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Dedicated to Mahmut Kuzucuoğlu on the occasion of his 60th birthday

Abstract
In this note, we give a new totally topological definition of cellular automata over
groups. We show that every continuous self-map of the shift space AG can be
represented as a G-sequence of cellular automata. In the case of a finitely generated
group G and a finite alphabet A, we prove that the set of all cellular automata is
discrete in the uniform metric space of continuous self-maps of AG.
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1 Introduction

Consider a topological space X which is compact, Hausdorff, and
totally disconnected. If T : X ! X is a continuous map, then the
pair (X, T) is called a symbolic dynamical system. It has been in the cen-
ter of attentions to study the limit behavior of subsets of X under the
iterated action of T . One of the most important cases for us is the case
when X is a full shift space over a group. Let G be a group and A be
a set. Elements of A are called letters and elements of G are cells. The
set A is also called alphabet. Consider the space AG which is the set
of all maps G ! A. If we consider the set A as a discrete topological
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space, then clearly AG will be a Hausdorff and totally disconnected
space where we equip AG with the product topology (prodiscrete
topology). In the case when A is finite, this space is also compact.
In General, AG is called the set of configurations. The group G acts
on AG by shift, i.e. for any x 2 AG and g 2 G, we have the new
map g ·x, which sends any element h 2 G to the new symbol x(g-1h).
Recall that a cellular automaton over G with alphabet set A is a map

T : AG ! AG

such that there exists a finite subset S ✓ G and a function µ : AS ! A
with the following property: for all x 2 AG and all g 2 G, we have

T(x)(g) = µ((g-1 · x)|S),

where |S denotes the restriction. Any such a set S is a called a memory
set and µ is called a local defining function. Let CA(G,A) be the set of
all such cellular automata. This set is a monoid with the ordinary
composition of mappings.

Let U(AG,A) be the set of all uniformly continuous functions
from AG to A. Define a binary operation ⇤ on this set by

(f1 ⇤ f2)(x) = f1((f2(g
-1 · x))g2G).

This binary operation can be described in other form. For any func-
tion f : AG ! A, we define a new map Tf : AG ! AG, by the rule

Tf(x)(g) = f(g-1 · x).

Then, it can be easily seen that

(f1 ⇤ f2) = f1 � Tf2 ,

where � denotes the composition of functions.
Soon, we shall see that U(AG,A) is a monoid. The identity of this

monoid is the projection map p1 : AG ! A defined by p1(x) = x(1),
where 1 is the identity of G.

In this article, we show that two monoids CA(G,A) and U(AG,A)
are isomorphic, and hence, every cellular automaton is in fact a uni-
formly continuous map AG ! A. This gives us a totally topological
definition of a cellular automaton. We will use this fact to give short
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proofs of some known theorems of the theory of cellular automata,
for example, a generalization of the theorem of Curtis and Hedlund
which says that a cellular automaton is just a uniformly continuous
map T : AG ! AG which is G-equivariant, i.e. for every configura-
tion x and any group element g, we have T(g · x) = g · T(x). This
generalization is obtained in [3]. We also reprove the existence of the
minimal memory set.

One of the other applications of the isomorphism between two
monoids CA(G,A) and U(AG,A) is the study of continuous
maps AG ! AG. In the case when A is finite, we will consider the
space of continuous maps C(AG,AG) and we will show that in some
sense it is CA(G,A)G. If we assume further that G is a finitely gener-
ated group, we can consider C(AG,AG) with its uniform metric. In this
case, we prove that the CA(G,A) is a discrete subspace of C(AG,AG),
but the situation for uncountable groups or infinite alphabets re-
mains unknown.

All of our notations in this note are the same as [2]. For topological
definitions, the reader can see [1].

2 The isomorphism

We need some material from the theory of uniform structures and the
reader can consult [1] for basic definitions. In the case when the al-
phabet set A is finite, there is no need to uniform structures and the
property of being uniformly continuous will be the same as being
continuous. For any T 2 CA(G,A), we define a new map fT : AG ! A
by

fT (x) = T(x)(1).

Theorem 2.1 The map T 7! fT is an isomorphism between the mo-
noids CA(G,A) and U(AG,A).

Proof — We first show that fT is uniformly continuous. Suppose S
is a memory set for T , that is S ✓ G is finite and if x,y 2 AG sati-
sfy x|S = y|S , then T(x)(1) = T(y)(1). Now, put

WS = {(x,y) 2 AG ⇥AG : x|S = y|S}.

Let U denote the pro-discrete uniform structure over AG. We know
that WS 2 U. Consider the map fT ⇥ fT : AG ⇥AG ! A⇥A defined
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by
(fT ⇥ fT )(x,y) = (fT (x), fT (y)).

We have the implication

x|S = y|S ) T(x)(1) = T(y)(1),

and this means that WS ✓ (fT ⇥ fT )
-1(�A), where �A is the diagonal

of A⇥A. This shows that

(fT ⇥ fT )
-1(�A) 2 U,

and hence fT is uniformly continuous. Now, for arbitrary automa-
ta T1 and T2, we have

fT1�T2(x) = (T1 � T2)(x)(1) = T1(T2(x))(1) = fT1(T2(x))

= fT1((T2(x)(g))g2G) = fT1((g
-1 · T2(x)(1))g2G)

= fT1((T2(g
-1 · x)(1))g2G) = fT1((fT2(g

-1 · x))g2G) = (fT1 ⇤ fT2)(x).

This shows that the map T 7! fT is a homomorphism. Note that
if fT1 = fT2 , then for any x 2 AG, we have T1(x)(1) = T2(x)(1), and
since T1 and T2 are G-equivariant, so T1 = T2, proving that the map
is injective.

Now, suppose that f 2 U(AG,A). Define a map

T : AG ! AG

by T(x)(g) = f(g-1 · x). First, note that T is G-equivariant: for any
h 2 G, we have

T(h · x)(g) = f(g-1 · (h · x)) = f((h-1g)-1 · x)

= T(x)(h-1g) = (h · T(x))(g).

Since f is uniformly continuous, we have (f⇥ f)-1(�A) 2 U. On the
other hand, we know that the set

{W⌦ : ⌦ ✓ G, |⌦| < 1}

is a basis for the pro-discrete uniform structure over AG. Hence there
exists a finite subset S ✓ G such that WS ✓ (f⇥ f)-1(�A). In other
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words
x|S = y|S ) f(x) = f(y) ) T(x)(1) = T(y)(1).

This shows that T is a cellular automaton with the memory set S.
Clearly fT = f and this shows that the map T 7! fT is surjective.
Therefore, we proved that U(AG,A) is a monoid and it is isomorphic
to CA(G,A). ut

As a result, we now have a very easy definition of a cellular au-
tomaton: any uniformly continuous map f : AG ! A is a cellu-
lar automaton! As an application, we reprove the theorem of Curtis
and Hedlund (see [2] and [3]).

Corollary 2.2 Let A be finite and T : AG ! AG be continuous and G-e-
quivariant. Then T is a cellular automaton. The converse is also true.

Proof — Define a map fT : AG ! A by fT (x) = T(x)(1). Note
that fT = p1 � T , so it is continuous. Since AG is compact, so fT
is uniformly continuous and hence fT 2 U(AG,A). This shows that
there exists a cellular automaton T0 such that fT = fT0 . But since T
is G-equivariant, it can be easily seen that T0 = T , proving that T is a
cellular automaton. ut

As another application, we prove the existence of the minimal mem-
ory set for a cellular automaton.

Corollary 2.3 Let T be a cellular automaton and S and S0 be two memory
sets for T . Then S\ S0 is also a memory set.

Proof — Let f : AG ! A be the corresponding uniformly continu-
ous mapping and V = (f⇥ f)-1(�A). We know that a finite set ⌦ ✓ G
is a memory set for T if and only if W⌦ ✓ V . Clearly V � V ✓ V .
Let (x,y) 2 WS\S0 and choose z 2 AG such that (x, z) 2 WS and
(z,y) 2 WS0 . This shows that (x,y) 2 WS �WS0 . Hence

WS\S0 ✓ WS �WS0 ✓ V � V ✓ V .

This proves that S\ S0 is a memory set. ut
Before closing this section, we must say that a similar statement

is true for any arbitrary subshift X ✓ AG, after a small modification:
Let U0(X,A) be the set of all uniformly continuous functions f :X!A,
with the further property that

(f(g-1 · x))g2G 2 X,
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for all x 2 X. Then we can define the binary operation

(f1 ⇤ f2)(x) = f1((f2(g
-1 · x))g2G).

on the set U0(X,A) and it becomes a monoid again. We can prove
then the next theorem.

Theorem 2.4 There is a natural isomorphism between U0(X,A) and the
monoid of all cellular automata X ! X.

3 The structure of continuous maps

In this section, we will show that every dynamical system of the
form (AG, T) is in fact a unique G-sequence of cellular automata. As
we saw in the previous section, every uniformly continuous
map AG!A has a unique decomposition of the form p1 �T , where p1
is the projection map x 7! x(1) and T is a cellular automaton. In other
words, we have

U(AG,A) = {p1 � T : T 2 CA(G,A)},

and the binary operation in this monoid is given by

(p1 � T1) ⇤ (p1 � T2) = p1 � (T1T2).

From now on, we assume that A is finite so every continuous map
on AG is automatically uniformly continuous. Let C(AG,AG) be the
space of all continuous functions AG ! AG, which is a monoid un-
der composition of maps. For any T 2 C(AG,AG), the map

p1 � T : AG ! A

is continuous and hence there exists a unique cellular automaton T⇤

such that
p1 � T = p1 � T⇤.

It is easy to see that the map T⇤ has the rule T⇤(x)(g) = T(g-1 · x)(1).
Note that for any two maps T1, T2 2 C(AG,AG), we have

p1 � (T1T2) = p1 � (T1T2)⇤.
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On the other hand

(p1 � T1) ⇤ (p1 � T2) = (p1 � T⇤
1
) ⇤ (p1 � T⇤

2
) = p1 � (T⇤

1
T⇤
2
).

This shows that (T1T2)⇤ = T⇤
1
T⇤
2

, and therefore the map T 7! T⇤ is a
retraction of the monoid C(AG,AG) onto the sub-monoid CA(G,A).

Theorem 3.1 Every continuous map T : AG ! AG can be represented in
a unique way as a sequence (Tg)g2G, where every Tg is a cellular automa-
ton.

Proof — Consider a fixed element g 2 G. Let pg : AG ! A be the
projection map x 7! x(g). Then the function pg � T is continuous and
hence there exists a unique cellular automaton Tg such that

pg � T = p1 � Tg.

This means that for any x and g, we have

T(x)(g) = Tg(x)(1).

So, we can define a map

� : CA(G,A)G ! C(AG,AG),

which assigns the sequence (Tg)g and the map T to each other. As
we saw this map is onto. It is also injective, since if we assume that
�((Tg)g) = �((Sg)g), then for any g we have p1 � Tg = p1 � Sg and
hence for any x, the equality Tg(x)(1) = Sg(x)(1) is valid. Therefore,
for arbitrary h 2 G, we have

Tg(x)(h) = (h-1 · Tg(x))(1) = Tg(h-1 · x)(1) = Sg(h-1 · x)(1)

= (h-1 · Sg(x))(1) = Sg(x)(h).

This shows that the map is injective. ut
Hence, we can identify C(AG,AG) with CA(G,A)G. In fact, by this

identification, we have

C(AG,AG) = CA(G,A)G = C(AG,A)G.

Now, we focus on the case where G is finitely generated. Consider
a finite generating set S for the group G, which is symmetric (that is,
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S-1 = S). Then clearly we have the word metric on G with respect
to S. This means that the distance between two distinct elements g
and h is the length of the shortest group word s1s2 . . . sm, such that

gh-1 = s1s2 . . . sm

and all si belong to S. Let B(r) be the closed ball of radius r in G, i.e.

B(r) =
�
g 2 G : distance between g and 1 is at most r

 
.

Clearly, we have

B(0) ✓ B(1) ✓ B(2) ✓ . . . , and G =
1[

r=1

B(r).

Now, it is possible to define a metric d on the shift space AG. For
every distinct configurations x and y, we have d(x,y) = 2-R, where

R = min{r : x|B(r)
6= y|B(r)

}.

It is known that the prodiscrete topology on AG is the same as the
topology induced by the metric d. Since AG is compact, we can de-
fine the uniform metric of C(AG,AG) as follows:

d(T1, T2) = sup
x

d(T1(x), T2(x)).

Using standard arguments, one can prove that the space C(AG,AG)
is complete with respect to this metric but it is not compact in gen-
eral. Instead, it can be shown that (the proof is standard diagonal ar-
gument) every sequence of elements in this space has a subsequence
which converges point wise. We prove that the subspace CA(G,A) is
closed.

Proposition 3.2 The subspace CA(G,A) is closed in C(AG,AG).

Proof — Consider an element T 2 C(AG,AG) which is not a cellu-
lar automaton. So, there are elements x 2 AG and s 2 S, such that
T(s · x) 6= s · T(x). This means that there exists an element g such that

T(s · x)(g) 6= (s · T(x))(g).
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Let N be a natural number bigger that the norm of g with respect to
the word metric (N > distance(g, 1)). Let r = 1/2N. Now, suppose
d(T , T 0) < r. We show that T 0 is not a cellular automaton. Assume by
contrary that T 0 is a cellular automaton. We have d(T(y), T 0(y)) < r,
for every configuration y (and especially for x) and hence (by the
definition of the metric on AG) we have

T(x)(s-1g) = T 0(x)(s-1g).

This shows that

(s · T(x))(g) = (s · T 0(x))(g) = T 0(s · x)(g) = T(s · x)(g),

which is a contradiction. ut

More surprising fact about the space of cellular automata is given
in the following theorem; this space is discrete in the case of finitely
generated groups and finite alphabets.

Theorem 3.3 Let G be a finitely generated group and A be a finite alpha-
bet set. Then CA(G,A) is a discrete subset of C(AG,AG).

Proof — Consider two cellular automata T and T 0 from CA(G,A).
Let M and µ be a memory set and local defining function for T , re-
spectively. Similarly, for T 0, we consider a memory set M0 and a local
defining function µ0. Assume that d(T , T 0) 6 2-1. This means that
for any configuration x we have d(T(x), T 0(x)) 6 2-1. In other words,
we have T(x)(1) = T 0(x)(1). So, for any arbitrary configuration x, we
have

µ(x|M) = µ0(x|
M0 ).

Now, for any g 2 G, we have

T(x)(g) = µ(g-1 · x|M) = µ0(g-1 · x|
M0 ) = T 0(x)(g).

This shows that T(x) = T 0(x) and hence T = T 0. In other words, for
any two distinct automata T and T 0, we must have d(T , T 0) = 1, and
this completes the proof. ut

As a final question, one may ask about the general case of the
above theorem. It is also interesting to determine all cellular au-
tomata which are isolated in the metric space C(AG,AG).
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