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Abstract
An FCI-group is a group in which every non-normal cyclic subgroup has finite index
in its centralizer and an FNI-group is one in which every non-normal subgroup has
finite index in its normalizer. FCI-groups and FNI-groups are characterized in the
case where an infinite abelian normal subgroup is present and all periodic factors
are locally finite. This applies in particular to locally soluble-by-finite groups.
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1 Introduction

A group G is called an FCI-group if for each g ∈ G either 〈g〉 / G
or |CG(g) : 〈g〉 | is finite (the author is grateful to Dr. A. Tortora
and Dr. M. Tota for bringing this group theoretical property to his
attention). Some obvious examples of FCI-groups are abelian groups,

1 This research was begun while the author was a visitor at the University of Salerno
during April 2014 under the auspices of INdAM (Italy). He is grateful to the
Dipartimento di Matematica, and especially to Professors P. Longobardi and
M. Maj, for excellent hospitality
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finite groups, free groups and Tarski groups. The class of FCI-groups
is clearly subgroup closed, but it is not quotient closed.

Equivalently, we could say that a group G is an FCI-group if either
〈g〉 /G or |NG(〈g〉) : 〈g〉| is finite for all g ∈ G. Thus a stronger prop-
erty than FCI arises when the condition on normalizers is applied to
arbitrary subgroups, not just the cyclic ones. A group G is said to be
an FNI-group if |G : NG(H)| is finite whenever H is a non-normal sub-
group of G. The class of FNI-groups is quotient and subgroup closed.
Obviously an FNI-group is an FCI-group, but the converse is false
since non-cyclic free groups are not FNI-groups. The two properties
can be thought of as forcing centralizers and normalizers to extreme
positions – they are either very small or very large.

The classes of FCI-groups and FNI-groups were introduced by
Fernández-Alcober et al. in [2, 3, 4]. If G is a periodic group, the FCI
condition amounts to requiring that the centralizer of a non-normal
cyclic subgroup be finite: a related group theoretic property has been
considered for profinite groups by Shalev [9].

Notation

(i) rp(A), r0(A): the p-rank and torsion-free rank of an abelian
group A.

(ii) π(G): the set of primes dividing the orders of elements of finite
order in a group G.

(iii) A[n]: the subgroup of elements in an abelian group A with or-
der dividing n.

(iv) A subgroup H is said to be d-embedded in a group G if 〈x〉 /G
for all x ∈ H. Thus H is a dedekind group and elements of G
induce power automorphisms in H.

Despite the complexity of the classes of FCI-groups and FNI-groups,
it is possible to describe large classes of these groups in a precise fash-
ion, which is the objective of this work. There are five types of groups
which appear in our classification of FCI-groups and FNI-groups.

(i) Dedekind groups;

(ii) a non-abelian group G with a finite d-embedded subgroup F
such that G/F is infinite cyclic or infinite dihedral;
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(iii) G = 〈x,A〉 where A is a non-periodic abelian group, ax = a−1

for all a ∈ A, x2 ∈ A[2] and A[2] is finite;

(iv) G = 〈x,A〉 where A is an infinite periodic abelian subgroup
which is d-embedded in G and CA(y) is finite for all y ∈ G \A;

(v) G = HgG, a central product, where H is a finite hamiltonian
2-group which is d-embedded in G, and G = 〈x,B〉 is a group
of type (iv), with H∩G = B2 6 H[2]∩ 〈x〉 and |B2| = 1 or 2.

Notice that if x has odd or infinite order in (v), then G = H×G
and B has no elements of order 2.

Our principal result is as follows.

Theorem 1 Let G be an FCI-group with an infinite abelian normal sub-
group and assume that every periodic factor of G is locally finite. Then G
is a group of types (i) − (v). In addition, if G is an FNI-group which is of
type (iii), then it has finite torsion-free rank.

The hypothesis on periodic factors in Theorem 1 cannot be omit-
ted, even if an infinite abelian normal subgroup is present. Indeed
Adian ([1], VII) has constructed a torsion-free group G which is a
central extension of an infinite cyclic group by a free Burnside group
of large prime exponent. The Burnside group is periodic, but not lo-
cally finite, and each element of prime order generates its centralizer.
From this it follow readily that G is an FCI-group, but it is not of
types (i)-(v).

As a converse we prove:

Theorem 2 Groups of types (i), (ii), (iv) and (v) are FNI-groups. A
group of type (iii) is an FCI-group and if it has finite torsion-free rank,
then it is an FNI-group.

Theorem 1 can be applied to classify the FCI-groups and FNI-
groups belonging to a large class of infinite groups. Let

X

denote the smallest class of groups containing all finite groups and
all abelian groups which is locally closed and closed with respect to
forming ascending series with factors in the class. For example, X
contains all locally soluble-by-finite groups.



100 Derek J.S. Robinson

Theorem 3 Let G be an infinite group belonging to the class X. If G is
an FCI-group, then it is of types (i) − (v). If G is an FNI-group which is of
type (iii), then it has finite torsion-free rank.

This theorem is a generalization of results of Fernández-Alcober
et al. [2], who classify locally finite FCI-groups, albeit in a different
form. Notice, however, that in the above classification non-periodic
groups can occur in all five types. In [3] the locally nilpotent
FCI-groups are found; also FCI-groups and FNI-groups in which
there are bounds for the indices of centralizers or normalizers are
studied in [4]. The groups of these kinds can be identified among the
types (i)-(v) on our list.

2 Preliminary results

We begin establishing some properties of groups of types (i)-(v).

Lemma 1 Groups of types (i)-(v) are metabelian.

Proof — Consider a group G of type (ii): the other types are ob-
viously metabelian. There is a finite d-embedded subgroup F such
that G/F is infinite cyclic or infinite dihedral. In the first case write
G = 〈x〉F. If F is abelian, G is certainly metabelian. Assume that
F is hamiltonian. Notice that a power automorphism of a quater-
nion group of order 8 is inner. Hence G ′ = F ′[F, x] 6 Z(F), which
is abelian. Next let G/F be infinite dihedral and write G = 〈x,a, F〉
where ax ≡ a−1 mod F. Then G ′ = F ′[F, x][F,a]〈[a, x]〉F 6 Z(F)〈[a, x]〉
since [a, x] centralizes F. It follows that G ′ is abelian. ut

For a complete understanding of groups of types (iv) and (v) it is
necessary to know which power automorphisms of an abelian group
have finitely many fixed points. The simplest situation is when the
group is non-periodic and the answer is well known.

Lemma 2 Let α be a non-trivial power automorphism of a non-periodic
abelian group A. Then α is inversion in A and CA(α) is finite if and only
if A[2] is finite, i.e., r2(A) is finite.

It is a less trivial task to determine when the fixed point subgroup
is finite if the group is periodic. Let A be a periodic abelian group
with a power automorphism α and let αp denote the automorphism
induced by α in the p-component Ap. Then αp can be represented by
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a p-adic integer, which is uniquely determined modulo the exponent
of Ap if this is finite. For an account of the power automorphisms of
abelian groups see [7].

Lemma 3 LetA be a periodic abelian group with a power automorphism α
of infinite order. Denote the order of (αp)|A[p] by ep. Then CA(αk) is finite
for all k > 0 if and only if the following conditions hold.

(i) Ap has finite rank for all primes p, and if |αp| is finite, then Ap is
finite.

(ii) There do not exist infinitely many primes p1,p2, . . . in π(A) such
that ep1 = ep2 = . . .

Proof — Assume first that CA(αk) is finite for all k > 0. First of
all αp−1 centralizes A[p], so A[p] is finite and rp(A) is finite. Next, if
αp has finite order m, then αm centralizes Ap and the latter is finite.
Thus (i) is valid.

Next suppose there exist infinitely many primes pi, i = 1, 2, . . . , in
π(A) such that the epi are all equal to k. Then αkpi centralizes A[pi]
for all i and CA(αk) is infinite. This contradiction establishes (ii).

To prove the converse assume that conditions (i) and (ii) are valid,
but CA(αk) is infinite for some k > 0. Suppose that CAp(α

k) is infi-
nite. Then Ap is infinite and, as r(Ap) is finite, CAp(α

k) has infinite
exponent and therefore αk centralizes Ap. But (i) gives the contra-
diction that Ap is finite. Therefore CAp(α

k) is finite for all p ∈ π(A),
which implies that CAp(α

k) 6=1 for infinitely many primes p. For any
such prime (αkp)|A[p] = 1, so that ep divides k. Therefore infinitely
many of the ep’s are equal, which contradicts (ii). ut

When the power automorphism has finite order, the fixed point
problem is solved in [2]. A short proof of this result follows.

Lemma 4 Let A be a periodic abelian group and α a non-trivial power
automorphism of A with finite order m. Let mp denote the order of αp.
Then CA(αk) is finite for all 1 6 k < m if and only if the following
conditions hold.

(i) r2(A) is finite.

(ii) 〈Ap | mp < m〉 is finite.

(iii) 〈Ap | mp = m, p > 2, p 6≡ 1 mod m〉 is finite.



102 Derek J.S. Robinson

Proof — Assume that CA(αk) is finite for 1 6 k < m. Certainly
r(A2) is finite since A[2] is centralized by α. If mp < m, then αmp 6= 1
centralizes Ap, so Ap is finite. Suppose there are infinitely many such
primes p in π(A). Then infinitely many of themp are equal – to k say –
and therefore CA(αk) is infinite. This contradiction establishes (ii).

Next assume that p > 2, mp=m and p 6≡1 mod m. Note that m di-
vides pe−1(p− 1) where Ap has exponent pe. Then p must divide m,
for otherwise m divides p− 1, and there can be only finitely many
such primes p. Also α

m
p is a power automorphism of order p, so it

centralizes A[p] and thus rp(A) is finite. Moreover, since p > 2, this
can only happen if Ap has finite exponent, so it is actually finite.
Hence (iii) is valid.

Conversely, assume that the three conditions hold, but CA(αk) is
infinite for some k satisfying 1 6 k < m. Conditions (ii) and (iii)
show that CAp(α

k) is infinite for some prime p satisfying mp = m
and either p = 2 or else p > 2 and p ≡ 1 mod m. In the latter case αp
has order dividing p− 1, so CAp(α

k) = 1. Thus we are left with the
sole possibility that p = 2 and 2 = m2 = m. But then α2 is inversion
in A2, so CA2(α) = A[2], which is finite by (i). ut

The next lemma records a frequently used property of FCI-groups
and appears in [2].

Lemma 5 Let N C G where N is finite. If G is an FCI-group, then G/N
is an FCI-group.

Proof — Let g ∈ G. If 〈g〉 C G, then 〈g〉N/N C G/N, so assume this
is not the case. Then |CG(g) : 〈g〉| is finite. Set L = CG(gN). If l ∈ L,
then gl = gx where x ∈ N. Hence g has finitely many conjugates in L
and |L : CL(g)| is finite, so |L : 〈g〉| is finite. Therefore |L/N : 〈g〉N/N|

is finite and G/N is an FCI-group. ut

Note that FCI is not a quotient closed property, as is shown by non-
cyclic free groups. A key role in the theory of FCI-groups is played
by the FC-centre.

Lemma 6 Let G be an FCI-group which is not cyclic-by-finite. Then G
has a unique maximal d-embedded subgroup, namely its FC-centre.

Proof — By Zorn’s Lemma there is a maximal d-embedded sub-
group N of G. Suppose that 〈g〉 C G and g /∈ N. Then N < 〈g〉N,
so there exists a ∈ N and i > 0 such that 〈gia〉 is not normal in G.
Hence |CG(g

ia) : 〈gia〉| is finite. Now (gia)G 6 〈g〉〈a〉 =M, say, and
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|G : CG(M)| is finite since 〈g〉 and 〈a〉 are normal in G. It follows that
|G : CG(g

ia)| is finite and hence |G : 〈gia〉| is finite, which gives the
contradiction that G is cyclic-by-finite. Hence N is the unique largest
d-embedded subgroup of G.

Next let F denote the FC-centre of G; then clearlyN 6 F. If x ∈ F\N,
then |G : CG(x)| is finite and also |CG(x) : 〈x〉| is finite, since 〈x〉 is not
normal in G. Hence |G : 〈x〉| is finite and again G is cyclic-by-finite, a
final contradiction. ut

Notice that Dih(∞)×Z3 is an FCI-group of type (ii) but it does
not have a unique maximum d-embedded subgroup. Thus Lemma 6

does not hold for cyclic-by-finite FCI-groups.

The cyclic-by-finite case
It is straightforward to identify those FCI-groups that are cyclic-by-
finite.

Lemma 7 LetG be an infinite cyclic-by-finite FCI-group. ThenG is either
abelian or a group of type (ii).

Proof — Assume that G in non-abelian. Let A /G where A is infi-
nite cyclic and G/A is finite. Set C = CG(A); then |G/C| = 1 or 2. Also
|C : A| is finite and A 6 Z(C), so C ′ is finite. Hence the elements of
finite order in C form a finite subgroup F and C/F is infinite cyclic. If
f ∈ F, then 〈f〉 /G; for otherwise CG(f) is finite, which is impossible
because A 6 CG(f). Hence F is d-embedded in G. If C = G, then G/F
is infinite cyclic. Otherwise |G : C| = 2 and G = 〈x,C〉 where x inverts
elements of A and hence of C/F. Since x2∈C and x2F is fixed by x, it
follows that x2 ∈ F and G/F is an infinite dihedral group. Hence G is
a group of type (ii). ut

3 Proof of Theorem 1

We begin by analyzing the centralizer of a maximal abelian normal
subgroup in an FCI-group.

Lemma 8 Let G be an FCI-group with an infinite maximal abelian nor-
mal subgroup A and which is such that periodic factors are locally finite.
Then A = CG(A) and, if G is not cyclic-by-finite, A is d-embedded in G
and G/A is abelian.
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Proof — Assume A 6= C = CG(A) and let c ∈ C \ A. Then 〈c〉
cannot be normal in G: for otherwise 〈c,A〉 is abelian and normal
in G, contradicting the maximality of A. Therefore |CG(c) : 〈c〉| is
finite and CG(c) is cyclic-by-finite. Since A 6 CG(c) and A is infinite,
it follows that A is non-periodic.

Next A〈c〉/〈c〉 is finite. Consequently A ∩ 〈c〉 6= 1, so C/A is peri-
odic and hence locally finite (this is the only point in the proof of
Theorem 1 where the hypothesis on periodic factors is used). Since
A 6 Z(C), it follows that C ′ is locally finite. This shows that the ele-
ments of finite order in C form a subgroup T containing C ′. If t ∈ T ,
then CG(t) contains A, so it is infinite and thus 〈t〉 / G. Therefore
〈t,A〉 is abelian and normal in G, so t ∈ A and hence T 6 A.

Notice that C/T is a torsion-free abelian group of rank 1 since A
is cyclic-by-finite and C/A is periodic. Let u, v ∈ C and observe that
〈u, v〉T/T is cyclic, equal to 〈w〉T/T let us say. Write u = wms and
v = wnt where s, t ∈ T . Then [u, v] = 1 since T 6 A 6 Z(C). Therefore
C is abelian and C = A by maximality.

Finally, assume that G is not cyclic-by-finite. Let a∈A. If |CG(a) :〈a〉|
is finite, A is cyclic-by-finite, and, as Aut(A) is clearly finite, G/A is
finite and G is cyclic-by-finite. It follows that |CG(a) : 〈a〉| is infinite,
so that 〈a〉 /G and A is d-embedded in G. Therefore G/A is abelian,
being a group of power automorphisms of A. ut

At this point we begin the proof of Theorem 1 in earnest. Let G
be an FCI-group satisfying the hypotheses of Theorem 1; thus G
has an infinite maxi- mal abelian normal subgroup A and all pe-
riodic factors of G are locally finite. We can assume that G is nei-
ther dedekind nor cyclic-by-finite by Lemma 7, assumptions that will
be maintained throughout the proof. The next lemma identifies the
groups of type (iii).

Lemma 9 If A is non-periodic, then G is a group of type (iii). If G is an
FNI-group, then r0(A) is finite.

Proof — We know from Lemma 8 that CG(A) = A and A is
d-embedded in G. Since A is non-periodic and A 6= G, we have
|G : A|= 2 and G = 〈x,A〉 where ax = a−1 for all a ∈ A. Also x2 ∈ A,
so x4 = 1 and x2 ∈ A[2]. Now 〈x〉 cannot be normal in G, since oth-
erwise A2 = [A, x] 6 〈x〉 and A4 = 1. Therefore CG(x) is finite and
hence CA(x) = A[2] is finite. Thus G is a group of type (iii).

Now assume that G is an FNI-group and yet r0(A) is infinite. Then
there exists in A an infinite, linearly independent subset {a1,a2, . . . }
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with each ai of infinite order. Put H = 〈x,a41,a42, . . . 〉; then H is
not normal in G since a21 = [x,a1] /∈ H. On the other hand,
NG(H) > 〈x,a21,a22, . . . 〉, which implies that |NG(H) : H| is infinite
and G is not an FNI-group. ut

4 Proof of Theorem 1 (continued)

Let G be a group satisfying the conditions of Theorem 1 and as-
sume that it is neither dedekind nor cyclic-by-finite. We use the previ-
ously established notation, but with the stipulation that the maximal
abelian normal subgroup A is periodic.

Lemma 10 There is a subgroup X such that G = XA and X∩A is finite.

Proof — Since G is not a dedekind group, it has a non-normal
subgroup 〈g〉. Hence |CG(g) : 〈g〉| is finite and CG(g) is cyclic-by-
finite, so CA(g) = CG(g)∩A is finite. Let p be a prime. By Lemma 8

the element g induces a power automorphism in Ap, say a 7→ aαp ,
(a ∈ A), where αp is a p-adic integer. Now CAp(g) 6= 1 if and only if
p ∈ π(A) and αp ≡ 1 mod p, and if this happens A[p] is finite and
rp(Ap) is finite. Define

π = {p ∈ π(A)|αp ≡ 1 mod p}.

Since CA(g) is finite, π is a finite set and hence Aπ has finite rank.
It follows that there is a finite subgroup F of Aπ such that Aπ/F is
divisible and Aπ = [Aπ, g]F. If on the other hand q is a prime and
q /∈ π, then [Aq, g] = Aq. Therefore [A/F, gF] = A/F and it is easy to
see that CA/F(gF) is finite.

Define X/F = CG/F(gF). For any u ∈ G we have [u, g] ∈ A, since
G/A is abelian by Lemma 8. Hence [u, g] = [a, g]f where a ∈ A, f ∈ F.
Therefore [ua−1, g] = f, so that ua−1 ∈ X and u ∈ XA, which shows
that G = XA. Also

(X∩A)/F = CG/F(gF)∩ (A/F) = CA/F(gF),

which is finite. Therefore X∩A is finite. ut

With the notation of Lemma 10 we define

U = X∩A, E = CX(A/U) and N = EA.
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Regarding these subgroups, we prove:

Lemma 11 The subgroup E is finite and N is the unique maximum
d-embedded subgroup of G.

Proof — Let e ∈ E. Then [A, e] 6 U and U is finite by Lemma 10,
so [A, ek, ek] = 1 where k = |Aut(U)|. Hence [A, ekl] = [A, ek]l = 1
where l = |U|, so E/CE(A) is periodic. Also [A,E] 6 U, so [Ap,E] = 1
if p /∈ π = π(U), and thus CE(A) = CE(Aπ). Now E/CE(Ap) is finite,
being a periodic group of power automorphisms of Ap. Since π(U)
is finite, it follows that E/CE(A) is finite. But CE(A) = U, because
CG(A) = A, and we conclude that E is finite.

Let D denote the FC-centre of G, which by Lemma 6 is the maxi-
mum d-embedded subgroup of G. Let u ∈ N and write u = ea where
e ∈ E, a ∈ A. Then

uG = (ea)G 6 EA〈a〉 6 EU〈a〉 = E〈a〉,

which is finite. Hence |G : CG(u)| is finite and u ∈ D, which shows
that N 6 D. Next D= D ∩ (XA) = (D ∩ X)A. If t ∈ D ∩ X, then
[A, t] 6 〈t〉 ∩A 6 U, so t ∈ E. Therefore D 6 EA = N. ut

Next comes a major step in the proof.

Lemma 12 The group X/E is cyclic.

Proof — Write X = X/E, noting that X is abelian and X is finite-by-
abelian, since A is d-embedded in G. We show first that X is locally
cyclic. Suppose X has a subgroup 〈x〉 × 〈y〉 where x = xE has infinite
order and y = yE 6= 1. Put H = 〈x,y〉, which is finitely generated,
finite-by-abelian, and hence is centre-by-finite. Therefore some posi-
tive power of x centralizes y. Now 〈y〉 is not normal in G, since oth-
erwise y ∈ X∩N = E by Lemma 11. Hence |CG(y) : 〈y〉| is finite and
some positive power of x belongs to 〈y〉, which is a contradiction.

Next suppose that X has a subgroup 〈x〉 × 〈y〉 where x = xE and
y = yE both have prime order q. Assume first that π(A) is infinite
and let p ∈ π(A) be odd. Since the power automorphism group of
(A/U)[p] is cyclic, some element xrpysp centralizes (A/U)[p] where
0 6 rp, sp < q and (rp, sp) 6= (0, 0). Since there are only finitely many
such pairs (rp, sp), there exists (r, s) 6= (0, 0) such that 0 6 r, s < q
and z = xrys centralizes (A/U)[p] for infinitely many primes p in
π(A) \ π(U). For such primes p we have [A[p], z] 6 U ∩ Ap = 1.
Therefore |CG(z) : 〈z〉| is infinite, which implies that 〈z〉 / G and
z ∈ X∩N = E, a contradiction.
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It follows that π(A) is finite, which means that some Ap is infi-
nite. First assume that p is odd. Then there is an element z = xrys,
with x,y ∈ X, that centralizes (A/U)[p], where 0 6 r, s < q and
(r, s) 6= (0, 0). Note that rp(A) is finite, since otherwise CAp(z) is in-
finite, 〈z〉 / G and z ∈ X ∩N = E. Hence Ap has infinite exponent.
Next z induces a power automorphism in (A/U)p of the form a 7→ aα

where the p-adic integer α satisfies α ≡ 1 mod p. But α has finite or-
der and p > 2, which shows that α = 1 and [Ap, z] 6 U. Therefore
CAp(z) is infinite and 〈z〉 /G, so that, as before, z ∈ E, a contradiction.

As a consequence we must have p = 2: a slight modification of
the argument is called for in this case. First note that A[2] is finite
and A2 has infinite exponent. The power automorphism group of
(A/U)[4] has order 2, so there is an element z = xrys, with x,y ∈ X,
that centralizes (A/U)[4], where 0 6 r, s < q and (r, s) 6= (0, 0). Let α
represent the power automorphism of (A/U)2 induced by z. Then
α ≡ 1 mod 4 and α has finite order. Since A2 has infinite exponent,
it follows that α = 1 and [A2, z] 6 U, which implies that z ∈ E. This
contradiction completes the proof that X is locally cyclic.

Finally, X 6= E since otherwise G = XA = EA = N, a dedekind
group. Let y ∈ X \ E. Then 〈yU〉 is not normal in G/U, because the
contrary leads to [A,y] 6 〈y〉U ∩A = U and y ∈ E. From Lemma 5

we see that G/U is an FCI-group, so CG/U(yU) is cyclic-by-finite;
but CG/U(yU) > X/U since X/U is abelian. Therefore X/U is finitely
generated and X = X/E is cyclic. ut

From now on we will write

X = 〈x〉E, so that G = 〈x〉N.

It is now possible to identify the groups of type (iv).

Corollary 1 If N is abelian, then G is a group of type (iv).

Proof — With the above notation we have N = A by maximality
of A, so that G = 〈x〉A. Let y ∈ G \A. Now 〈y〉 cannot be normal
in G since otherwise y ∈ N = A. Hence |CG(y) : 〈y〉| is finite and thus
CA(y) is finite. It follows that G is a group of type (iv). ut

The final step in the proof of Theorem 1 identifies G as a group of
the type (v) if N is non-abelian.

Lemma 13 If N is non-abelian, then G is a group of type (v).
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Proof — Since N is a dedekind group, it has the form N = H×N2 ′
where H is a hamiltonian 2-group and N2 ′ is abelian. The element
x induces a power automorphism in H which is either trivial or con-
jugation by an element k of order 4 in H: in the latter event we can
replace x by xk−1. Thus we may assume that [H, x] = 1 and

G = 〈x〉N = 〈x〉HN2 ′ = HG

where G = 〈x〉N2 ′ . Since [H,G] = 1, it follows that H∩G 6 Z(G) and
G = HgG is a central product. Notice that 〈x〉 is not normal in G; for
otherwise G = N is a dedekind group. Hence |CG(x) : 〈x〉| is finite
and thus CN(x) is finite. Since [H, x] = 1, it follows that H is finite.

Let B = CG(N2 ′); then B centralizes N2 ′ and H, and hence N.
Therefore [A,B] = 1 and B 6 CG(A) = A. Thus B is infinite, peri-
odic abelian, and is d-embedded in G. Since A 6 N, we have B 6 N
and hence B2 6 H ∩G. In addition H ∩G 6 CG(N2 ′) = B and thus
H∩G 6 B2. It follows that H∩G = B2. Also H∩G 6 Z(H) = H[2] and
G/N2 ′ is cyclic, so B2 is cyclic and hence |B2| = 1 or 2. In addition
B = (B∩ 〈x〉)N2 ′ so that B2 6 〈x〉.

To complete the proof we need to show that G = 〈x〉B is a group of
type (iv). Recall that B is d-embedded in G. Let y ∈ G \B and assume
that 〈y〉 /G. Then

y ∈ N∩G = (H∩G)×N2 ′ = B2 ×N2 ′ 6 B.

By this contradiction |CG(y) : 〈y〉| is finite and hence CB(y) is finite,
showing that G is of type (iv). ut

5 Proof of Theorem 2

It must be proven that groups of types (i), (ii), (iv), (v), as well
as groups of type (iii) which have finite torsion-free rank, are
FNI-groups, and also that all groups of type (iii) are FCI-groups.

(i) Obviously dedekind groups are FNI.

(ii) Let G be a group of type (ii) and K a non-normal subgroup
of G; then K � F since F is d-embedded in G. If K is infinite,
then |G : K| is finite and so |NG(K) : K| is finite. Thus we may
assume that K is finite. Now G/F cannot be infinite cyclic, since
otherwise K 6 F. Thus G/F is infinite dihedral and there is an
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infinite cyclic group A/F with |G : A| = 2. Clearly K � A and
if k ∈ K \ A, then k induces inversion in A/F. If a ∈ NA(K),
then KF contains [a, k]F = a−2F. Thus a has finite order and it
follows that NA(K) is periodic and hence finite. Finally, NG(K)
is finite since |G : A| is finite, and G is an FNI-group.

(iii) Let G = 〈x〉A be a group of type (iii); we show first that G is an
FCI-group. Let g ∈ G where 〈g〉 is not normal in G; thus g /∈ A.
Since x2 ∈ A, we can write g = xa where a ∈ A. Then CA(g) =
A[2] since x inverts in A, and A[2] is finite by hypothesis. Also
G = 〈g〉A and CG(g) = CG(g) ∩ (〈g〉A) = 〈g〉CA(g) = 〈g〉A[2].
Hence |CG(g) : 〈g〉| is finite and G is an FCI-group. Now let
us assume that r0(G) is finite. Let K be a non-normal subgroup
of G. Then K = 〈xa,K ∩ A〉 where a ∈ A. Next |NG(K) : K|
is finite if and only if |NA(K) : K ∩A| is finite, since G = KA.
Observe that NA(K) consists of all c ∈ A such that [xa, c] =
c2 ∈ K∩A. Hence NA(K)/K∩A = (A/K∩A)[2], which is finite
because r2(A) and r0(A) are finite.

(iv) Let G = 〈x〉A be a group of type (iv). To show that G is an
FNI-group, let K be a non-normal subgroup; thus K 66 A. Write
K = 〈ya,K ∩A〉 where y ∈ 〈x〉 \A and a ∈ A. Then NA(K) is
the set of all b ∈ A such that [ya,b] = [y,b] ∈ K ∩A, which
shows that NA(K)/K ∩ A = CA/K∩A(y). Now CA(y) is finite
and, keeping in mind that y induces a power automorphism
in A, one can easily prove that CA/K∩A(y) is also finite; hence
|NA(K) : K∩A| is finite. Finally,

|NG(K)A : KA| 6 |〈x〉A : 〈y〉A| 6 |〈x〉 : 〈y〉|,

which is finite since y 6= 1. Consequently |NG(K) : K| is finite
and G is an FNI-group.

(v) Let G = HgG be a group of type (v) with G = 〈x〉B. We show
that G is an FNI-group. Let L = B2 ′ and note that CG(L) =
CG(B) since B26H[2]6Z(G). Suppose there exists y∈CG(L)\B.
Since G is a group of type (iv), CG(y) is finite and B is finite.
By this contradiction CG(L) = B and CG(L) = HB = H × L.
Hence CG(L) is d-embedded in G. Now let K 6 G; if [L,K] = 1,
then K 6 CG(L) and K /G. Thus we may assume that [L,K] 6= 1
and prove that |NG(K) : K| is finite. By hypothesis K contains
an element yc where y ∈ 〈x〉, c ∈ HB and [L,y] 6= 1. Sup-
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pose that a ∈ NL(K); then we have [yc,a] = [y,a] ∈ K∩ L, and
a(K∩ L) ∈ CL/K∩L(y). Therefore NL(K)/K∩L=CL/K∩L(y). Now
y /∈ B, so CL(y) is finite and, as noted in the proof of (iv), we can
deduce that CL/K∩L(y) is also finite. Hence NL(K)/K ∩ L, i.e.,
NG(K)∩L/K∩L is finite. It suffices to prove that |NG(K)L : KL|
is finite. Observe that |NG(K)L : KL| 6 |G : 〈yc〉L| and 〈yc〉BH=
〈y〉BH. Since B2 and H are finite, |〈yc〉BH : 〈yc〉L| is finite. There-
fore

|G : 〈yc〉L| = |〈x〉BH : 〈y〉BH| · |〈y〉BH : 〈yc〉L|
6 |〈x〉 : 〈y〉| · |〈y〉BH : 〈yc〉L|,

which is finite since y 6= 1. Therefore |NG(K)L : KL| is finite
and G is an FNI-group.

6 Proof of Theorem 3

Let G be an infinite X-group. It is easy to see that periodic factors
of G are locally finite. Therefore in order to establish Theorem 3 it is
enough to prove that G has an infinite abelian normal subgroup. The
first step in the proof is to establish the following result.

Lemma 14 Let G be an FCI-group in which every abelian normal sub-
group is finite. Then:

(i) locally finite subgroups of G are finite;

(ii) abelian subgroups of G are cyclic-by-finite.

Proof — (i) Suppose that L is an infinite, locally finite subgroup
of G. Then L has an infinite abelian subgroup A by the Hall-Kulati-
laka-Kargapolov Theorem (see [8], 3.43). Since A cannot be normal
in G, there exists a ∈ A such that 〈a〉 is not normal in G. Hence
|CG(a) :〈a〉| is finite, which implies that A is finite, a contradiction.
(ii) Let B an infinite abelian subgroup of G. By (i) B cannot be pe-
riodic, so it contains an element b of infinite order. Then 〈b〉 is not
normal in G, so |CG(b) : 〈b〉| is finite and thus B is cyclic-by-finite. ut

Corollary 2 Let G be an FCI-group which has an infinite ascendant
abelian subgroup. Then G has an infinite abelian normal subgroup.

Proof — Let H be an infinite ascendant abelian subgroup of G and
assume that G has no infinite abelian normal subgroups. Then HG
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is locally nilpotent, being generated by ascendant abelian subgroups
(see [8], 2.3). By Lemma 14 abelian subgroups of HG are finitely gen-
erated and it follows from results of Mal’cev ([6], Theorem 5; see
also [8], 6.3) that HG is a finitely generated, infinite nilpotent group.
Therefore Z(HG) is an infinite abelian normal subgroup of G. ut

A consequence of Corollary 2 is a weakening of the hypotheses in
Theorem 1: it suffices to assume that the group has an infinite ascendant
abelian subgroup.

The final step in the proof of Theorem 3 is provided by next lemma.

Lemma 15 Let G be an infinite X-group. If G is an FCI-group, then it
has an infinite abelian normal subgroup.

Proof — Using the notation of group classes and closure operations
(see [8], 1.1), we have

X =
⋃
α

(LṔ)αX0

where the union is over all ordinals α and X0 is the class of all groups
which are finite or abelian. Assume the result is false, so that there
is a least ordinal α such that the result fails for some group G in
the class (LṔ)αX0. Clearly α cannot be a limit ordinal and the result
holds for all infinite FCI-groups in Y = (LṔ)α−1X0.

Next G ∈ LṔY and by Lemma 14 the group G cannot be locally
finite, so it has a finitely generated infinite subgroup X. Then X ∈ ṔY
since Y is subgroup closed, and hence X has an ascending series {Xβ}
with factors in the class Y. There is a least ordinal β such that Xβ is in-
finite. Now β cannot be a limit ordinal since otherwise Xβ would be
locally finite and hence finite. Hence Xβ−1 is finite, while Xβ/Xβ−1
is an infinite Y-group. In addition Lemma 2 shows that Xβ/Xβ−1 is
an FCI-group. Consequently Xβ/Xβ−1 has an infinite abelian normal
subgroup A/Xβ−1 by minimality of α. Now A is finite-by-abelian, so
it has a nilpotent normal subgroup with finite index. Since its abelian
subgroups are finitely generated, we see easily that A has an infinite
subnormal abelian subgroup B. But B is subnormal in X, so X has an
infinite abelian normal subgroup by Corollary 2.

We can now apply Theorem 1 and Lemma 1 to show that X is
metabelian. Since this conclusion is valid for every finitely generated,
infinite subgroup X, the group G itself is metabelian. This implies
that G has an infinite abelian normal subgroup, a final contradic-
tion. ut
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Theorem 3 is now an immediate consequence of Theorem 1 and
Lemma 15.
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