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Abstract
The authors examine the relations between the properties of a group G and its
norm NA

G
of Abelian non-cyclic subgroups. In this paper the properties of fi-

nite 2-groups with the cyclic center and the metacyclic non-Dedekind norm of Abe-
lian non-cyclic subgroups, are studied. The complete description of such groups is
obtained.
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1 Introduction

One of the productive directions in group theory is the study of
the influence of some characteristic subgroups (center, derived sub-
group, Frattini subgroup etc.) on the structure of the whole group.
Such characteristic subgroups include different ⌃-norms of a group.

Recall, that the intersection of the normalizers of all subgroups of
a system ⌃, provided that ⌃ contains all subgroups of a group G with
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some property (for example, ⌃ is a system of all Abelian, all non-Abe-
lian, all non-cyclic subgroups of a group) is called a ⌃-norm of a
group G. It is clear that every ⌃-norm of a group contains the center
of a group and normalizes all subgroups of the system ⌃ (assum-
ing ⌃ 6= ?).

While studying of ⌃-norms and their influence on the structure of a
group, a number of questions regarding to the choice of the system ⌃
and the restrictions that these ⌃-norms satisfied arise. If the structure
of ⌃-norm and the nature of its embedding to a group are known, in
most of cases it is possible to describe the properties and structure
of a group itself. In the most researches such problem solved for the
groups which coincide with their ⌃-norms, that is, groups in which
each subgroup of ⌃ is a normal subgroup of a group [5, 12, 16, 24].

The first situation, when a ⌃-norm is a proper subgroup of a group
was studied by R. Baer [1] in 1935 for the system ⌃ of all subgroups
of a group. He called it the norm of a group G and denoted by N(G).
It should be noted, that interest for the norm N(G) still has been not
decreased as evidenced by the findings [3, 11, 22, 26, 25].

Narrowing the system ⌃ of subgroups, it’s possible to get differ-
ent ⌃-norms, which can be considered as generalizations of Baer’s
norm N(G). Among such generalized norms let’s point out the norm
of subnormal subgroups of a group or Wielandt subgroup [2, 27],
A-norm [10], the metanorm [6, 7] and the non-cyclic norm NG of a
group [13, 17]. If ⌃ is the system of all Abelian non-cyclic subgroups,
then the ⌃-norm is called the norm of Abelian non-cyclic subgroups of a
group G and denoted by NA

G
.

In this article the authors continue the investigation of 2-groups
with the non-Dedekind norm of Abelian non-cyclic subgroups, initi-
ated in [18]–[21]. In particular, in [18] the complete description of infi-
nite locally finite 2-groups with such restriction on the norm NA

G
was

obtained. The structure of finite 2-groups in which the norm NA

G
is a

non-metacyclic non-Dedekind subgroup was investigated in [19, 20].
Finally, the finite 2-groups with the non-cyclic center and the non-De-
dekind norm NA

G
were characterized in [21].

The purpose of this paper is to study finite 2-groups with the cyclic
center and the metacyclic non-Dedekind norm NA

G
.
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2 Preliminary results

The norm of Abelian non-cyclic subgroups of a group G (see [14]) is the in-
tersection of the normalizers of all Abelian non-cyclic subgroups of a
group G (assuming that the system of such subgroups is non-empty).

Clearly, all Abelian non-cyclic subgroups are normal in a group G
which contains at least one Abelian non-cyclic subgroup and coin-
cides with the norm NA

G
. Non-Abelian groups with this property

were studied in [16] and were called HA-groups (HA2-groups in the
case of 2-groups). Therefore, if the norm NA

G
of a finite 2-group is

non-Dedekind, then it is either HA2-group or non-Dedekind group
without Abelian non-cyclic subgroups. In the latter case, by Theo-
rem 1 of [15] the group also does not contain Abelian non-cyclic sub-
groups. Therefore, we assume that NA

G
contains an Abelian non-cy-

clic subgroup and is HA2-group.
Taking into account the description of finite HA2-groups (see [16]),

we obtain the following characterization of metacyclic non-Dedekind
norm NA

G
.

Lemma 2.1 The norm NA

G
of Abelian non-cyclic subgroups of a fi-

nite 2-group G is metacyclic and non-Dedekind if and only if NA

G
is a group

of one of the following types:

1) NA

G
= haih hbi, |a| = 2n, |b| = 2m, n > 2, m > 1, [a, b] = a2

n-1 ;
2) NA

G
= haihbi, |a| = 2n, n > 2, |b| = 8, b4 = a2

n-1 , b-1ab = a-1.

Further we need the description of finite non-metacyclic 2-groups
whose proper subgroups are metacyclic. Finite p-groups with such a
property are studied in [4]. As a corollary of the main result in [4],
we obtain the following statement.

Lemma 2.2 Let G be a finite non-metacyclic 2-group. Each proper sub-
group of G is metacyclic if and only if G is a group of one of the following
types:

1) G = hai ⇥ hbi ⇥ hci, |a| = |b| = |c| = 2;
2) G=H⇥hbi, H=hh1, h2i, |h1| = |h2| = 4, |b| = 2,h2

1
= h2

2
=[h1, h2];

3) G = (hai ⇥ hbi)h hci, |a| = 4, |b| = |c| = 2, [a, c] = 1, [b, c] = a2;
4) G = (hai ⇥ hbi)hci, |a| = |b| = |c| = 4, c2 = a2b2, [c, a] = a2,

[c, b] = c2.

Let’s consider some properties of the norm NA

G
of Abelian non-cy-

clic subgroups in some 2-groups.
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Lemma 2.3 If a locally finite 2-group G contains a normal cyclic sub-
group hgi of order 4 and does not contain an elementary Abelian subgroup
of order 8, then g 2 NA

G
.

Proof — Let A be an arbitrary Abelian non-cyclic subgroup of G. By
the condition of lemma a group G doesn’t contain an elementary Abe-
lian subgroup of order 8 and g2 2 Z(G). Therefore g2 2 A. Then

[g, x] 2 hg2i ⇢ A

for an arbitrary element x 2 A. Hence A is g-admissible subgroup
and g 2 NA

G
. The lemma is proved. ut

Lemma 2.4 (see [15], Lemma 4) If the norm NA

G
of Abelian non-cyclic

subgroups of a finite 2-group G is non-Dedekind, then G does not contain
any elementary Abelian subgroups of order 8.

The next statement is the direct corollary of Lemmas 2.3 and 2.4.

Corollary 2.5 Let G be a finite 2-group with the non-Dedekind norm NA

G

of Abelian non-cyclic subgroups. If G contains a normal generalized quater-
nion group

H = hh1, h2i, |h1| = 2n, n > 3, |h2| = 4, h2
n-1

1
= h2

2
, h-1

2
h1h2 = h-1

1
,

then h2
n-2

1
2 NA

G
.

Further we need the following result by M. Drushlyak [8].

Lemma 2.6 Let G be a locally finite 2-group with non-Dedekind norm NA

G

of Abelian non-cyclic subgroups. If the center Z(NA

G
) of the norm NA

G
is

cyclic, then the central involution a belongs to every cyclic subgroup of
composite order of a group G.

Let’s denote the lower layer of G (the subgroup generated by all
elements of a prime order of a group G) by !(G).

Lemma 2.7 Let G be a finite 2-group with metacyclic and non-Dedekind
norm NA

G
of Abelian non-cyclic subgroups. If the norm NA

G
is different

from a group of the type 1) of Lemma 2.1 for m = 1, then NA

G
contains all

involutions of G and !(NA

G
) = !(G).
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Proof — Suppose, contrary to the condition of the lemma, that G
contains the involution x /2 !(NA

G
). If the center Z(G) of a group G is

non-cyclic, then hxi!(NA

G
) is an elementary Abelian group of order 8,

which contradicts Lemma 2.4. Therefore the center of G is cyclic.
Let NA

G
be a group of one of the type 1) for m > 1 or 2) of Lem-

ma 2.1. By the condition

⇥
hxi, !(NA

G
)
⇤
⇢ hx, a2

n-1

i \NA

G
= ha2

n-1

i,

where a2
n-1 2 NA

G
is the central involution of a group, we have⇥

hxi, (NA

G
)2
⇤
= E. But then

⇥
hxi, !(NA

G
)
⇤
= E and G contains an ele-

mentary Abelian subgroup of order 8, which contradicts Lemma 2.4.
The lemma is proved. ut

Let us consider another property of finite 2-groups that will be
used later.

Lemma 2.8 Let G be a finite non-Abelian 2-group in which all elements
of order not exceeding 4 are contained in the normal subgroup

H = hai ⇥ hbi,

where |a| = 4, |b| = 2, hai /G and b /2 Z(G). Then G is HA2-group of one
of the following types:

1) G = hgih hbi, |g| = 2n > 8, |b| = 2, [g, b] = g2
n-1

= a2;
2) G = hgihhi, |g| = 2n > 8, |h| = 8, g2

n-1

= h4 = a2, h-1gh = g-1.

Proof — Let G satisfies the conditions of the lemma. Then G has
no any quaternion subgroup and every non-cyclic subgroup of G
contains the subgroup !(G) = ha2i ⇥ hbi.

Since the factor group G/!(G) has a unique involution, it is ei-
ther a cyclic or a quaternion 2-group. If G/!(G) is a cyclic group,
then G 0 ✓ !(G) and all Abelian non-cyclic subgroups are normal
in G. Therefore, G is a non-Hamiltonian HA2-group. By the descrip-
tion of such groups (see [16]) G is a group of the type 1) of this
lemma.

Let G/!(G) be the quaternion group of order 8. It is easy to prove
that in this case all Abelian non-cyclic subgroups are normal in G
and G is a non-Hamiltonian HA2-group of the type 2) of lemma
for n = 3.



50 T.D. Lukashova – F.M. Lyman

Now let G/!(G) be a generalized quaternion group of order great-
er than 8. By Lemma 2.2 a group G does not contain non-metacyclic
subgroups, in which all proper subgroups are metacyclic. There-
fore, G is metacyclic and

G = hgihhi, hgi /G.

Suppose |g| < 8 or |h| < 8. Then in a generalized quaternion group

G/!(G) = G ' hgihhi

at least one of the elements g or h is of order 2, which is impossible.
Thus, |g| > 8 and |h| > 8.

If |h| > 8, then hhi / G by the structure of the factor group G. On
the other hand, by the proved above hgi /G, which is impossible in a
generalized quaternion group of order greater than 8. Hence, |h| = 8.

Let |G| = 2n > 16. Then |G| = 2n+2, |g| = 2n and h4 = g2
n-1 . In the

factor group G = G/!(G) the following equality takes place

h-1gh !(G) = g-1!(G).

Considering that hgi / G, we have h-1gh = gs, where g-1!(G) is
equal to gs!(G) and gs+1 belongs to !(G).

If s = -1, then all Abelian subgroups are normal in a group G.
Hence G is a HA2-group of the type 2) of this lemma for n > 3.
Let s 6= -1. Then s = -1+ 2n-1 and [g, h2] = 1. Since

h-1(gh2)h = (gh2)
-1

,

we have
G = hgh2ihhi,

where h4 = (gh2)
2

n-1

. So, G is a group of the type 2) of this lemma. ut

3 The main results

In this section the finite 2-groups with the cyclic center and the meta-
cyclic non-Dedekind norm NA

G
of Abelian non-cyclic subgroups are

studied. Their structure is described in the following theorem.
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Theorem 3.1 An arbitrary finite 2-group with the cyclic center and the
non-Dedekind metacyclic norm NA

G
of Abelian non-cyclic subgroups is a

group of one of the following types:

1) G = haihbi, |a| = 2n, n > 2, |b| = 8, b4 = a2
n-1 , b-1ab = a-1,

NA

G
= G;

2) G = haih hbi, |a| = 2n, |b| = 2m, n > 2, m > 1, [a, b] = a2
n-1 ,

NA

G
= G;

3) G = hyih hbi, |y| = 8, |b| = 2, [y, b] = y2; NA

G
= hy2ih hbi;

4) G = (H ⇥ hbi)hai, H = hh1, h2i, |h1| = 2k > 4, h2
k-1

1
= h2

2
,

a2 = h2
k-2

1
, h-1

2
h1h2 = h-1

1
, |b| = 2, [a, h1] = a4, [a, h2] = b,

[a, b] = a4; NA

G
= haih hbi;

5) G = hyihbi, hyi \ hbi = E, |y| = 2k, k > 4, |b| = 2m, m > 2,
[y, b] = y2

k-m
sb2

m-1
t, (s, 2) = 1, t 2 {0, 1}; NA

G
= hy2

m-1ih hbi.

Proof — The sufficiency of the conditions of the theorem can be
verified directly. Let us prove their necessity. Let G and its norm
of Abelian non-cyclic subgroups satisfy the conditions of the theo-
rem. Then NA

G
is a group of one of the types 1) or 2) of Lemma 2.1.

If G = NA

G
, then G is a group of the type 1) or 2) of this theorem.

Let’s continue the proof in Lemmas 3.2–3.7, depending on the
structure of the norm NA

G
.

Lemma 3.2 If a finite 2-group G has the norm NA

G
of Abelian non-cyclic

subgroups of the type
NA

G
= haihbi,

where |a| = 2n, n > 2, |b| = 8, a2
n-1

= b4, b-1ab = a-1, then all Abe-
lian non-cyclic subgroups are normal in G and G = NA

G
.

Proof — Let G have the norm NA

G
of Abelian non-cyclic subgroups

of the mentioned type. Then the lower layer of the norm

!(NA

G
) = ha2

n-1

i ⇥ ha2
n-2

b2i

is an elementary Abelian group of order 4 with a2
n-1

= a1 2 Z(NA

G
)

and a2
n-2

b2 = a2 /2 Z(NA

G
). The subgroup !(NA

G
) contains all invo-

lutions of this group by Lemma 2.7. Let’s prove that NA

G
also contains

all the elements of order 4 of this group.
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Put
H = ha2

n-2

i!(NA

G
) = ha2

n-2

i ⇥ ha2i.

Then H /G as the product of two characteristic subgroups of NA

G
.

Suppose that there exist an element y 2 G\H, |y| = 4. Since the cen-
ter of the norm NA

G
is cyclic, the central involution a1 belongs to each

cyclic subgroup of composite order by Lemma 2.6. Thus y2 = a1 2 H.
Therefore, the group

G1 = hyiH

has order 16 and the factor groups G1/!(NA

G
) and G1/ha2

n-2i are
Abelian. Thus

G 0
1
✓ !(NA

G
)\ ha2

n-2

i = ha1i.

If [y, a2
n-2

] = 1, then |ya2
n-2

| = 2, which contradicts Lemma 2.7.
So,

[y, a2
n-2

] = y2 = a1.

Let A = hyi!(NA

G
). Then |A| = 8 and !(NA

G
) contains all involu-

tions of this group by Lemma 2.7. Hence, the subgroup A is Abelian.
Since A is NA

G
-admissible subgroup,

[hyi, NA

G
] ✓ A\NA

G
= !(NA

G
).

So, a-1ya = ya↵

1
a�

2
, ↵, � 2 {0, 1}. Then a-2ya2 = ya2↵

1
a2�

2
= y and

[y, a2
n-2

]=1, which contradicts the proved above. Hence, y 2 H⇢NA

G
.

Then the subgroup H satisfies all the conditions of Lemma 2.8 and G
is HA2-group of one of the types 1) or 2) of Theorem 3.1. In both
cases we have G = NA

G
and G is a group of type 1) of Theorem 3.1.

The lemma is proved. ut

Further we consider finite 2-groups with the norm of Abelian non-
cyclic subgroups of the type 1) of Lemma 2.1:

NA

G
= haih hbi, |a| = 2n, |b| = 2m, n > 2, m > 1, [a, b] = a2

n-1

,

where !(NA

G
) 6⇢ Z(G).

Clearly, that the center of a group G with such a norm NA

G
for

m > n > 2 is non-cyclic. Therefore, we assume further that n > m > 1
or n > m = 1.

Lemma 3.3 If the norm NA

G
of Abelian non-cyclic subgroups of a fi-
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nite 2-group G is a group of the type

NA

G
= haih hbi, |a| = 4, |b| = 2, [a, b] = a2,

and NA

G
6= G, then G is a group of the type 3) of Theorem 3.1.

Proof — Let the norm NA

G
of Abelian non-cyclic subgroups of G be

a group of order 8. Denote by C = CG(NA

G
) the centralizer of NA

G
in G.

It is known that the automorphism group of the dihedral group D8

of order 8 is isomorphic to D8, Aut(D8) ' D8. So, [G : C] 6 8.
Let’s consider the subgroup G1 = C ·NA

G
. Since NA

G
\C = ha2i, we

obtain |G1/C| = 4. Hence, in the chain of subgroups

G ◆ G1 ◆ C

we get |G/C| 6 8, |G1/C| = 4, |G/G1| 6 2. So,

G = G1hyi =
�
C ·NA

G

�
hyi,

where y2 2 G1. By Lemma 2.4 a group G does not contain any el-
ementary Abelian subgroups of order 8. So, C has a unique involu-
tion a2 and it is a cyclic or a generalized quaternion 2-group.

Let C be a generalized quaternion 2-group of order greater than 8,

C = hh1, h2i,

where |h1| = 2n, n > 3, |h2| = 4, h2
n-1

1
= h2

2
= a2, h-1

2
h1h2 = h-1

1
.

By Corollary 2.5 h2
n-2

1
2 NA

G
. So

h2
n-2

1
2 NA

G
\C = Z(NA

G
),

which is impossible.
Suppose that C is the quaternion group of order 8. Then

G1 = C ·NA

G

is the central gluing of the quaternion group and the dihedral group
of order 8. Let’s prove that C contains a cyclic subgroup of order 4
which is normal in G.

Let h1 2 C, |h1| = 4. Then it follows from the condition [h1, y] 2 C
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that C /G. If [h1, y] 2 hh1i, then hh1i /G and by Lemma 2.3

h1 2 NA

G
\C 2 Z(NA

G
),

which is impossible. So, [h1, y] /2 hh1i. Hence

|[h
1

, y]| = 4 and [h1, y] = h2,

where |h2| = 4, h2 /2 hh1i. Thus, C = hh1, h2i, where h2

1
= h2

2
,

h-1

2
h1h2 = h-1

1
and y-1h1y = h1h2.

Since y2 2 C ·NA

G
, we have y-2h1y2 = hm

1
, where (m, 2) = 1. On

the other hand,

y-2h1y2 = y-1h1h2y = y-1h1yy-1h2y = h1h2y-1h2y.

So, hm

1
= h1h2y-1h2y and y-1h2y = h-1

2
hm-1

1
. Thus,

y-1h2y = h-1

2
or y-1h2y = h2.

In both cases hh2i / G and therefore h2 2 Z(NA

G
), which contradicts

the condition. This means, that C cannot be the quaternion group of
order 8.

It remains to consider the case when C = hci is a cyclic subgroup.
Suppose that |c| = 2n > 4. By Lemmas 2.3 and 2.4 c2

n-2 2 NA

G
.

But in this case the element c2
n-2 is contained in Z(NA

G
), which is

impossible. So, |C| = 2 and C = ha2i. Further, by the conditions
C ✓ NA

G
, G = (C · NA

G
)hyi and y2 2 (C · NA

G
), we have G = NA

G
· hyi.

So,
G/C ' NA

G
hyi/ha2i '

�
hai ⇥ hbi

�
hyi,

where 2 6 |y| 6 4. Taking into account that G/C is isomorphic
to some subgroup of the dihedral group of order 8, we conclude
that |y| = 2. Then from the condition |G/hai| = 4 it follows that the
group G/hai is Abelian and G 0 ✓ hai.

Let C1 = CG(a) be the centralizer of element a in G. Since b /2 C1,

G = C1 h hbi.

Then by the conditions |C1| = 8 and Z(C1) ◆ hai we conclude, that C1

is an Abelian group.
Suppose, that C1 is a non-cyclic subgroup. Then we can assume
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that
C1 = hai ⇥ hxi, |x| = 2.

Taking into account that the subgroup ha2i ⇥ hxi is hbi-admissible,
we have

G 0 ✓
�
ha2i ⇥ hxi

�
\NA

G
= ha2i.

Since every Abelian non-cyclic subgroup of G contains ha2i, it is nor-
mal in G and therefore G = NA

G
, which contradicts the condition.

So, C1 = hyi is a cyclic subgroup of order 8,

G = hyih hbi, y2 = a.

As G contains a cyclic subgroup of index 2, Theorem 12.5.1 [9] yields
that b-1yb = y3. Finally, we have

G = hyih hbi,

where |y| = 8, |b| = 2, b-1yb = y3. Thus, G is a group of the type 3)
of Theorem 3.1. ut

Lemma 3.4 If the norm NA

G
of Abelian non-cyclic subgroups of a fi-

nite 2-group G is a group of the type

NA

G
= haih hbi, |a| = 2n, n > 2, |b| = 2, b-1ab = a-1

and G 6= NA

G
, then G is a group of the type 4) of Theorem 3.1.

Proof — Let G have the norm of the Abelian non-cyclic sub-
groups of the given in the condition of the lemma type.
Since !(NA

G
) = ha2

n-1i ⇥ hbi is a characteristic subgroup of NA

G
, we

have !(NA

G
) /G.

Denote by C = CG

�
!(NA

G
)
�

the centraliser of !(NA

G
) in G.

Then C /G and [G : C] = 2. Since a /2 C, we can assume that

G = C · hai, a2 2 C.

Consider the factor group

C = C/hbi.

By Lemma 2.7 the subgroup !(NA

G
) contains all involutions of its

centralizer. Since the element a1 = a2
n-1 belongs to every cyclic sub-
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group of composite order of a group G by Lemma 2.6, C contains
a unique involution. Therefore, the factor group C is a cyclic or a
generalized quaternion group.

1) Let C be a cyclic 2-group. Then C is an Abelian group with a
complementary subgroup hbi and C = hxi ⇥ hbi. Since a2 2 C, it
follows that a2 2 Z(G) and

G = C · hai =
�
hxi ⇥ hbi

�
hai.

Consider the factor group

eG = G/!(NA

G
) ' hexiheai,

where hea2i ✓ hexi. Since eG has a central cyclic subgroup of in-
dex 2, eG 0 ✓ hea2

n-2i by Theorem 12.5.1 of [9].
If eG 0 = E, then G 0 ✓ !(NA

G
) and [a, x] = a↵

1
b�, where ↵, � 2 {0, 1}.

So, [a2, x] = a�

1
= 1, � = 0 and therefore [a, x] 2 ha1i. Thus, in this

case G 0 ✓ ha1i and G = NA

G
, which is impossible.

Now let eG 0 = hea2
n-2i. Put [a, x] = a2

n-2
↵b�, where (↵, 2) = 1

and � 2 {0, 1}. Since a2 2 Z(G) and G 0 6⇢ !(NA

G
), we have

(↵, 2) = (�, 2) = 1 and [a, x] = a±2
n-2

b.

On the other hand, x2b 2 Z(G), so x2b = a2.
If |a| = 8, then x2 = a2b, |x| = 8 and G = ha, xi is a HA2-group,

which is impossible, because G 6= NA

G
. Therefore, |a| > 8. Then |x| > 8,

|xa-1⌥2
n-3

| = 2 and ha1, xa-1⌥2
n-3i is an Abelian non-cyclic sub-

group. But,

a-1xa-1⌥2
n-3

a = xa±2
n-2

ba-1⌥2
n-3

/2 ha1, xa-1⌥2
n-3

i

and a /2 NG

�
ha1, xa-1⌥2

n-3i
�
, which contradicts the definition of

the norm NA

G
. Therefore, this case is impossible.

2) Let C be a generalized quaternion group

C = hh1, h2i,

where |h1| = 2k > 4, |h2| = 4, h2
k-1

1 = h
2

2, h-1

2 h1h2 = h
-1

1 .
Denote the preimages of the elements h1 and h2 by h1 and h2.
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Since h1 and h2 are of composite order,

hh1i \!(NA

G
) = hh2i \!(NA

G
) = ha1i

by Lemma 2.6.
By the defining relations for C, we obtain h-1

2
h1h2 = h-1

1
bm.

If m 6= 0, then the subgroup hh1h2i is of order 4 and does not con-
tain a1, which contradicts Lemma 2.6. So, m = 0, h-1

2
h1h2 = h-1

1

and
C = H⇥ hbi,

where H = hh1, h2i is a quaternion 2-group, |h1| = 2k > 4. It follows
from the conditions a2 2 C and ha2i = Z(NA

G
) /G, that a2 = hs

1
bt.

Since
[a, h] 2

�
NA

G
\ hb, hi

�
= !(NA

G
)

for an arbitrary element h 2 H\hh1i and |h| = 4, [a, h2] 2 !(NA

G
),

[a, h1h2] 2 !(NA

G
). Therefore, [hai, H] ⇢ !(NA

G
).

If H is the quaternion group of the order 8, then |a| = 8 and
G 0 ⇢ !(NA

G
). Since in this case every Abelian non-cyclic subgroup

of G contains !(NA

G
), it is normal in G and G = NA

G
, which contra-

dicts the condition.
So, we assume that |H|>8, where |h1|=2k > 4. Since [a,h2]2!(NA

G
),

we have [a2, h2] 2 ha1i. On the other hand,

[a2, h2] = [hs

1
bt, h2] = [hs

1
, h2] = h-2s

1
.

Thus, s ⌘ 0 (mod 2n-2), a2 = h2
k-2

s1

1
bt and

a4 = (h2
k-2

s1

1
bt)2 = h2

k-1
s1

1
= as1

1
.

Finally, we have (s1, 2) = 1 and |a| = 8 again.
Let us consider the action of the element h1 on the element a. Since

[a, h1] 2 !(NA

G
),

h-1

1
ah1 = aa↵

1
b�.

Then h-1

1
a2h1 = a2a�

1
. On the other hand, we have h-1

1
a2h1 = a2,

so � = 0 and [a, h1] = a↵

1
, ↵ 2 {0, 1}. Since (a-1h2

k-3
s1

1
)2 = al

1
bt,

where l 2 {0, 1}, the subgroup ha-1h2
k-3

s1

1
i has a composite order

and does not contain the involution a1 for t 6= 0, which contra-
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dicts Lemma 2.6. Therefore, a2 = h2
k-2

s1

1
, where (s1, 2) = 1.

Considering that [a, h2] 2 !(NA

G
), let [a, h2] = am

1
br. Then by the

condition
[a2, h2] = [h2

k-2
s1

1
, h2] 6= 1,

we have r 6= 0 and [a, h2] = b. Thus, in this case G is a group of the
type 4) of Theorem 3.1. ut

From the proof of Lemma 3.4 we obtain the following statement.

Corollary 3.5 If the norm of Abelian non-cyclic subgroups NA

G
of a fi-

nite 2-group G is a group of the type

NA

G
= haih hbi, |a| = 2n > 8, |b| = 2, [a, b] = a2

n-1

,

then NA

G
= G.

Lemma 3.6 If the norm of Abelian non-cyclic subgroups NA

G
of a fi-

nite 2-group G is a group of the type

NA

G
= haih hbi, |a| = 4, |b| = 4, [a, b] = a2,

then !(NA

G
) ✓ Z(G).

Proof — Let the norm NA

G
satisfy the conditions of the lemma.

If NA

G
= G, then the statement of the lemma is obvious. Therefore,

further assume that NA

G
6= G.

By Lemma 2.7

!(NA

G
) = ha2

n-1

i ⇥ hb2
m-1

i = !(G)

and therefore !(NA

G
)/G. Assume that !(NA

G
) * Z(G) and denote the

centralizer of the lower layer !(NA

G
) in a group G by C = CG

�
!(NA

G
)
�
.

Then by Lemma 3 of [19]

G = C · hyi,

where y2 2 C, |y| > 4. Since NA

G
✓ C and !(NA

G
) ✓ Z(C), by Lem-

ma 20 of [21] C = NA

C
= NA

G
and

G = C · hyi = NA

G
· hyi = (haih hbi)hyi,
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where |y| = 8. By the condition [y, b2] 6= 1 we have hyi
T

!(G) = ha2i.
Let’s consider the factor group

G = G/!(G) = (hai ⇥ hbi)hyi.

Since y2 2 C and G has three involutions, G is a metacyclic group,

G = hy1ihb1i,

where |y1| = 4 and hy1i /G. Thus, by Theorem 12.5.1 of [9] we have

b1

-1
y1b1 = y1 or b1

-1
y1b1 = y1

-1.

In the first case G 0 ✓ !(G). Since all Abelian non-cyclic subgroups
contain !(G), NA

G
= G, which is impossible. Therefore,

b1

-1
y1b1 = y1

-1

and G is the dihedral group. But then |y1b1| = 2 and the preimage
of the element y1b1 is of order 4. By Lemma 3 of [19] all elements
of order 4 are contained in C, which is impossible. Therefore, the
assumption is false and !(NA

G
) ✓ Z(G). ut

Lemma 3.7 If the norm NA

G
of Abelian non-cyclic subgroups of a fi-

nite 2-group G is a group of the type

NA

G
= haih hbi, |a| = 2n, |b| = 2m, n > 2, n > m > 2, [a, b] = a2

n-1

and !(NA

G
) 6⇢ Z(G), then G is a group of the type 5) of Theorem 3.1.

Proof — Let a group G and its norm NA

G
of Abelian non-cyclic sub-

groups satisfy the condition, !(NA

G
) 6⇢ Z(G) and NA

G
6= G. By Lem-

ma 2.7
!(NA

G
) = ha2

n-1

i ⇥ hb2
m-1

i = !(G) /G.

Since !(G) 6⇢ Z(G) and ha2
n-1i is the characteristic subgroup in NA

G
,

we have a1 = a2
n-1 2 Z(G) and b1 = b2

m-1

/2 Z(G).
Denote C = CG(!(G)). By Lemma 3 of [19]

G = C · hyi,

where y2 2 C, |y| > 4 and NA

C
= NA

G
. Since the subgroup C has
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the non-cyclic center and the non-Dedekind norm of Abelian non-
cyclic subgroups, by Theorem 16 of [21] either C is a HA2-group
and C = NA

C
= N

A

G
, or C is a group of the type 2) of this theorem.

Let us prove that a group G is metacyclic. In fact, otherwise it
contains a non-metacyclic subgroup H, in which all subgroups are
metacyclic. Then expH 6 4 by Lemma 2.2. Since the centralizer C
contains all elements of order 4 of a group G, H ✓ C. This contradic-
tion proves, that

G = hgihhi

is a metacyclic group with three involutions and the non-central
lower layer. By the description of such groups (see Theorem 1.1.4
of [23]), we conclude that G is a group of one of the types:

1) G = hgihhi, |g| = 2↵, |h| = 2�, hgi \ hhi = E, h-1gh = g-1-2
↵-� ,

↵ > 2, � > 2, ↵-� > 1;

2) G = hgihhi, |g| = 2↵, |h| = 2�, hgi \ hhi = E, h-1gh = g1+2
↵-� ,

↵ > 2, � > 2, ↵-� > 1;

3) G = hgihhi, |g| = 2↵, |h| = 2�, h-1gh = g1+2
r , hgi \ hhi = hg2

li,
1 < r < l < ↵ < �, Z(G) = hg2

↵-rihh2
↵-ri.

1) Let G be a group of the first type. Then h2
�-1

/2 Z(G), h 2 C
and g /2 C. Taking into account the structure of the subgroup C, we
conclude that h 2 NA

G
. If C = NA

G
, then C 0 = hg2

↵-1i. On the other
hand, in a group of the type 1) we have G 0 = hg2i, C 0 = hg4i and
therefore ↵ = 3, which is impossible, because otherwise � = 1.

So, C is a group of the type 2) of Theorem 16 of [21]. In this case,
|C 0

| = 2r+1, where r is the smallest integer such that (g2)2
r 2 NA

G
.

Then by the equality |C 0
| = |hg4i| = 2↵-2, we have r + 1 = ↵ - 2

and the smallest power of the element g contained in NA

G
is the ele-

ment g2
r+1

= g2
↵-2 of order 4, which is impossible.

2) Let G be a group of the type 2). As in the previous case we
conclude, that h2

�-1

/2 Z(G), g /2 C and h 2 NA

G
. Let‘s denote the

smallest power of the element g contained in NA

G
by g2

r . If C = NA

G
,

then g2 2 C. Then by the condition C 0 = hg2
↵-1i = ha1i we have that

h-1g2h = g2g2
↵-�+1
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and 2↵-�+1 ⌘ 0 (mod 2↵-1). So

↵-�+ 1 > ↵- 1, 2-� > 0 and � 6 2.

By the condition of lemma, it follows that � = 2 and

h-1gh = g1+2
↵-2

.

Therefore, G is a group of the type 5) of Theorem 3.1 for y = g, b = h,
k = ↵, m = � = 2 and t = 0.

Let C 6= NA

G
. Then C is a group of the type 2) of Theorem 16 of [21].

Since g2
r is the smallest power of the element g contained in NA

G

and (NA

G
) 0 = hg2

↵-1i, [g2
r , h] 2 hg2

↵-1i. On the other hand, by the
defining relations of a group of the type 2) we obtain

h-1g2
r

h = g2
r

g1+2
r+↵-�

.

So, 2r+↵-� ⌘ 0 (mod 2↵-1) and � 6 r+ 1. Since by Theorem 16
of [21] r1 6 � - 2 and r1 = r - 1 for the exponent of the small-
est power (g2)2

r
1 of the element g2 contained in NA

G
, r - 1 6 � - 2

and � > r + 1. Therefore, � = r + 1 and G is a group of the type 5)
of Theorem 3.1 for y = g, b = h, k = ↵, m = � = r+ 1 and t = 0.

3) Let G be a group of the type 3). In this case

!(G) = hg2
↵-1

i ⇥ hg2
l-1

h-2
�-↵+l-1

i.

By the cyclicity of the center Z(G) = hg2
↵-rihh2

↵-ri and the condi-
tion � > ↵ we conclude, that hg2

↵-ri ✓ hh2
↵-ri. Then

g2
↵-r

2 hgi \ hhi = hg2
l

i,

↵- r > l > r+ 1 and ↵ > 2r+ 1. On the other hand for ↵ < 2r+ 1 we
have [g2

r , h] = 1 and g2
r 2 Z(G), which is impossible because r < l.

Therefore, ↵ = 2r+ 1 and l = r+ 1.

It is clear, that the group G can be represented as

G = hhihgh-2
�-↵

i,

where hhi \ hgh-2
�-↵i = E, |h| = 2�, |gh-2

�-↵

| = 2r+1. Let’s de-
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note y = h and b = gh-2
�-↵ . Then

b-1yb = y(g2
r

h-2
�-↵+r

)h2
�-↵+r

= yb2
r
ty2

�-r-1

.

A norm NA

G
of this group is the subgroup NA

G
= hy2

rih hbi and G is
a group of the type 5) of Theorem 3.1 for k = � and m = r + 1.The
lemma is proved. ut

The proof of the theorem is complete.
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