉G has rank 1. Since A has no non-trivial G-inva-
riant subgroups of rank 1, we deduce that A ∩G ′′ = {1}. It follows
from Lemma 3.4 that AG ′′/G ′′ has a complement in G/G ′′ and all its
complements are conjugate. If V/G ′′ is a complement of AG ′′/G ′′ in
G/G ′′, then G = AV and

A∩ V = A∩ (AG ′′ ∩ V) = A∩G ′′ = {1}.

Thus V is a complement of A in G. On the other hand, if W is any
complement of A in G, we have

G ′ 6 CG(A) = AW ∩CG(A) = A
(
W ∩CG(A)

)
,

and so
G ′′ 6W ∩CG(A) 6W.
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It follows that W/G ′′ is a complement of AG ′′/G ′′ in G/A, and hence
the complements of A in G form a single conjugacy class. The theo-
rem is proved.

A famous theorem of P. Hall proves that if N is a nilpotent normal
subgroup of a group G and the factor group G/N ′ is nilpotent, then
G itself is nilpotent. In order to prove our second main result, we
need the following lemma of “Hall type” for the P1-property.

Lemma 3.5 Let G be a group, and let N be a nilpotent normal subgroup
of G such that the factor group G/N ′ has the P1-property. Then G is a
P1-group.

Proof — Let c be the nilpotency class of N. The statement is ob-
vious if c 6 1, and so we may suppose that c > 1. By induction
on c, it can be assumed that the P1-property holds for the factor
group G/Z(N). Then N/Z(N) is P1-embedded in G/Z(N), and so
N ′ is P1-embedded in G (see [1], Lemma 2). Therefore G is a
P1-group. ut

Proof of Theorem B — Let D be the largest divisible subgroup
of A. Clearly, D is normal in G and the index |A : D| is finite. Assume
first that D = {1}, so that A is finite and it follows from Lemma 2.6
that G contains a P1-projector S. Then G = SA, and S has finite index
in G, so that in particular S is finitely generated. In this case, in order
to obtain the second part of the statement it is enough to take B = A.

Suppose that D 6= {1}, so that D is a direct product of n > 1 Prüfer
subgroups, and we shall prove the statement by induction on n. Let
D∗ be a proper divisible non-trivial G-invariant subgroup of D. As
the hypotheses are obviously inherited by the factor group G/D∗,
by induction there exists a finitely generated P1-subgroup E∗/D∗ of
G/D∗ such that G = E∗A and the index |E∗ ∩ A : D∗| is finite. Of
course, D∗ has no infinite E∗-invariant sections of rank 1, and so
again by induction E∗ contains a finitely generated P1-subgroup E
such that E∗ = ED∗ and E∩D∗ is finite. Then

G = E∗A = ED∗A = EA

and E ∩A is finite, because D∗ has finite index in E∗ ∩A. Assume
furthermore that G splits over A, and L be the set of all complements
of A in G. Then G = G/D∗ splits over A = A/D∗ and

L = {X | X ∈ L}
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is a set of complements of A in G, where X = XD∗/D∗ for each X ∈ L,
so that the induction assumption yields that A contains a finite G-in-
variant subgroup B = B∗/D∗ such that

{XB | X ∈ L}

is contained in a class of conjugate subgroups of G. Choose an ele-
ment X of L. As X is a complement of B∗ in XB∗, again by induc-
tion there exists a finite subgroup B of B∗, which is X-invariant and
so also G-invariant, such that UB is conjugate to XB for each com-
plement U of B∗ in XB∗. Let Y be any other element of L. Then
XB∗ = YgB∗ for some element g of G, so that Yg is a complement
of B∗ in XB∗ and hence there exists h ∈ G such that YgB = XhB. It
follows that the set {XB | X ∈ L} is a class of conjugate subgroups
of G.

Therefore it can be assumed that D has no infinite proper G-in-
variant subgroups, so that in particular it is a p-group for some prime
number p. As A = WD for a suitable finite characteristic subgroup
W, we may further suppose without loss of generality that A = D
is divisible. Since G/A is a P1-group, it follows that its commutator
subgroup K/A is nilpotent.

Suppose first that the normal subgroup [A,K] of G is properly con-
tained in A. Since [A,K] is a divisible and A has no infinite proper
G-invariant subgroups, it follows that [A,K] = {1}, so that in par-
ticular K is nilpotent and [A,G ′] = {1}. If A is contained in K ′, the
factor group G/K ′ has the P1-property, so that G is a P1-group by
Lemma 3.5, and so A has rank 1. This contradiction shows that A∩K ′
is a proper subgroup of A, and hence it is finite. In particular, the
normal subgroup A ∩G ′′ of G is finite, and so it is enough to prove
that the statement holds for the factor group G/A ∩G ′′. Thus with-
out loss of generality it can be assumed that A ∩G ′′ = {1}. In this
case the statement follows from Lemma 3.4 applied to the metabelian
group G/G ′′.

Assume now that [A,K] = A, so that K cannot be nilpotent. As K/A
is nilpotent, there exists a nilpotent subgroup S of K such that AS = K
and the index |NK(S) : S| is finite (see [3], Theorem 4). Assume for a
contradiction that A∩ S is infinite, so that it contains an infinite S-in-
variant subgroup C whose proper S-invariant subgroups are finite.
Clearly, C is contained in Z(S), since S is nilpotent, so that C also lies
in the centralizer CA(K). Then CA(K) is an infinite normal subgroup
of G, and hence CA(K) = A and [A,K] = {1}. This contradiction shows
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that A∩S must be finite, so that also its normal closure N = (A∩S)G
is finite. Thus we may replace G by G/N, and hence that A∩ S = {1}.
Then

{Sx | x ∈ G}

is a set of complements of A in K, and hence there exists a finite
K-invariant subgroup E of A such that

{SxE | x ∈ G}

is contained in a class of conjugate subgroups of K (see [3], Theo-
rem 4). Moreover, by replacing E by its normal closure EG, we may
also suppose that E is normal in G. Therefore

G = KNG(SE) = ANG(SE).

If A 6 NG(SE), the subgroup SE is normal in G and

A = [A,K] 6 K ′ 6 SE,

since K = A(SE), and this is a contradiction because in this case
A = E(A ∩ S) would be finite. It follows that the normal subgroup
A ∩NG(SE) of G is properly contained in A, so that it is finite and
by Lemma 2.6 there exists a finitely generated P1-subgroup U of
NG(SE) such that

NG(SE) =
(
A∩NG(SE)

)
U.

Then
G = ANG(SE) = AU,

and the first part of the proof is established also in this case.

Again under the assumption [A,K] = A, suppose finally that G
splits over A, and let L be the set of all complements of A in G. For
each X ∈ L, put X∗ = X∩K, so that

L∗ = {X∗ | X ∈ L}

is a set of complements of A in K. As K/A is nilpotent but K is
not nilpotent, we have NG(X∗) 6= G for all X ∈ L. Moreover, X is
obviously contained in NG(X

∗), so that G = ANG(X
∗) and hence

A∩NG(X∗) is a proper G-invariant subgroup of A. Then A∩NG(X∗)
is finite, and so the index |NK(X

∗) : X∗| is finite for every X ∈ L.
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Application of [3], Theorem 4, to the abelian-by-nilpotent group K
yields that the set

{X∗B∗ | X∗ ∈ L∗}

lies in a class of conjugate subgroups of K for a suitable finite K-in-
variant subgroup B∗ of A, which can be chosen to be characteristic
in A. Then

{NG(X
∗B∗) | X∗ ∈ L∗}

is a collection of conjugate proper subgroups of G. On the other hand,
the intersection B = A∩NG(X∗B∗) is a normal subgroup of G, so that
it is finite and independent on the choice of X∗. Moreover, we have

NG(X
∗B∗) = AX∩NG(X∗B∗) = X

(
A∩NG(X∗B∗)

)
= XB,

and hence {XB | X ∈ L} is a class of conjugate subgroups of G. The
proof is complete.
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