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Abstract
The paper presents some results about groups of finite special and section ranks.
For instance, among others, it was proved that if every locally (soluble minimax)
subgroup of a generalized radical group G has finite special rank, then G has finite
special rank.
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1 Introduction

We say that a group G has finite special rank r(G) = r if every finitely
generated subgroup of G can be generated by at most r elements and
there exists a finitely generated subgroup generated exactly by r ele-
ments. The concept of special rank has been introduced by A.I. Malt-
sev in the paper [12]. As it can be seen from the definition, the con-
cept of special rank seems to be a natural analogue of the vector
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space dimension concept. Therefore, it is not surprising that this
topic is very popular and useful. There is a huge array of articles
examining the properties of groups of finite special rank, their rela-
tionship, and their influence on the structure of the group. The most
general result on the structure of the groups of finite special rank
looks as follows. But before its formulation, we recall some defini-
tions.

A group G is called generalized radical if G has an ascending series
whose factors are locally nilpotent or locally finite. It easily follows
from its definition that a generalized radical group G either has an
ascendant locally nilpotent subgroup or an ascendant locally finite
subgroup. In the first case, the locally nilpotent radical of G is non-
identity. In the second case, G contains a non-identity normal locally
finite subgroup, so the maximal normal locally finite subgroup of G
(the locally finite radical of G) is non-identity. Thus every generalized
radical group has an ascending series of normal subgroups with lo-
cally nilpotent or locally finite factors. Therefore every generalized rad-
ical group is hyper (locally nilpotent or locally finite). We also recall that
a periodic locally generalized radical group is locally finite.

A group G is said to have 0–rank r0(G) = r if G has an ascending
series whose factors are either infinite cyclic or periodic and if the
number of infinite cyclic factors is exactly r. If G has an ascending
series with periodic and infinite cyclic factors and the set of infinite
cyclic factors are infinite, then we will say that the group G has infi-
nite 0–rank. Otherwise we will say that G has no 0–rank. It is possible
to prove that a group G has finite 0–rank if and only if G has a finite sub-
normal series whose factors are either infinite cyclic or periodic and the set
of infinite cyclic factors is finite. In some papers, the 0–rank of a group
G is also called the torsion-free rank of G.

The structure of locally generalized radical groups of finite special
rank (SR) is given by the following result.

Theorem SR Let G be a locally generalized radical group of finite special
rank r. Then G has normal subgroups V and D such that V 6 D, V is hy-
percentral,D/V is abelian and G/D is finite. In particular, G is generalized
radical, and furthermore, it is almost hyperabelian. Moreover, Tor(V) is a
direct product of its Chernikov Sylow p–subgroups, V/Tor(V) is nilpotent,
D/Tor(V) has finite 0–rank at most r. In particular, G has finite 0–rank
r0(G) 6 r.

Here and elsewhere Tor(G) denotes the largest periodic normal
subgroup of G (the periodic part of G). We note that if G is locally
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nilpotent, then Tor(G) contains all elements of finite order.

Corollary A locally generalized radical group of finite special rank is al-
most hyperabelian.

The fact that a locally soluble group of finite special rank is hyper-
abelian has been proved by V.S. Charin [3] (more precisely, Charin
proved that a locally soluble group of finite special rank is (locally
nilpotent)–by–soluble, and this implies that it is hyperabelian ). The
fact, that a locally (soluble–by–finite) group of finite special rank is
almost hyperabelian has been proved by N.S. Chernikov [4].

M.R. Dixon, M.J. Evans and H. Smith in their paper [7] have stud-
ied the influence of locally soluble subgroups on the structure of lo-
cally (soluble–by–finite) groups. They have proved that if every locally
soluble subgroup of a locally (soluble–by–finite) group G has finite special
rank then G has finite special rank. The first main result of the current
paper is the following generalization of the mentioned result. We re-
call that a group G is called locally (soluble minimax) if every finitely
generated subgroup of G is soluble minimax.

Theorem A Let G be a locally generalized radical group. If every locally
(soluble minimax) subgroup of G has finite special rank then G has finite
special rank.

Corollary A1 Let G be a locally generalized radical group. If every locally
soluble subgroup of G has finite special rank, then G has finite special rank.

Another major result of the current paper is associated with the
family of abelian subgroups. The first important result in this area
is concerned with locally nilpotent groups. From Theorem 5 of the
paper of S.N. Chernikov [5] and Theorem 5 of the paper of A.I. Malt-
sev [14] it follows that a locally nilpotent group whose abelian subgroups
have finite special rank, has finite special rank itself. M.I. Kargapolov [10]
has proved that a soluble group, whose abelian subgroups have finite spe-
cial rank, has finite special rank. R. Baer and H. Heineken [1] extended
this result to radical groups. At the same time, Yu.I. Merzlyakov [16]
has constructed a locally polycyclic group of infinite special rank
whose abelian subgroups have finite special rank. Thus, there is a
border of qualitative transition between radical groups and locally
soluble groups. In the current paper, we tried to delineate this bor-
der more precisely. We rely ourselves on the observation that in the
group constructed by Merzlyakov the ranks of chief factors are un-
bounded.



58 L.A. Kurdachenko – J. Otal – I.Ya. Subbotin

Let k be a positive integer. A group G is called k–generalized radical
if G has an ascending series of normal subgroups whose factors are
locally nilpotent or locally finite groups of special rank k. We have

Theorem B Let k be a positive integer and G be a locally k–generalized
radical group. If every abelian subgroup of G has finite special rank then G
has finite special rank.

Corollary B1 Let k be a positive integer and G be a group. Suppose
that G has an ascending series whose factors are locally k–generalized radi-
cal group. If every abelian subgroup of G has finite special rank then G has
finite special rank.

Let us now consider analogues of the above results for the other
ranks. Let p be a prime. We say that a group G has finite section p–rank
srp(G) = r if every elementary abelian p–section of G is finite of or-
der at most pr, and there is an elementary abelian p–section A/B
of G such that |A/B| = pr. We say that a group G has finite section
rank if srp(G) is finite for each prime number p. We can slightly con-
cretize this definition. Let σ be a function from the set P of all primes
in N0 = N ∪ {0}. We say that a group G has finite section rank σ if
srp(G) = σ(p) for every prime p.

A group G is said to be a group of finite abelian subgroup rank if
every elementary abelian section of G is finite [1]. We note that if
the elementary abelian sections of an abelian group A are finite then A has
finite section rank. However, in general, this can fail. For example, if G
is the group constructed by Merzlyakov [16], then every elementary
abelian section of G is finite, but, for every prime p, the orders of the
elementary abelian p–sections of G are not bounded.

A group G is called nearly radical if G has an ascending series
whose factors are locally nilpotent or finite. In the paper [1], the term
generalized radical groups was used for such groups, but we have
used it for a much wider class of groups.

Theorem C Let G be a locally nearly radical group. If every locally (soluble
minimax) subgroup of G has finite section rank then G is almost radical and
has finite section rank.

Corollary C1 Let G be a locally (soluble–by–finite) group. If every locally
(soluble minimax) subgroup of G has finite section rank then G is almost
radical and has finite section rank.

Corollary C2 Let G be a locally (soluble–by–finite) group. If every locally
soluble subgroup of G has finite section rank then G is almost radical and
has finite section rank.
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In the paper [15], Yu.I. Merzlyakov has proved that if every abelian
subgroup of a locally soluble group G has special rank at most k, where k is
a fixed positive integer, then G has finite special rank. On the other hand,
Yu.M. Gorchakov [9] has proved that if every abelian subgroup of a peri-
odic locally soluble group G has finite special rank then G has finite special
rank. In this connection, we note that the group constructed in [16]
is torsion-free. All this suggests that the reason for an unlimited in-
crease of the special rank lies precisely in the 0–rank. It was justified
in the paper of M.R. Dixon, M.J. Evans and H. Smith [7], where it has
been proved that if the 0–ranks of abelian subgroups of a locally (soluble–
by–finite) group G are bounded and the special ranks of abelian subgroups
are finite, then G has finite special rank. We have extended this result to
a larger class and got its counterpart for section rank.

Theorem D Let G be a locally nearly radical group. Suppose that there
exists a positive integer k such that r0(A) 6 k for every abelian subgroup
A of G. If every abelian subgroup of G has finite section rank, then G has
finite section rank and r0(G) 6 k(k+ 1).

Corollary D1 Let G be a locally (soluble–by–finite) group. Suppose that
there exists a positive integer k such that r0(A) 6 k for every abelian
subgroup A of G. If every abelian subgroup of G has finite section rank,
then G has finite section rank and moreover r0(G) 6 k(k+ 1).

Corollary D2 Let G be a locally generalized radical group. Suppose that
there exists a positive integer k such that r0(A) 6 k for every abelian
subgroup A of G. If every abelian subgroup of G has finite special rank,
then G has finite special rank and moreover r0(G) 6 k(k+ 1).

2 Proof of Theorems SR and A

We will first prove Theorem SR. We will use [8, Theorem E], a result
which concerns with groups of finite section p–rank. We will also
need some information about the structure of soluble irreducible
groups. Recall that A.I. Maltsev [14, Theorem 1] proved that a sol-
uble irreducible subgroup G of GLn(F), where F is a field, includes an
abelian normal subgroup A of finite index dividing µ(n), where µ(n) =
n!(n2(n2)!)n. On the other hand, let A be an abelian torsion-free
group and G be an automorphisms group of A. We say that A is
rationally irreducible with respect to G or A is G-rationally irreducible if
for every non-identity G–invariant subgroup B of A the factor-group
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A/B is periodic. We remark that G acts rationally irreducible on A if
and only if G is irreducible as a group of linear transformations of the vec-
tor space V = A⊗Z Q.

Proof of Theorem SR — We have srp(G) 6 r for all prime p. By [8,
Theorem E], G has a finite series of normal subgroups

T := Tor(G) 6 L 6 K

such that L/T is torsion-free nilpotent, K/L is a finitely generated
abelian group and G/K is finite. Moreover, for every prime p, every
Sylow p–subgroup of G is Chernikov. By the main result of the paper
of V.V. Belyaev [2], T includes a locally soluble normal subgroup S
having finite index in T . Without loss of generality we may assume
that S is a maximal locally soluble normal subgroup of T . In particu-
lar, S is G–invariant. Put Z = CG(T/S). Since T/S is finite, G/Z is finite
and hence G/(K∩Z) is finite. By the choice of S, the factor-group T/S
is semisimple, so that

(T ∩Z)/S = T/S∩Z/S = 〈1〉.

It follows that

(L∩Z)/S = (L∩Z)/(T ∩Z) = (L∩Z)/(L∩Z∩ T) ' (L∩Z)T/T

is a torsion-free nilpotent group. Similarly, (K∩Z)/(L∩Z) is a finitely
generated torsion-free abelian group. In order to avoid new designa-
tions, we assume that G = Z, that is T is locally soluble. By [3], T
is hyperabelian. Since T has finite special rank, T has an ascending
series of G–invariant subgroups

〈1〉 = H0 6 H1 6 · · · 6 Hα 6 Hα+1 6 · · ·Hγ = T

whose factors are G–chief finite. Since L/T is torsion-free nilpotent,
it has a series of G–invariant subgroups whose factors are abelian of
finite rank. We can state the same about the factor K/L. Then we can
construct a finite series of G–invariant subgroups

T = A0 6 A1 6 · · · 6 An = K

whose factors are torsion-free abelian and rationally G–irreducible.
We put Hγ+1 = A1, . . . , Hγ+n = K. Finally, since G/K is a finite
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soluble group, it has a finite series of G–invariant subgroups

K = B0 6 B1 6 · · · 6 Bt = G

whose factors are finite abelian and G–chief. Now we put

Hγ+n+1 = B1, . . . ,Hγ+n+t = Bt = G.

Consider an arbitrary factor Hα+1/Hα. If α < γ or α > γ+ n, then
this factor is finite and G–chief. Being abelian, it is an elementary
abelian p–group for some prime p. Moreover, its order is at most pr.
Therefore we may think of G/CG(Hα+1/Hα) as a subgroup of
GLr(Fp). Being finite, this factor-group is soluble. As we remarked
above, G/CG(Hα+1/Hα) have to include an abelian subgroup
Uα+1/CG(Hα+1/Hα) such that G/Uα+1 is finite of order at most
µ(r). Let now γ 6 α < γ+ n. In this case, G/CG(Hα+1/Hα) can be
considered as an irreducible subgroup of GLr(Q). Since G/T is solu-
ble, G/CG(Hα+1/Hα) is soluble too. Again, G/CG(Hα+1/Hα) have
to include an abelian normal subgroup Uα+1/CG(Hα+1/Hα) such
that G/Uα+1 is finite of order at most µ(r).

Let
V =

⋂
α<γ+n+t

CG(Hα+1/Hα).

Clearly, V = CG((Hα+1 ∩V)/(Hα ∩V)) for every α < γ+n+ t. It fol-
lows that V has an ascending central series and so V is hypercentral.

Let
D =

⋂
α<γ+n+t

Uα+1.

By the Remak’s theorem, we obtain an embedding

D/V ↪→ Crα<γ+n+tDCG(Hα+1/Hα)/CG(Hα+1/Hα)

6 Crα<γ+n+tUα+1/CG(Hα+1/Hα).

This shows that D/V is abelian. Finally, using again Remak’s theo-
rem, we obtain the embedding

G/D ↪→ Crα<γ+n+tG/Uα+1.

In other words, G/D is a subgroup of a Cartesian product of finite
groups whose orders are at most µ(b). Being a bounded group of
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finite special rank, G/D is finite.
The fact that a p–group of finite special rank is Chernikov, where p

is a prime, was proved by N.N. Myagkova [17]. The fact that a torsion-
free locally nilpotent group of finite special rank is nilpotent follows
from [14, Corollary to Theorem 5].

Choose in D/V a free abelian subgroup W/V such that D/W is
periodic. Since G/D is finite, X/V := (W/V)G/V is also free abelian
and G/X is periodic. It follows that r0(G) = r0(X). In turns out that
r0(X) = r0(X/Tor(V)). Finally, the fact that r0(X/Tor(V)) coincides
with the special rank of X/Tor(V) was proved by D.I. Zaitsev [21].

Lemma 2.1 Let G be a generalized radical group. Suppose that R is the
maximal radical normal subgroup of G and L/R is the maximal locally finite
normal subgroup of G/R. If G/R is infinite, then L/R is infinite.

Proof — Suppose, for a contradiction, that G/R is infinite, but L/R
is finite. Then L/R 6= G/R and G/L have to include a non-identity
torsion-free locally nilpotent normal subgroup K/L. Note that K/L
is infinite. If C/R := CG/R(L/R), then G/C is finite and hence
K/L∩C/L := U/R is infinite. However C/R ∩ L/R 6 ζ(C/R) and so
C ∩ L is radical and normal in G. It follows that U ∩ L = C ∩ L = R.
Hence

U/R ' (U/R)/(U/R∩ L/R) ' (U/R)(L/R)/(L/R) 6 (K/R)/(L/R) ' K/L

and it follows that U/R is locally nilpotent. Hence U is a radical nor-
mal subgroup of G, which contradicts the choice of R. The result
follows. ut

Theorem 2.2 Let G be a locally generalized radical group. If every locally
radical subgroup of G has finite special rank, then G has finite special rank.

Proof — Let F be a finitely generated subgroup of G, and let R
be the maximal radical normal subgroup of F. Denote by L/R the
locally finite radical of F/R. Let p be a prime and P/R be a Sylow
p–subgroup of L/R. Being periodic locally generalized radical, P/R is
locally finite. Being a p–subgroup, P/R is locally nilpotent. It follows
that P is a radical subgroup of G/R. Then P has finite special rank,
which implies that P/R is Chernikov (N.N. Myagkova [17]). Since this
holds for every prime p, L/R have to include a locally soluble normal
subgroup S/R of finite index (V.V. Belyaev [2]). If V is an arbitrary
finitely generated subgroup of S, then V is an extension of its radical
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subgroup V ∩ R by the finite soluble group

V/(V ∩ R) ' VR/R 6 S/R.

In particular, V is radical. In other words, S is a locally radical sub-
group of G. Then S has finite special rank, and the Theorem SR yields
that S is hyperabelian. It follows that S 6 R. It turns out that L/R is fi-
nite. By Lemma 2.1, F/R is finite. By the given conditions, R has finite
special rank. Moreover Theorem SR shows that R has finite 0–rank
so that r0(F) is finite.

Suppose that the 0–ranks of the finitely generated subgroups of G
are unbounded. Then there are a family {Fn | n > 1} of finitely gener-
ated subgroups such that

r0(F1) < r0(F2) < · · · < r0(Fn) < · · · .

Let K1 = F1, K2 = 〈F1, F2〉, Kn = 〈F1, · · · , Fn〉, n > 1. As we saw above,
being finitely generated Kn includes a radical normal subgroup Rn
having finite index in Kn. Then Rn is a finitely generated subgroup
of finite special rank. Since r0(Rn) = r0(Kn) > r0(Fn), n > 1,

r0(R1) < r0(R2) < · · · < r0(Rn) < · · · .

Since the subgroup Rn is normal in Kn for all n > 1, we have

〈R1,R2, · · · ,Rn〉 = R1R2 · · ·Rn.

In particular, R1R2 · · ·Rn contains a finite series of normal subgroups
whose factors are radical. It follows that the product R1R2 · · ·Rn is
radical for all n > 1. Hence the subgroup

E =
⋃
n>1

R1R2 · · ·Rn

is locally radical. In this case, E has finite special rank. Theorem SR
shows that E has finite 0–rank. Then there is a positive integer m > 1
such that r0(Rm) > r0(E). On the other hand, Rm is a subgroup of E
and therefore r0(Rm) 6 r0(E). This contradiction shows that there is
a positive integer k such that r0(F) 6 k for every finitely generated
subgroup F of G.

By [8, Proposition 2], G has finite 0–rank. By [8, Theorem A], G has
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normal subgroups
T 6 L 6 K 6 G

such that T is locally finite, L/T is torsion-free nilpotent, K/L is fini-
tely generated torsion-free abelian and G/K is finite. As above, we
can prove that for every prime p the Sylow p–subgroups of T are
Chernikov. Applying again the main result of [2], we obtain that T
includes a locally soluble normal subgroup C of finite index. With-
out loss of generality, we can assume that C is the maximal locally
soluble normal subgroup of T . Since the product of two periodic lo-
cally soluble normal subgroups is also locally soluble, the subgroup
C is characteristic in T and hence is normal in G. The choice of C
yields that T/C is a finite semisimple group. Put D = CG(T/C) so
that G/D is finite. Since T/C includes no abelian G–invariant sub-
groups, (T/C)∩ (D/C) = 〈1〉. Therefore

(K∩D)/C = (K∩D)/(T ∩D) = (K∩D)/(K∩ T ∩D) =

= (K∩D)/(K∩D∩ T) ' (K∩D)T/T 6 K/T ,

which shows that (K ∩D)/C is soluble. Being locally soluble, C is
locally radical and so C has finite special rank. By Theorem SR, C
is hyperabelian, and therefore K ∩D is radical. It follows that K ∩D
has finite special rank. The finiteness of G/K and G/D implies that
G/(K∩D) is finite. It follows that G has finite rank. ut

Now the quoted result of Dixon, Evans and Smith [7] easily fol-
lows from the above theorem.

Corollary 2.3 LetG be a locally (soluble–by–finite) group. If every locally
soluble subgroup of G has finite special rank, then G has finite special rank.
Proof — Let H be an arbitrary locally radical subgroup of G and F
be a finitely generated subgroup of H. Firstly, F is a radical subgroup.
On the other hand, F is almost soluble. Being radical, F must be sol-
uble. It follows that H is locally soluble. Hence every locally radical
subgroup of G has finite special rank. By Theorem 2.2, G has finite
special rank. ut

Corollary 2.4 Let G be a generalized radical group. If every abelian sub-
group of G has finite special rank, then G has finite special rank.
Proof — Let R be the maximal radical normal subgroup of G and
L/R be the maximal locally finite normal subgroup of G/R. Choose
an arbitrary locally radical subgroup K of L. Put D = K ∩ R. Being
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locally radical and locally finite, K/D is locally soluble. If A/D is
an arbitrary abelian subgroup of K/D, then clearly A is a radical
subgroup. It follows that A has finite special rank [1]. Hence A/D
has finite special rank. It follows that K/D has finite special rank [9].
The facts that D and K/D have finite special rank imply that K has
finite special rank. By Theorem 2.2, L has finite special rank. Then
L/R includes a locally soluble normal subgroup S/R of finite index
(V.V. Belyaev [2]). We recall that a locally soluble group having finite
special rank is radical [3]. The choice of R shows that L/R must be
finite. Then Lemma 2.1 implies that G/R is finite. It turns out that G
has finite special rank. ut

Now we are on position to prove Theorem A.

Proof of Theorem A — By Theorem 2.2, it suffices to prove that
every locally radical subgroup of G has finite special rank. Thus,
without loss of generality, we may assume that G is a locally rad-
ical group. Let F be an arbitrary finitely generated subgroup of G.
Then F is a radical subgroup. If A is an arbitrary abelian subgroup
of F, then clearly A is locally minimax and hence A has finite special
rank. It follows that F has finite special rank [1]. Then F is minimax
by [11, Theorem 5.10]. Hence, G is locally minimax, and therefore, G
has finite special rank.

3 Proof of Theorem B

This result will be proved with the aid of a sequence of auxiliary
statements.

Let k be a positive integer. A group G is said to be k–radical (k–hyper-
abelian, respectively) if G has an ascending normal series whose fac-
tors are locally nilpotent (abelian, respectively) groups of special
rank at most k. As a locally nilpotent group of finite special rank
is hypercentral, it follows that a k–radical group of finite special
rank is hyperabelian. Our next result shows that such a group is
also k–hyperabelian.

Proposition 3.1 A groupG is k–radical if and only if it is k–hyperabelian.
Proof — Let G be a k–radical group. Then G has an ascending
series of normal subgroups

〈1〉 = L0 6 L1 6 · · · 6 Lα 6 Lα+1 6 · · ·Lγ = G
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whose factors are locally nilpotent groups of finite special rank at
most k. If V/U := Lα+1/Lα is an arbitrary factor of this series, we
put T/U := Tor(V/U). Then

T/U = Drp∈Π(T/U)Tp/U,

where Tp/U is the Sylow p–subgroup of T/U and Π(H) stands to de-
note the set of primes occurring as the divisors of periodic elements
of H. Since Tp/U has finite special rank, Tp/U is a Chernikov group
(N.N. Myagkova [17]). Hence T/U has an ascending series of char-
acteristic subgroups (and therefore normal in G) whose factors are
abelian groups of special rank at most k.

The factor V/T is torsion-free locally nilpotent and, being a group
of finite special rank at most k, it has to be nilpotent by [14, Corol-
lary to Theorem 5]. Hence V/T has a finite series of characteristic
subgroups whose factors are abelian groups of finite rank at most k.
It follows that the above series has a refinement consisting of normal
subgroups whose factors are abelian groups of finite special rank at
most k, that is G is k–hyperabelian.

The converse is trivial. ut

If G is a group, then by dl(G) we denote the length of the derived
series of G. A well-known theorem of Zassenhaus [23] ensures that
there exists an integer-valued function ζ such that dl(G) 6 ζ(k) for a
soluble subgroup G of GLk(F), where k is a positive integer and F is
a field.

Proposition 3.2 Let k be a positive integer and G be a k–radical group.
Then G has normal subgroups Z 6 K such that Z is hypercentral, K/Z is
abelian and G/K is isomorphic to a subgroup of a Cartesian product of finite
groups of order at most µ(k). Moreover, G/K is soluble and dl(G/K) 6
ζ(k).

Proof — Let G be a k–radical group. By Proposition 3.1, G has an
ascending series of normal subgroups

〈1〉 = L0 6 L1 6 · · · 6 LαLα+1 6 · · ·Lγ = G

whose factors are abelian groups of finite special rank at most k. If
V/U := Lα+1/Lα is an arbitrary factor of this series, we put T/U :=
Tor(V/U). Then

T/U = Drp∈Π(T/U)Tp/U,
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where Tp/U is the Sylow p–subgroup of T/U, p ∈ Π(T/U). As above,
since Tp/U has finite special rank, Tp/U is a Chernikov group
(N.N. Myagkova [17]). Then T/U has an ascending series of G–inva-
riant subgroups whose factors are G–chief and have special rank at
most k. The factor V/T is torsion-free and has finite special rank at
most k. Choose in V/T a G–invariant subgroup V1/T whose special
rank is minimal. If W/T is a non-identity G–invariant subgroup of
V1/T , then r(W/T) = r(V1/T). It follows that the factor-group V1/W
is periodic. In other words, V1/T is a rationally G–irreducible factor.
Let X/V1 := Tor(V/V1). Then X is a G–invariant subgroup of G, and
clearly the factor X/T is also rationally G–irreducible. We note that
the factor-group V/X is torsion-free and r(V/X) < r(V/T). Repeating
the argument, we obtain that V/T has a finite series of G–invariant
subgroups whose factors are torsion-free, G–rationally irreducible
and have special rank at most k. Since this holds for each factor of
the above series, G has an ascending series of normal subgroups

〈1〉 = D0 6 D1 6 · · · 6 Dα 6 Dα+1 6 · · ·Dη = G

whose factors either are finite abelian and G–chief of special rank
at most k or torsion-free G–rationally irreducible of special rank at
most k. We consider an arbitrary factor Dα+1/Dα of this series.

If Dα+1/Dα is finite, then this is an elementary abelian p–group
of order at most pk and it can be thought as a vector space of di-
mension at most k over the prime field Fp. By the above remarked,
dl(G/CG(Dα+1/Dα))6ζ(k). Moreover,G includes a normal subgroup
Kα such that Kα > CG(Dα+1/Dα) such that Kα/CG(Dα+1/Dα)) is
abelian and G/K is finite of order at most µ(k).

Suppose that Dα+1/Dα is torsion-free, G–rationally irreducible
and have special rank at most k. In this case, G/CG(Dα+1/Dα) can be
thought as an irreducible linear group acting on Y=(Dα+1/Dα)⊗ZQ.
We have dimQ(Y)=r(Dα+1/Dα) 6 k. As above, dl(G/CG(Dα+1/Dα))
6 ζ(k). Furthermore, G includes a normal subgroup Kα such that
Kα > CG(Dα+1/Dα) such that Kα/CG(Dα+1/Dα)) is abelian and
G/Kα is finite of order at most µ(k).

Put
Z =

⋂
α<η

CG(Dα+1/Dα) and K =
⋂
α<η

Kα.
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Applying Remak’s theorem, we obtain an embedding

G/K ↪→ Crα<ηG/Kα.

Recall that every factor G/Kα is finite of order at most µ(k). Another
application of Remak’s theorem gives now an embedding

G/Z ↪→ Crα<ηK/CG(Dα+1/Dα).

Since the factor-groups Kα/CG(Dα+1/Dα)) are all abelian, K/Z is
also abelian.

Finally, the normal subgroup Z has an ascending series of normal
subgroups

〈1〉 = D0 6 Z∩D1 6 · · · 6 Z∩Dα 6 Z∩Dα+1 6 · · ·Z∩Dη = Z.

We have

(Z∩Dα+1)/(Z∩Dα) = (Z∩Dα+1)/(Z∩Dα+1 ∩Dα)
'G (Z∩Dα+1)Dα/Dα,

which shows that

CG(Dα+1/Dα) 6 CG((Z∩Dα+1)/(Z∩Dα)).

In particular, Z 6 CG((Z ∩Dα+1)/(Z ∩Dα)) for each α < η. This
implies that Z is hypercentral. ut

If G is a group, we will stand δn(G) to denote the nth term of the
derived series of G.

Corollary 3.3 Let k be a positive integer and G be a locally k–radical
group. Then there exists a positive integer t such that δt(G) is locally nilpo-
tent.
Proof — Let t = ζ(k). If M is a finite subset of D := δt(G), then
there exists a finitely generated subgroup F such that M ⊆ δt(F). By
Proposition 3.2, δt(F) is hypercentral. We recall that a hypercentral
group is locally nilpotent [13]. Therefore 〈M〉 is nilpotent. It follows
that D is locally nilpotent. ut

Corollary 3.4 Let k be a positive integer and G be a locally k–radical
group. If every abelian subgroup of G has finite special rank, then G has
finite special rank.
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Proof — By Corollary 3.3, G is radical group, so that the result
follows from [1, Theorem 6.3]. ut

Proof of Theorem B — Let L be an arbitrary locally radical sub-
group of G. Then L is locally k–radical. By Corollary 3.4, L has finite
special rank. Application of Theorem 2.2 shows that G also has finite
special rank.

Proof of Corollary B1 — Let

〈1〉 = K0 6 K1 6 · · · 6 Kα 6 Kα+1 6 · · ·Kγ = G

be an ascending series whose factors are locally k–generalized rad-
ical groups. Since K1 is locally k–generalized radical group, Theo-
rem B implies that K1 has finite special rank. By Theorem SR, K1 is
almost hyperabelian. Then K1 includes a normal subgroup which is
either finite or abelian. Consider the factor K2/K1 and let A/K1 be
an arbitrary abelian subgroup of it. Then the subgroup A is general-
ized radical. By Corollary 2.4, A has finite special rank. Thus every
abelian subgroup of K2/K1 has finite special rank, and hence K2/K1
has finite special rank by Theorem B. By Theorem SR, K2/K1 is al-
most hyperabelian.

Proceeding in the same way and applying transfinite induction, we
obtain that G is a generalized radical group. Then it suffices to apply
Corollary 2.4.

4 Proofs of Theorems C and D

We need the following auxiliary result.

Proposition 4.1 Let G be a nearly radical group. If every abelian sub-
group of G has finite section rank, then G has finite section rank.
Proof — By [1, Theorem 8.1], G includes a radical normal sub-
group R of finite index and every elementary abelian section of G
is finite. Applying the description of radical groups of finite abelian
subgroup rank given in [1, Theorem 6.1], we deduce that G has finite
section rank, as required. ut

We also will need the following notion.

Let G be a locally finite group and p be a prime. A Sylow p–sub-
group P of G is said to be a Wehrfritz p–subgroup if P includes an
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isomorphic copy of every p–subgroup of G [6, Definition 2.5.2]. We
remark that a locally finite group whose Sylow p–subgroups are Chernikov
always contains Wehrfritz p–subgroups [19]

Proof of Theorem C — Let F be a finitely generated subgroup of G.
Then F is a nearly radical subgroup. Let A be an arbitrary abelian
subgroup of F. Being locally minimax, A has finite section rank. By
Proposition 4.1, F has finite section rank. Moreover, F includes a rad-
ical normal subgroup R of finite index, so that R is finitely generated
too. It follows that R is minimax by [11, Theorem 5.10]. Hence, ev-
ery finitely generated subgroup of G is soluble–by–finite minimax.
In particular, it has finite 0–rank.

Suppose that the 0–ranks of finitely generated subgroups of G are
unbounded. Then there is a family {Fn | n > 1} of finitely generated
subgroups such that

r0(F1) < r0(F2) < · · · < r0(Fn) < · · · .

Let K1 = F1, K2 = 〈F1, F2〉, Kn = 〈F1, · · · , Fn〉 (n > 1). As we saw
above, being finitely generated, each Kn includes a soluble minimax
normal subgroup Rn having finite index in Kn. Reasoning as we did
in the proof of Theorem 2.2, we obtain a contradiction that shows
that there is a positive integer k such that r0(F) 6 k for every finitely
generated subgroup F of G.

By [8, Proposition 2], G has finite 0–rank. By [8, Theorem A], G has
normal subgroups

T 6 L 6 K 6 G

such that T is locally finite, L/T is torsion-free nilpotent, K/L is tor-
sion-free finitely generated abelian, r0(K/T) is finite, and G/K is
finite. For every prime p, a p–subgroup P of G is locally (soluble
minimax). Therefore, it has finite section rank. It follows that every
abelian subgroup of P is Chernikov. Then P itself is Chernikov [5].
Thus, for every prime p, the Sylow p–subgroups of T are Chernikov.
As we noted above, G has a Sylow p–subgroup S such that every
p–subgroup of G is isomorphic to some subgroup of S. It follows
that every elementary abelian p–section of T is isomorphic to some
elementary abelian section of S. Hence srp(T) 6 srp(S). In particular,
srp(T) is finite. Since this holds for every prime p, we conclude that T
has finite section rank. Since G/T has finite special rank, G has finite
section rank.

The fact that G is almost radical could be established in the same
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way as in the proof of Theorem 2.2.

Now we need to establish a connection between the 0–rank of
a soluble–by–finite minimax group and the 0–rank of its abelian
subgroups. Let G be a group and A be an infinite abelian normal
subgroup of G. Then we say that A is G–quasifinite if every proper
G–invariant subgroup of A is finite.

Lemma 4.2 Let G be a group and D be a divisible Chernikov normal
subgroup. Suppose that there exists a positive integer k such that r0(A) 6 k
for every abelian subgroup A of G. Then r0(C/D) 6 k for every torsion-free
abelian subgroup C/D of G/D.

Proof — Suppose for a contradiction that G/D contains a free
abelian subgroup B/D such that r0(B/D) > k. Being Chernikov, D
has a finite series of B–invariant subgroups

〈1〉 = D0 6 D1 6 · · · 6 Dt = D,

whose factors are B–quasifinite. We proceed by induction on t. Sup-
pose first that t = 1 so that D is B–quasifinite. Let

B/D = 〈b1D〉 × · · · × 〈bmD〉.

The subgroups [bj,D] are B–invariant, so that either [bj,D] is finite
or [bj,D] = D.

If all the subgroups [bj,D] are finite, since [bj,D] ' D/CD(bj),
every factor-group CD(bj) is infinite, and then CD(bj) = D since the
latter is B–invariant. Therefore D 6 ζ(B) and B is nilpotent. Put

K = 〈b1, · · · ,bm〉.

Since K is a finitely generated nilpotent group, Tor(K) is finite. There
exists a positive integer s such that Ks is torsion-free. The fact that K
is finitely generated implies that K/Ks is finite, so that r0(K) = r0(Ks).
Since

Ks ∩ Tor(K) = 〈1〉,

K is torsion-free abelian. However in this case,

r0(B/D) = r0(K) = r0(K
s) 6 k,

and we obtain a contradiction.
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Suppose now that there exists a number n such that D = [bn,D].
Pick x ∈ B. Since B/D is abelian, x−1bnx = bnd for some d ∈ D. The
equation D = [bn,D] implies that there exists some c ∈ D such that
d = [bn, c]. Then

x−1bnx = bnd = bn[bn, c] = bnc ,

and so xc−1 ∈ CB(bn). It follows that B = DCB(bn). The choice of
bn yields that D ∩CB(bn) = CD(bn) is finite and then L := CG(bn)
is a finite–by–abelian group. In particular, it is finitely generated. It
is not hard to prove that there exists a positive integer r such that
Lr is torsion-free. Since L is finitely generated, L/Lr is finite, and so
r0(L) = r0(L

r). Since
Lr ∩D = 〈1〉,

L is torsion-free abelian. But in this case

r0(B/D) = r0(L) = r0(L
r) 6 k,

and we obtain again a contradiction.
Suppose now that t > 1. Proceeding in the same way, we obtain

that G contains a subgroup V such that Dt−1 6 V 6 B, |B : VD|

is finite and V ∩D = Dt−1. Therefore k = r0(B/D) = r0(V/Dt−1).
Applying the inductive hypothesis, we obtain that r0(V/Dt−1) 6 k.
This contradiction proves the result. ut

Proposition 4.3 Let G be a soluble–by–finite minimax group. Suppose
that there exists a positive integer k such that r0(A) 6 k for every abelian
subgroup A of G. Then r0(G) 6 k(k+ 1).

Proof — The group G has a series of normal subgroups

D 6 L 6 K 6 G

such that D is divisible, L/D is torsion-free nilpotent (provided it is
non-trivial), K/L is finitely generated free abelian (provided it is non-
trivial), and G/K is finite (see [20] for example). If A/D is an arbitrary
abelian subgroup of G/D, by Lemma 4.2, r0(A/D) 6 k. Therefore,
without loss of generality we can assume that D = 〈1〉. Suppose that
G includes a torsion-free nilpotent normal subgroup V of finite index.
In particular, r0(V) = r0(G). For the subgroup V we have r0(V) 6
k(k+1)
2 (N.F. Sesekin [18]). If G is not nilpotent–by–finite, then G



Some remarks about groups of finite special rank 73

includes a torsion-free nilpotent subgroup U such that LU has finite
index in G [22]. Then r0(LU) = r0(G). For the subgroups L and U we
have r0(L), r0(U) 6

k(k+1)
2 [18], and hence r0(LU) 6 k(k+ 1). Then

the result follows. ut

Proof of Theorem D — Let F be an arbitrary finitely generated
subgroup of G. By Proposition 4.1, F has finite section rank. More-
over, F includes a radical normal subgroup R of finite index, so that
R is finitely generated too. It follows that R is minimax by [11, Theo-
rem 5.10]. Hence every finitely generated subgroup of G is soluble–
by–finite minimax. By Proposition 4.3, every finitely generated sub-
group of G has 0–rank at most k(k+ 1). Applying [8, Proposition 2],
we obtain that r0(G) 6 k(k+ 1).

By [8, Theorem A], G has normal subgroups

T 6 L 6 K 6 G

such that T is locally finite, L/T is torsion-free nilpotent, K/L is finitely
generated torsion-free abelian, r0(K/T) is finite, and G/K is finite.
For every prime p, an abelian p–subgroup of G is Chernikov. Then
every p–subgroup (and hence every Sylow p–subgroup) of G is Cher-
nikov [5]. Proceeding as we did in the proof of Theorem C, we can
prove that T has finite section rank. Since G/T has finite special rank,
G has finite section rank too, as required.

Proof of Corollary D2 — As above, every finitely generated sub-
group ofG is soluble–by–finite minimax and, in particular, it is nearly
radical. Applying Theorem D, we obtain that G has finite section rank
and r0(G) 6 k(k+ 1).

Also by [8, Theorem A], G has a locally finite normal subgroup
T such that G/T has finite special rank. Since T has finite section
rank, T has Chernikov Sylow p–subgroups for every prime p. Then
T includes a locally soluble normal subgroup S of finite index [2].
Since every abelian subgroup of S has finite special rank, S has finite
special rank [9]. Since T/S is finite, T has finite special rank. It follows
that G has finite special rank, as required.

As a consequence, we obtain the result of Dixon, Evans and
Smith [7] mentioned in the Introduction.

Corollary 4.4 Let G be a locally (soluble–by–finite) group. Suppose that
there exists a positive integer k such that r0(A) 6 k for every abelian
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subgroup A of G. If every abelian subgroup of G has finite special rank,
then G has finite special rank.
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