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Abstract
The primary purpose of this work is to consider the notions of transitivity and inher-
itance not only as properties of subgroup properties, but as properties of subgroups
themselves. We introduce and develop first principles and investigate the interplay
between the new subgroup properties that result.
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1 Introduction

Recall that if U is a subnormal subgroup of a group G and V is sub-
normal in U, then V is subnormal in G. Observe, however, that this
statement need not be true if we replace “subnormal” with “normal”.
This property enjoyed by subnormality is commonly known as transi-
tivity, and it plays a central role in this paper. A seminal work on this
concept with regard to normality is [4]. Dually, we shall be concerned
with subgroup properties that are preserved or “inherited” in over-
groups in the sense that if V is an ↵-subgroup of G, and V 6 U 6 G,
then V is an ↵-subgroup of U. For instance, both subnormality and
normality are preserved in subgroups, as is the property of being
a Sylow subgroup. The cover-avoidance property (or CAP, for short),
however, is not necessarily preserved in overgroups (see [3]). There
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is a precedent for studying the concept of inheritance; references in-
clude [6] and [7].

The purpose of this work is to reinterpret global properties, such
as transitivity, on the subgroup level to create new subgroup prop-
erties. We introduce and develop first principles and investigate the
interplay between the new subgroup properties that result.

All groups considered in this paper are finite. If ↵ and � are sub-
group properties in a group G such that U↵G implies U�G, then we
use the shorthand notation ↵ ) � to denote this. We say that ↵ is
reflexive in G if U↵U for all subgroups U of G. All other undefined
group theoretic notation and terms are standard and may be found
in [1].

2 Transitivity and generalizations

A subgroup property is said to be transitive if V↵U and U↵G imply
that V↵G for all V 6 U 6 G. It is interesting to note that although
normality is not transitive in general, it does possess a type of transi-
tivity through other subgroup properties. For instance, in a solvable
group G, a normal subgroup of a well-placed subgroup is a normal
subgroup of G (see Proposition 6.5 of [1]). Examples such as this lead
naturally to a generalization of transitivity in which the property ↵
is preserved as we pass through overgroups possessing a possibly
different property �.

Definition 2.1 Let ↵ and � be subgroup properties. Then ↵ is said
to be transitive through �-subgroups if for all V 6 U 6 G, the condi-
tions V↵U and U�G together imply that V↵G.

Referring to the example in the previous paragraph, we see that the
cover-avoidance property in a solvable group is transitive through
critical subgroups. Notice that the special case ↵ = � conveniently
yields the familiar definition of transitivity.

On a local level, one may wish to impose a sort of transitivity on
subgroups rather than on properties of subgroups. This becomes ev-
ident when considering, for example, that normal subgroups of a
direct factor of a direct product are also normal in the product. We
might say that direct factors are normal-transitive.
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Definition 2.2 Let U be a subgroup of the group G, and let ↵ be a
subgroup property. Then U is called an ↵-transitive subgroup of G if
each ↵-subgroup of U is an ↵-subgroup of G.

Observe that an ↵-transitive subgroup is, in turn, an ↵-subgroup
when ↵ is reflexive, or, more specifically, in cases where there exists
a group G and a subgroup U of G such that U↵U.

The definitions of “transitive through” and “↵-transitive” were in-
troduced by the author in [2] and studied further in [3]. The latter
includes the development of first principles for the purpose of study-
ing of normal-transitive and CAP-transitive subgroups.

The next proposition makes a few connections between the con-
cepts discussed thus far.

Proposition 2.3 The following statements are equivalent in a group G.

(1) ↵ is transitive in G.

(2) ↵ is transitive through ↵-subgroups of G.

(3) ↵-transitivity is transitive through ↵-subgroups of G.

(4) Each ↵-subgroup of G is ↵-transitive in G.

Proof — Statements (1), (2), and (4) are simply re-wordings of the
definition of transitivity and hence are equivalent. To see that (1)
implies (3), assume ↵ is transitive, U↵G, and V is ↵-transitive in U
with W↵V . We have W↵U by ↵-transitivity and W↵G by transitivity.
This proves that V is ↵-transitive in G. Finally, to see that (3) im-
plies (4), let U↵G and observe that U is ↵-transitive in U with U↵G.
By (3), U is ↵-transitive in G. ut

In this paper, we intend to take these ideas one step further. As
a motivating example, consider a critical subgroup U of a solvable
group G. By [1], each normal subgroup of U is a CAP-subgroup of G.

Definition 2.4 Let U be a subgroup of the group G, and let ↵
and � be subgroup properties. Then U is called an ↵�-transitive sub-
group of G, denoted U(↵ " �)G, if each ↵-subgroup of U is a �-sub-
group of G.

A few remarks about Definition 2.4 are worth noting. First, observe
that ↵↵-transitivity is equivalent to ↵-transitivity. Second,
if U(↵ " �)G and U↵U, then U�G. This is certainly true in the general
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case where ↵ is a reflexive subgroup property. Third, U(↵ " 6)G is
universally true for any group G and U 6 G. Last, (↵ " �)
and (� " ↵) are apparently distinct subgroup properties, hence ↵
and � do not “commute” in Definition 2.4. To see this, let G be the
alternating group A4, and let U be the subgroup of G of order 4. Evi-
dently, U is a (E " 6)-subgroup of G, however U is not a (6 " E)-sub-
group of G.

3 Inheritance and generalizations

The organization of this section is similar to that of the previous
except we shall be concerned with subgroup properties that are pre-
served as we drop down into intermediate subgroups. If V↵G implies
that V↵U for all V 6 U 6 G, then we shall call ↵ an inherited sub-
group property. Therefore, we can say that both subnormality and
normality are inherited subgroup properties.

Consider now the following analogues of “transitive through” and
“↵-transitive”.

Definition 3.1 Let ↵ and � be subgroup properties. Then ↵ is said
to be inherited in �-subgroups if for all V 6 U 6 G, the conditions V↵G
and U�G together imply that V↵U.

Definition 3.2 Let U be a subgroup of the group G, and let ↵ be
a subgroup property. Then U is called an ↵-inherited subgroup of G if
each ↵-subgroup of G contained in U is an ↵-subgroup of U.

Note that if U is ↵-inherited in G and U↵G, then U↵U.

Proposition 3.3 The following statements are equivalent in a group G.

(1) ↵ is inherited in G.

(2) ↵ is inherited in subgroups of G.

(3) ↵-inheritance is transitive through subgroups of G.

(4) Each subgroup of G is ↵-inherited in G.

Proof — The equivalence of statements (1), (2), and (4) follows
from the fact that these are restatements of the definition of inheri-
tance. To see that (3) implies (4), assume that ↵-inheritance is transi-
tive through subgroups of G, and let U 6 G. Since U is ↵-inherited
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in U 6 G, it follows that U is ↵-inherited in G. The proof will be
complete once we prove that (4) implies (3). To this end, suppose U
is ↵-inherited in V 6 G. By (4), U is ↵-inherited in G, and we are
done. ut

The definitions of “inheritance in” and “↵-inheritance” were stud-
ied in [2] and [3] as “persistent in” and ↵-persistence”. The reason for
the change in terminology is so as not to confuse our current work
with the notion of “normal persistence” defined by Wielandt [5]. As
we did with transitivity in the last section, we can further generalize
these new definitions.

Definition 3.4 Let U be a subgroup of the group G, and let ↵ and �
be subgroup properties. Then U is called an ↵�-inherited subgroup
of G, denoted U(↵ # �)G, if each �-subgroup of G contained in U is
an ↵-subgroup of U.

For example, if ↵ is the cover-avoidance property and � is the prop-
erty of being a subgroup, then a supersolvable subgroup U of a group
G is ↵�-inherited, or U(CAP # 6)G (of course, this is because every
subgroup of a supersolvable group is a CAP-subgroup).

Let us make similar observations about Definition 3.4 as we did
with Definition 2.4. Notice first that ↵↵-inheritance is equivalent
to ↵-inheritance. Second, if U(↵ # �)G and U�G, then U↵U.
Third, U(6 # �)G is true for any group G and any U 6 G. Finally, we
conclude that (↵ # �) and (� # ↵) are distinct subgroup properties.
Indeed, let G = A4, let U be the subgroup of G of order 4, and let ↵
and � be the properties of subnormality and normality, respectively.
Then U is ↵�-inherited in G but not �↵-inherited in G.

4 Cancellation and expansion laws

In this section, we present two of our main theorems. The first is
comprised of a collection of “cancellation laws” which demonstrate
the interplay between ↵�-transitivity and ↵�-inheritance in the con-
text of two comparable subgroups V and U. In particular, these laws
pertain directly to the smaller subgroup V .

Theorem 4.1 (Cancellation Laws) Let ↵, �, and � be subgroup proper-
ties, and let V 6 U 6 G.
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(1) If V(↵ " �)U and U(� " �)G, then V(↵ " �)G.

(2) If V(↵ " �)G and U(� # �)G, then V(↵ " �)U.

(3) If V(↵ # �)U and U(� # �)G, then V(↵ # �)G.

(4) If V(↵ # �)G and U(� " �)G, then V(↵ # �)U.

Proof — To prove (1), let W↵V . Since V(↵ " �)U, it follows
that W�U, and since U(� " �)G, it follows that W�G. This
means V(↵ " �)G. We prove (2) by again choosing W↵V . The assump-
tion V(↵ " �)G implies that W�G, hence W�U since U(� # �)G. That
is, V(↵ " �)U. For (3), suppose W�G contained in V . If U(� # �)G,
then W�U. Under the assumption V(↵ # �)U, we conclude that W↵V .
Therefore, V(↵ # �)G. The proof of statement (4) is similar. Indeed,
if W�U contained in V and U(� " �)G, then W�G. But V(↵ # �)G
implies that W↵V , hence V(↵ # �)U. ut

The next two corollaries give some insight into the transitivity and
inheritance of ↵�-transitivity and ↵�-inheritance. They also bring to
light the impact the second argument � has on these properties.

Corollary 4.2 Let ↵ and � be subgroup properties.

(1) ↵�-transitivity is transitive through �-transitive subgroups.

(2) ↵�-transitivity is inherited in �-inherited subgroups.

(3) ↵�-inheritance is transitive through �-inherited subgroups.

(4) ↵�-inheritance is inherited in �-transitive subgroups.

Proof — These statements are direct consequences of the cancella-
tion laws by setting � = �. ut

Corollary 4.3 Let ↵ be a subgroup property.

(1) ↵-transitivity is transitive.

(2) ↵-transitivity is inherited in ↵-inherited subgroups.

(3) ↵-inheritance is transitive.

(4) ↵-inheritance is inherited in ↵-transitive subgroups.
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Proof — These statements are direct consequences of Corollary 4.2
by setting � = ↵. ut

By taking � = ↵ in Theorem 4.1, we discover additional results
showing the impact � has on ↵-transitive and ↵-inherited subgroups
that are contained in generalized transitive and inherited overgroups
involving �.

Corollary 4.4 Let ↵ and � be subgroup properties and let V 6 U 6 G.

(1) If V(↵ " ↵)U and U(↵ " �)G, then V(↵ " �)G.

(2) If V(↵ " ↵)G and U(� # ↵)G, then V(↵ " �)U.

(3) If V(↵ # ↵)U and U(↵ # �)G, then V(↵ # �)G.

(4) If V(↵ # ↵)G and U(� " ↵)G, then V(↵ # �)U.

The second main theorem consists of what we will refer to as “ex-
pansion laws”. By applying the appropriate interpretations, we may
informally consider this theorem to be either a restatement of the def-
initions of ↵�-transitivity and ↵�-inheritance in symbolic form, or a
corollary of the cancellation laws expressed in a global setting. The
supplied proof, however, is from first principles.

Theorem 4.5 (Expansion Laws) Let ↵, �, and � be subgroup properties.

(1) (↵ " �) ) ((� " ↵) " (� " �)).

(2) (↵ " �) ) ((� # ↵) # (� # �)).

(3) (↵ # �) ) ((� " ↵) # (� " �)).

(4) (↵ # �) ) ((� # ↵) " (� # �)).

Proof — In order to prove statements (1) and (2) we assume
U(↵ " �)G. We wish to show that

U((� " ↵) " (� " �))G.

On one hand, if V(� " ↵)U and W�V , then W↵U. By assump-
tion, W�G. That is, V(� " �)G which proves (1). On the other hand,
if V(� # �)G such that V 6 U, then for any W↵U with W 6 V we
have that W�G since U(↵ " �)G. However W�G implies W�V by
the assumption V(� # �)G, and so V(� # ↵)U. This proves (2).
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The proofs of statements (3) and (4) are similar to those of (1)
and (2), so assume U(↵ # �)G in both parts. For (3), we let V(� " �)G
in U and must prove that V(� " ↵)U. If W�V , then our assump-
tions yield W�G and then W↵U. Hence V(� " ↵)U. To prove (4),
let V(� # ↵)U and we show V(� # �)G. To this end let W�G con-
tained in V . By our assumptions, W↵U and W�V , which completes
the proof. ut

5 Cases in which one property implies the other

For some subgroup properties, it may be the case that ↵ ) �. (For
instance, normal subgroups are subnormal.) Keep in mind, however,
that ↵ ) � could refer to inherited properties of ↵ and � on a global
level, or it could mean that U↵G ) U�G locally for a particular sub-
group U or even in a particular group G. The results of this section
are expressed on a global level, but of course the statements can be
reinterpreted locally if the reader wishes to do so.

We refer to the statements in the next theorem as the “substitution
laws”.

Theorem 5.1 (Substitution Laws) Let ↵, �, and � be subgroup proper-
ties.

(1) If � ) ↵, then (↵ " �) ) (� " �).

(2) If � ) �, then (↵ " �) ) (↵ " �).

(3) If ↵ ) �, then (↵ # �) ) (� # �).

(4) If � ) �, then (↵ # �) ) (↵ # �).

Proof — Assume U(↵ " �)G and � ) ↵, and let V�U. It follows
that V↵U, and so V�G. This proves statement (1). If U(↵ " �)G
and � ) �, then V↵U implies V�G and so V�G. Hence, statement (2)
is proved. Now let V�G such that V 6 U. If U(↵ # �)G and ↵ ) �,
then V↵U which in turn implies V�U. This proves (3). To prove (4),
assume U(↵ # �)G and � ) �. If V�G with V 6 U, then by assump-
tion, V�G. Therefore, V↵U. This completes the proof. ut

Corollary 5.2 Let ↵ and � be subgroup properties such that � ) ↵.

(1) (↵ " �) ) (↵ " ↵).
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(2) (↵ " �) ) (� " �).

(3) (↵ " �) ) (� " ↵).

Proof — We set � = ↵ in Theorem 5.1 (2) to obtain (↵ " �))(↵ " ↵),
and we set � = � in Theorem 5.1 (1) to obtain (↵ " �) ) (� " �). By
applying Theorem 5.1 (2) with ↵ = � and � = ↵, we further conclude
that (� " �) ) (� " ↵), hence (↵ " �) ) (� " �) ) (� " ↵). ut

The proof of Corollary 5.3 below is similar to that of Corollary 5.2
except we proceed by applying the appropriate substitutions for ↵, �,
and � in parts (3) and (4) of Theorem 5.1.

Corollary 5.3 Let ↵ and � be subgroup properties such that ↵ ) �.

(1) (↵ # �) ) (↵ # ↵).

(2) (↵ # �) ) (� # �).

(3) (↵ # �) ) (� # ↵).

We observed earlier that if U(↵ " �)G and U↵U, then U�G. More
generally, if ↵ is reflexive, then (↵ " �) ) �. Let us formally record
this fact as a lemma for easy reference.

Lemma 5.4 If ↵ and � are subgroup properties such that ↵ is reflexive,
then (↵ " �) ) �. In particular, (↵ " ↵) ) ↵.

Since reflexivity can be expressed as a conditional statement, it
makes sense to investigate its impact on ↵�-transitivity and ↵�-inhe-
ritance in light of the substitution laws of Theorem 5.1. In fact, Lem-
ma 5.4 and the substitution laws yield the following two corollaries.

Corollary 5.5 Let ↵ and � be subgroup properties such that ↵ is reflexive.

(1) (↵ " �) ) ((↵ " ↵) " �).

(2) (↵ # �) ) (↵ # (↵ " �)).

Corollary 5.6 Let ↵ and � be subgroup properties such that � is reflexive.

(1) (↵ " �) ) ((� " ↵) " �).

(2) (↵ # �) ) (↵ # (� " �)).
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6 Cases in which one or both properties are
transitive

In this section we derive numerous necessary conditions for ↵�-tran-
sitivity and ↵�-inheritance by imposing transitivity on ↵ or � or both.
First we consider the cases in which ↵ is transitive and in which ↵ is
both transitive and reflexive.

Proposition 6.1 Let ↵ and � be subgroup properties such that ↵ is tran-
sitive.

(1) (↵ " �) ) (↵ " (↵ " �)).

(2) (↵ # �) ) ((↵ " ↵) # �).

Proof — To prove statement (1), let � = ↵ in Theorem 4.5 (1) to
obtain

(↵ " �) ) ((↵ " ↵) " (↵ " �)).

If ↵ is transitive, then ↵ ) (↵ " ↵) by Proposition 2.3, therefore

((↵ " ↵) " (↵ " �)) ) (↵ " (↵ " �))

by Theorem 5.1 (1). Statement (2) follows immediately from Theo-
rem 5.1 (3) by setting � = (↵ " ↵). ut

Corollary 6.2 Let ↵ and � be subgroup properties such that ↵ is both
transitive and reflexive.

(1) (↵ " �) , ((↵ " ↵) " �) , (↵ " (↵ " �)).

(2) (↵ # �) , ((↵ " ↵) # �) ) (↵ # (↵ " �)).

Proof — Let us first focus our attention on statement (1). In light
of Corollary 5.5 (1) and Proposition 6.1 (1), all that remains to prove
is that ((↵ " ↵) " �) ) (↵ " �) and (↵ " (↵ " �)) ) (↵ " �). How-
ever, both statements follow from Lemma 5.4 and the substitution
laws of Theorem 5.1. For statement (2), similar reasoning confirms
that ((↵ " ↵) # �) ) (↵ # �). ut

Next we consider ↵�-transitivity and ↵�-inheritance for the cases
in which � is transitive and in which � is both transitive and reflex-
ive.
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Proposition 6.3 Let ↵ and � be subgroup properties such that � is tran-
sitive.

(1) (↵ " �) ) (↵ " (� " �)).

(2) (↵ # �) ) ((� " ↵) # �).

Proof — Statement (1) is true by Proposition 2.3 and Theorem 5.1.
For statement (2), let � = � in Theorem 4.5 (3) to get

(↵ # �) ) ((� " ↵) # (� " �)).

The result follows from the transitivity of �, Proposition 2.3, and The-
orem 5.1 (4). ut

Suitable applications of Theorem 4.5, Corollary 5.6, and Proposi-
tions 2.3 and 6.3 yield the following corollary.

Corollary 6.4 Let ↵ and � be subgroup properties such that � is both
transitive and reflexive.

(1) (↵ " �) , (↵ " (� " �)) ) ((� " ↵) " �).

(2) (↵ # �) , (↵ # (� " �)) , ((� " ↵) # �).

Recall how Corollary 4.2 succinctly expressed the transitivity and
inheritance of ↵�-transitive and ↵�-inherited subgroups. It turns out
that these properties remain unaffected by the transitivity of ↵ and
by the reflexivity of ↵ and �. The transitivity of �, however, does
yield new information.

Corollary 6.5 Let ↵ and � be subgroup properties such that � is transi-
tive.

(1) ↵�-transitivity is transitive through �-subgroups.

(2) ↵�-inheritance is inherited in �-subgroups.

Proof — Parts (1) and (4) of Corollary 4.2 state that

(� " �) ) ((↵ " �) " (↵ " �)) and (� " �) ) ((↵ # �) # (↵ # �)),

respectively. This corollary follows from the fact that � ) (� " �)
when � is transitive. ut

The last case we will consider here is the one in which both ↵
and � are transitive, and a subgroup is both ↵ and �. This situation
has a most interesting effect on ↵�-inherited subgroups.
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Proposition 6.6 Let ↵ and � be transitive subgroup properties.
Then ↵ ^ � ^ (↵ # �) ) (� " ↵).

Proof — Assume U(↵ # �)G, U↵G, and U�G. Let V�U; we want to
show that V↵G. We have V�U�G so V�G by the transitivity of �.
Under the assumption that U(↵ # �)G, it follows that V↵U. But
then V↵U↵G implies V↵G by the transitivity of ↵, and we are done. ut

In words, an ↵�-inherited subgroup which possesses both transi-
tive properties ↵ and � is a �↵-transitive subgroup.

7 Cases in which one or both properties are
inherited

The goal in this final section is to consider ↵�-transitivity and ↵�-in-
heritance in the presence of inheritance. The results here are a bit
richer than those in the previous section possibly due to the fact that
a inherited subgroup property ↵ necessarily forces each subgroup to
be ↵↵-inherited.

Proposition 7.1 Let ↵ and � be subgroup properties such that ↵ is inher-
ited. Then for any subgroup property �, we have (↵ # �) ) (� " (↵ # �)).

Proof — If � is a subgroup property and ↵ is inherited, then

� ) 6 ) (↵ # ↵).

By Theorems 4.5 and 5.1, we have

(↵ # �) ) ((↵ # ↵) " (↵ # �)) ) (� " (↵ # �)).

The statement is proved. ut

Proposition 7.2 Let ↵ and � be subgroup properties such that � is inher-
ited. Then for any subgroup property �, we have (↵ " �) ) ((� # ↵) # �).

Proof — Suppose � is a subgroup property and � is inherited. It
follows that � ) 6 ) (� # �). By Theorems 4.5 and 5.1, we have

(↵ " �) ) ((� # ↵) # (� # �)) ) ((� # ↵) # �).

The statement is proved. ut
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Proposition 7.3 Let ↵ and � be inherited subgroup properties. Then for
any subgroup property �, we have (↵ " �) ) (� " (� # ↵)).

Proof — Assume U(↵ " �)G, and let V�U; we wish to show
that V(� # ↵)G. To this end, let W↵G with W 6 V . It remains to prove
that W�V . Since ↵ is inherited, W↵U, and by hypothesis, W�G. The
inheritance of � yields W�V as required. ut

Corollary 7.4 Let ↵ and � be inherited subgroup properties.
Then (↵ " �) ) (� # ↵).

Proof — Take � = 6 in Proposition 7.3 to get

U(↵ " �)G ) U(6 " (� # ↵))G.

The desired result follows from the fact that U 6 U. ut

We close this paper with two corollaries analogous to Corollar-
ies 4.2 and 6.5.

Corollary 7.5 Let ↵ and � be subgroup properties such that ↵ is inher-
ited.

(1) ↵�-inheritance is transitive.

(2) ↵�-inheritance is inherited in �↵-transitive subgroups.

Proof — Statement (1) comes from Proposition 7.1 by set-
ting � = (↵ # ↵). Statement (2) is obtained from Proposition 7.2 by
interchanging ↵ and � and then replacing � with (↵ # �). ut

Corollary 7.6 Let ↵ and � be subgroup properties such that � is inher-
ited.

(1) ↵�-transitivity is inherited.

(2) ↵�-inheritance is transitive through subgroups.

Proof — By replacing ↵ with � and then � with ↵ in parts (3)
and (4) of Theorem 4.5, we obtain

(� # �) ) ((↵ " �) # (↵ " �)) and (� # �) ) ((↵ # �) " (↵ # �)).

Both statements follow from the fact that 6 ) (� # �) when � is
inherited. ut
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