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Abstract
We prove that a locally finite group G in which every subgroup is a finite extension
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1 Introduction

A subgroup H of the group G is said to be subnormal-by-finite if there
exists a subnormal subgroup S of G such that S 6 H and |H : S| is
finite. The aim of this paper is to carry on the investigation started by
Hermann Heineken in [4] abount the class of groups in which every
subgroup is subnormal-by-finite. Based on Heineken’s results, we
take advantage of the many informations now available on groups
in which every subgroup is subnormal (N1-groups) and of some of
the techniques developed in treating them (notably by W. Möhres, a
PhD student of Heineken’s). In [2] it is proved that a locally finite
N1-group is nilpotent-by-Černikov; our main result states that this is
true for groups in which every subgroup is subnormal-by-finite.
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Theorem Let G be a locally finite group in which every subgroup is
subnormal-by-finite. Then

(A) G is nilpotent-by-Černikov;

(B) there exists an integer d > 1 such that every subgroup of G admits a
subgroup of finite index which is subnormal of defect at most d in G.

We recall that the Hirsch-Plotkin radical of a group G is the largest
normal locally nilpotent subgroup of G, while the Baer radical of G
is the subgroup generated by all cyclic subnormal subgroups of G.
Clearly, the Baer radical of G is a characteristic subgroup of G, and
it is always contained in the Hirsch-Plotkin radical. A Baer group
is a group which coincides with its Baer radical, that is a group in
which every cyclic (and thus every finitely generated) subgroup is
subnormal.

Let us state a Theorem gathering those results in Heineken’s pa-
per [4] which will be the starting point of our investigation.

Theorem 1.1 (Heineken [4]) Let G be a group in which every subgroup
is subnormal-by-finite.

1. If G is a Baer group then G ∈ N1;

2. if G is locally finite then the Hirsch-Plotkin radical H of G has finite
index in G, and there exists an integer c > 1 such that all but a finite
number of primary components of H are nilpotent of class at most c.

Since, by a Theorem of Möhres, N1-groups of finite exponent are
nilpotent, we may easily deduce the following Corollary, which will
be relevant in our arguments.

Corollary 1.2 Let G be a locally finite group in which every subgroup is
subnormal-by-finite; if G has finite exponent then G is nilpotent-by-finite.
Proof — By point 2 in Heineken’s Theorem, we may assume that
the group G is locally nilpotent. Let B be the Baer radical of G;
then B ∈ N1 and so, by the aforementioned result of Möhres, B is
nilpotent. Suppose, by contradiction, that G/B is infinite; then, be-
ing locally nilpotent, it admits an infinite abelian subgroup. By the
subnormal-by-finite property it follows from that there exists a sub-
normal subgroup H of G containing B, such that H/B is an infinite
abelian group. Then, H is a soluble locally nilpotent group of finite
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exponent, hence, by a well known fact, H is a Baer group. Since H is
subnormal in G, we reach the contradiction H 6 B. ut

Let us conclude this introduction with a remark concerning the
concept of commensurable pairs of subgroups. Two subgroups A, B
of the group G are said to be commensurable if A ∩ B has finite index
both in A and in B. Suppose, in this case, that A is subnormal in G.
Then the normal core S = (A ∩ B)A is a normal subgroup of A and
|A/S| is finite; hence S is subnormal in G and |B : S| is finite. It follows
that, for a subgroup B of a group G, being subnormal-by-finite is
equivalent to be commensurable with a subnormal subgroup. Thus,
groups with all subgroups subnormal-by-finite are precisely those
groups in which every subgroup is commensurable with a subnor-
mal subgroup.

Aknowledgment. I thank the referee for a very accurate reading, and
in particular for pointing out a number of mistakes and inaccuracies
in the first version of the paper.

2 Preliminaries

The arguments leading to the proof of Theorem 1 often reduce to the
case of a metabelian group. We thus collect in this section the relevant
results (many of those are certainly known) concerning actions of
abelian groups on abelian groups. Let us start by recalling that if A
is an abelian group and x ∈ Aut(A), then [A, 〈x〉] = {[a, x] | a ∈ A}.

Lemma 2.1 Let A be an abelian divisible group and x an automorphism
of A of finite order. Then [A, x] = [A, x, x] and A = [A, x]CA(x).

Proof — Let m = |x| and write [A, x, x] = N. Notice that A/N is
divisible; given a ∈ A, there exists b ∈ A such that Na = Nbm.
Hence, modulo N,

[a, x] = [bm, x] = [b, x]m = [b, xm] = 1,

thus proving N = [A, x]. Then [a, x] = [c, x, x] for some c ∈ A and
therefore a[c, x]−1 ∈ CA(x). ut

Given a group G and an element x ∈ G, we write

DG(x) = {g ∈ G | [g, x, x] = 1}.
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This is not in general a subgroup; however such is the case in some
groups which will be relevant in our proofs.

Lemma 2.2 Let G be a metabelian group. Then DG(x) is a subgroup of G
for every x ∈ G.

Proof — Let G be metabelian, x ∈ G, and a,b ∈ DG(x). Then

[a−1, x, x] = [x,a, xa]a
−1

= [x,a, x[x,a]]a
−1

= [x,a, x]a
−x

= 1,

whence a−1 ∈ DG(x). Similarly, as G ′ is abelian, we have

[[a, x]b, x] = [[a, x], xb
−1
]b = [[a, x], x[x,b−1]]b = [a, x, x][x,b−1]b = 1,

and therefore

[ab, x, x] = [[a, x]b[b, x], x] = [[a, x]b, x][b,x][b, x, x] = 1.

Thus, ab ∈ DG(x). ut

Lemma 2.3 Let p be a prime, and A a normal abelian divisible subgroup
of the p-group G, such that G/A is abelian. Then for every x ∈ G \A,

(i) G = [A, x]DG(x);

(ii) [A, x]∩DG(x) has finite exponent and is normal in G;

(iii) (A∩DG(x))/([A, x]∩DG(x)) is divisible.

Proof — Let x ∈ G \A; then DG(x) 6 G by Lemma 2.2. Let g ∈ G,
then [g, x] ∈ A, hence, by Lemma 2.1, there exist a ∈ A, c ∈ CA(x)
with [g, x] = [a, x]c. Therefore,

[ga−1, x] = [g, x]a
−1
[a−1, x] = [g, x][a, x]−1 = c.

This shows that ga−1 ∈ DG(x), and so g ∈ ADG(x) = [A, x]DG(x).

Observe that [A, x] is normal in G because G/A is abelian; hence

[A, x]∩DG(x) E [A, x]DG(x) = G.

Let pm = |x|, and let u ∈ [A, x] ∩DG(x). Then [u, x, x] = 1 and, by
Lemma 2.1, u = [a, x] for some a ∈ A; then

[ap
m

, x, x] = [[a, x]p
m

, x] = [up
m

, x] = [u, x]p
m

= [u, xp
m
] = 1.
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Hence ap
m ∈ DG(x), and

up
2m

= [a, x]p
2m

= [ap
m

, x]p
m

= [ap
m

, xp
m
] = 1,

which yields (ii).

To prove (iii) just observe that

A∩DG(x)
[A, x]∩DG(x)

' [A, x](DG(x)∩A)
[A, x]

=
[A, x]DG(x)∩A

[A, x]
=

A

[A, x]

is a factor of the divisible group A. ut

Lemma 2.4 Let A be a normal abelian divisible subgroup of the p-group G,
and suppose that G/A a countable abelian group. Then there exists H 6 G
such that H is a Baer group and AH = G.

Proof — If G/A is finite there exists a finitely generated (hence
nilpotent) subgroup H of G such that AH = G. Thus, suppose G/A
be infinite and let X = {xn | n ∈ N} ⊆ G be a set of representatives
of G modulo A, with x0 = 1.

We let y0 = x0 = 1, H0 = DG(x0) = G and N0 = {1}. Suppose that
for n ∈N we have found elements y0,y1, . . . yn in G and subgroups
H0,H1, . . . ,Hn and N0,N1, . . . ,Nn, such that, for every i = 0, . . . ,n:

(i) yi ∈ Hi and Ayi = Axi;

(ii) AHi = G and Hi 6 Hi−1 (for i > 1);

(iii) Ni is a normal subgroup of Hi of finite exponent, Ni 6 A and
(A∩Hi)/Ni is divisible;

(iv) 〈yi〉Hi has finite exponent.

We now prove the existence of Nn+1 E Hn+1 6 G and yn+1∈Hn+1
such that these same properties hold up to n+ 1.

Since AHn = G there exists yn+1 ∈ Hn such that Ayn+1 = Axn+1.
Now, (A ∩Hn)/Nn is a normal divisible subgroup of Hn/Nn and
Hn/(A∩Hn) ' AHn/A is abelian.

Let Hn+1/Nn = DHn/Nn(Nn yn+1), then Hn = (A ∩Hn)Hn+1
by Lemma 2.3. Hence, yn+1 ∈ Hn+1 6 Hn and

AHn+1 = A(A∩Hn)Hn+1 = AHn = G.
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Also, writing A = (A ∩ Hn)/Nn, Hn+1 = Hn+1/Nn, Lemma 2.3
yields that

[A,yn+1]∩Hn+1
is a normal subgroup of finite exponent of Hn+1. Letting Nn+1 be its
inverse image modulo Nn, we have that Nn+1 E Hn+1; moreover,
as Nn has finite exponent, Nn+1 has finite exponent. Also,

A∩Hn+1
Nn+1

' A∩Hn+1
Nn+1/Nn

is divisible by Lemma 2.3. Finally, from Hn+1/Nn=DHn/Nn(Nnyn+1)
it follows, by definition, that the normal closure

〈Nnyn+1〉Hn+1/Nn = 〈yn+1〉Hn+1Nn/Nn

is abelian and thus of finite exponent. Since Nn has finite exponent
we conclude that 〈yn+1〉Hn+1 is metabelian of finite exponent.

Thus, we recursively determine an infinite descending chain of
subgroups of G,

H0 > H1 > H2 > . . .

and find elements yi ∈ Hi (i ∈ N) such that properties (i)–(iv)
above are satisfied for every i > 1. Now, observe that, for every
i 6 j, 〈yi〉Hi is normalized by Hj; therefore, for every n ∈ N, Ln =

〈y0〉H0〈y1〉H1 · · · 〈yn〉Hn is a soluble p-group of finite exponent, hence
a Baer group. We let

H =
⋃
n∈N

Ln.

Then Ln E H, for every n ∈N, and it thus follows immediately that
H is a Baer group. To finish the proof, we have just to observe that

H ⊇ {y0,y1, . . . },

whence AH/A = A〈x0, x1, . . . 〉/A = G/A, and so AH = G. ut

Lemma 2.5 Let A be a reduced abelian p-group, and Aω =
⋂
n>1A

pn .
Let α be an automorphism of A of order a power of p. If [A,n α] 6 Aω for
some n > 1, then [A,n α] has finite exponent and [A,n+1 α] = 1.

For the proof, let us recall the following elementary fact (which
may be easily proved by induction on n).
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Lemma 2.6 Let α be an automorphism of finite order q of the abelian
group A, such that [A,n α] = 1 for some n > 1. Then [Aq

n−1
,α] = 1.

Proof of Lemma 2.5 — Let B = [A,n α] 6 Aω. Let m > 1; then
there exists k > 1 such that [A,n+k α] 6 [B,k α] 6 Bp

m
. It follows

from Lemma 2.6 that [Ap
t
, α] 6 Bp

m
for some t > 1, and in par-

ticular one has [B, α] 6 Bp
m

. This holds for every m > 1, and so
[B,α]6

⋂
m>1B

pm=Bω. Therefore, [A,n+1 α]= [[A,n α],α]6 [B,α]6Bω,
whence, by Lemma 2.6 again, there exists s > 1 such that

Bp
s
6 [A, α]p

s
= [Ap

s
, α] 6 Bω.

Since B is reduced, this implies that B has finite exponent, and
[A,n+1 α] 6 Bω = 1, as wanted.

We end this section by stating, for the convenience of the reader, a
fundamental, and much less elementary, result of W. Möhres.

Lemma 2.7 (Möhres [6]) Let G be a nilpotent p-group, and N a normal
subgroup such that G/N is an infinite elementary abelian group. Then, for
every finite subgroup H of G and any finite subset U of G \H, there exists
a subgroup K of G with H 6 K, U∩K = ∅ and NK/N infinite.

3 Proof of the main result

As mentioned in the Introduction, it is proved in [2] that a locally
finite N1-group G has a nilpotent normal subgroup N such that
G/N is an abelian group of finite rank. A Theorem of Khukhro and
Makarenko [5] allows to improve this result in a convenient way, by
saying that such N can be taken to be characteristic in G.

Proposition 3.1 Let G be a periodic N1-group. Then there exists a char-
acteristic nilpotent subgroup C of G such that G/C is abelian of finite rank.

Proof — Let G be a periodic N1-group; then there exists an integer
k > 1 such that all but a finite number of primary components of
G are nilpotent of class at most k. We may thus assume that G is
a p-group for some prime p. Let N a normal nilpotent subgroup
such that G/N is abelian of finite rank. If c is the nilpotency class
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of N, then, by Theorem 1.2 of Khukhro and Makarenko [5], G admits
a characteristic subgroup K, which is nilpotent of class at most c
and such that G/K has finite rank. Since G/K is a Baer group it is
not difficult to show that there exists a finite characteristic subgroup
C/K of G/K, such that G/C is abelian. Now C is nilpotent because it
is Baer and a finite extension of the nilpotent group K. ut

Let us also recall from the Introduction another result of Möhres
that we are going to use repeatedly.

Proposition 3.2 (Möhres [6]) Let the periodic N1-group G be the exten-
sion of a nilpotent group by an abelian group of finite exponent; then G is
nilpotent.

In this rest of section, to shorten our statements, we say that a
group G is sbyf if every subgroup of G is subnormal-by-finite.

Lemma 3.3 Let G be a p-group, and A a normal abelian subgroup of G
with G/A abelian. If A is divisible and G is a sbyf-group, then G is N1-by-
finite. If, further, G/CG(A) has finite exponent, G is nilpotent-by-finite.

Proof — If G/A is finite there is nothing to prove. Otherwise, we
may well assume that G/A is countable. Then, by Lemma 2.4, there
exists H 6 G such that H is a Baer group and AH = G. Since G is a
sbyf-group there exits S / /G with S 6 H and |H : S| < ∞. Then S is
contained in the Baer radical B of G, as well as A. Hence AS 6 B and
so |G : B| 6 |H : B| <∞. Finally, B is a N1-group by Theorem 1.1.

If G/CG(A) has finite exponent, then AH is a periodic nilpotent-by-
(finite exponent) N1-group and so it is nilpotent by Proposition 3.2. ut

Lemma 3.4 Let G be a p-group, and A a normal abelian subgroup of G
with G/A elementary abelian. If A is reduced and G is a sbyf-group, then
G is nilpotent-by-finite.

Proof — Let B be the Baer radical of G. Then A 6 B and B is
a N1-group by Theorem 1.1. Since B is abelian-by-(finite exponent),
Proposition 3.2 ensures that B is nilpotent. If it has finite index in G
we are done. Otherwise, let C/A be a complement of B/A in G/A,
then the Baer radical of C is A, and we may well consider C instead
of G, thus assuming that the Baer radical of G is A. We then observe
the following fact:

(1) For every finite subgroup F of G, any n > 1 and x ∈ F \A, there
exists a ∈ A such that [a,n x] 6∈ F.
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In fact, if x 6∈ A then 〈x〉 is not subnormal in G; this implies that all
terms [G,n 〈x〉]〈x〉 of the normal closure series of 〈x〉 in G are infinite;
hence [A,n x] is infinite for every n > 1, and claim (1) follows.

Now, for every m > 1, let Am= {ap
m
| a∈A}, and Aω=

⋂
m>1Am.

We first suppose Aω = 1. We start by setting H0 = 1 and U0 = ∅.
Let n > 0, and suppose that for every 0 6 i 6 n we have defined
a finite subgroup Hi and a finite subset Ui ⊆ A such that for every
1 6 i 6 n,

(i) |AHi/A| = p
i;

(ii) Hi−1 6 Hi and Ui−1 ⊆ Ui;

(iii) Hi ∩Ui = ∅;

(iv) for each x ∈ Hi \AHi−1 there exists an element u(x) ∈ Ui such
that u(x) ∈ [A,i x] \Hi−1.

As Un is finite, there exists m > 1 such that Un ∩ Am = ∅. Now,
G/Am is a soluble p-group of finite exponent, hence it is a Baer group
and so it is nilpotent by Proposition 3.2. Also, G/Am admits a quo-
tient isomorphic to the infinite elementary abelian group G/A. We
apply Möhres Lemma 2.7 to the subgroup AmHn/Am and the subset
U = {uAm | u ∈ Un} (recall that we are assuming that G/A is infinite),
obtaining a subgroup S/Am of G/Am such that S > AmHn, |AS/A| =
pn+1 and S/Am ∩ U = ∅. Then, we find a finitely generated, hence
finite, subgroup Hn+1 of S such that Hn 6 Hn+1 and AHn+1 = AS.
Clearly, Hn+1 ∩ Un = ∅. Next, for every x ∈ Hn+1 \AHn we may
select, by (1), an element u(x) ∈ [A,n+1 x] \Hn+1; finally we let

Un+1 = Un ∪ {u(x) | x ∈ Hn+1 \AHn}.

It is then immediate to check that we may extend our sequences
(Hi)i6n, (Ui)i6n withHn+1, Un+1 in such a way properties (i) − (iv)
continue to hold.

We then set
H =

⋃
n∈N

Hn

and observe that H ∩ Un = ∅ for every n > 1. Let S be a subnor-
mal subgroup of G such that S 6 H and |H : S| < ∞; clearly, we
may assume S E H; then H = SHn for some n > 1. By prop-
erty (i), H/(A ∩ H) ' AH/A is infinite, hence S/(S ∩ A) is infinite.
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Thus, S∩ (Hj \AHj−1) is not empty for every j > n+ 1. Let d be the
defect of subnormality of S in G, and t > max{d + 1,n + 1}. Then
there exists x ∈ S∩ (Ht \AHt−1) and we get the contradiction

u(x) ∈ [A,t x]∩Ut ⊆ S \H,

proving our claim in case Aω = 1.
For the general case, let N/Aω a normal nilpotent subgroup

of G/Aω such that G/N is finite. It then follows from Lemma 2.5 that
N is a Baer group. Hence, N is nilpotent and we are finished. ut

We are now ready for the proof of the Theorem stated in the Intro-
duction. We begin with the crucial case.

Lemma 3.5 Let G be a p-group with a normal abelian subgroup A such
that G/A is elementary abelian. If G is a sbyf-group then it is nilpotent-by-
finite.

Proof — Let B be the Baer radical of G. Then B > A and B is
nilpotent by Möhres Lemma (Proposition 3.2). If |G/B| is finite we
are done. Otherwise, let L/A be a complement of B/A in G/A; then
L/A is infinite and the Baer radical of L is A. So, possibly replacing
G by L, we may assume that A is the Baer radical of G.

Let D be the divisible radical of A; then D is normal in G and G/D
is nilpotent-by-finite by Lemma 3.4. We may thus assume that G/D is
nilpotent. As A/D is abelian and G/A elementary abelian one easily
shows that G ′D/D has finite exponent. Since G ′D 6 A is abelian and
D divisible, we thus have G ′D = DM where M= {u ∈ G ′D | up

m
=1}

for some m > 0. Now, DM/M is divisible and G/DM abelian; we
may then apply Lemma 2.4 to the group G/M, obtaining that there
exists M 6 H 6 G such that H/M is a Baer group and DH = G. Then
H/M is a N1-group, hence it is nilpotent by Proposition 3.2. Let S be
a subnormal subgroup of G with M 6 S 6 H and |H : S| < ∞. Then
DS has finite index in G, since G = DH; moreover, [D,DS] 6M, since
abelian normal divisible subgroups of a periodic nilpotent group are
central. Therefore [D,DS] = 1, because [D,DS] is divisible while M
has finite exponent. Thus D 6 Z(DS) and it follows that DS is a
nilpotent subgroup of G of finite index in G. ut

Proof of main Theorem — (A) Let G be a locally finite sbyf-group.
By Theorem 1.1, we may assume that G is locally nilpotent and in-
deed a p-group for some prime p.
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Let B be the Baer radical of G. Then B is a N1-group, hence, by
Proposition 3.1, there exists a characteristic nilpotent subgroup N
of B such that B/N is abelian of finite rank. Now N E G; we prove
by induction on the derived length d of N that G/N is a Černikov
group.

Let N be abelian and suppose that G/N is not Černikov; then it
admits an elementary abelian subgroup of infinite rank, and so, by
property sbyf, there exists N 6 H / /G such that H/N is an infinite
elementary abelian group. By Lemma 3.5 there exists a nilpotent nor-
mal subgroup K of H such that H/K is finite; clearly, we may as-
sume N 6 K. Then K/N is an infinite elementary abelian group. On
the other hand K / /G, hence K is contained in the Baer radical B
of G, and this yields a contradiction, because, as B/N has finite rank,
(B∩H)/N is finite.

Let now d > 2. By the previous case there exists N ′ 6 L E G such
that G/L has finite rank and L/N ′ is nilpotent. Since N is nilpotent, it
follows that L is nilpotent by P. Hall criterion (see ), and we are done.

(B) Let G be a locally finite sbyf-group, which we may assume to
be a p-group for some prime p. By the previous point, G admits a
normal nilpotent subgroup N such that G/N has a normal subgroup
D/N of finite index which is the product of a finite number of groups
of type Cp∞ . Now, every subgroup of N is subnormal in N with
defect at most c, where c is the nilpotency class of N. Let d = c+ 2.

In proving that any H 6 G admits a finite index subgroup which
is subnormal of defect at most d in G, we may well suppose H 6 D.
Then K = N ∩ H is a subnormal subgroup of G of defect at most
c+ 1 < d and it is normal in H. If H/K is finite we are done. Thus,
suppose that H/K is infinite. Then, H/K ' NH/N has a normal di-
visible subgroup A/K of finite index; observe that AN/N 6 D/N; in
particular, AN is subnormal of defect at most 2 in G. Let S be a sub-
normal subgroup of G such that S 6 H and |H : S| < ∞; clearly, we
may suppose S > K. Then S > A, because A/K has no proper sub-
groups of finite index. It follows that A is subnormal in S and hence
is subnormal in G, so we may replace S by A. Having observed that
A ∩N = K, let L = KN. Then L is normalized by A, thus L E NA
and NA/L is nilpotent. Now, (abelian) divisible subgroups of a nilpo-
tent p-group are central, hence in particular AL/L ' A/K is normal
in NA/L, yielding LA = ANA. By an easy inductive argument we
deduce that the defect of A in NA is equal to the defect of K in N,
which in turn does not exceed c. Since NA has defect at most 2 in G,
we conclude that A has defect at most c+ 2 = d in G, as wanted. ut
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4 Concluding remarks and questions

1. I do not know of any example of a locally finite sbyf-group which
is not a finite extension of a N1-group, nor was I able to show that
this cannot happen. Thus, I have to leave unsettled the question as to
whether every locally finite sbyf-group is N1-by-finite.

2. Groups in which every subgroup is normal-by-finite, called
CF-groups, are the subject of a number of interesting papers (see
[1] and [3], to quote just a couple of them). In particular, Buckley,
Lennox, B.H. Neumann, H. Smith and Wiegold proved in [1] that a
locally finite CF-group is abelian by finite.

For d > 1, let us say that a subgroup is d-subnormal if it is sub-
normal of defect at most d, and that a group G is d-sbyf if every
subgroup H of G contains a subgroup S of finite index which is
d-subnormal in G. Point (B) of the main Theorem states that every
locally finite sbyf-group is d-sbyf for some d > 1. It would be of some
interest to know whether this is true in general (that is, not just for
locally finite groups). By the mentioned result in [1], locally finite
1-sbyf groups are abelian-by-finite. On the other hand, the groups of
Heineken-Mohamed are examples of locally finite 2-sbyf groups that
are not nilpotent-by-finite. However, the question remains whether
there exists a function γ(d) of d such that every locally finite d-sbyf
group G has a normal subgroup N such that G/N is Černikov and
N is nilpotent of class at most γ(d). By the results in this paper, the
question clearly reduces to nilpotent groups.
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